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Abstract

In the paper k-chordal (or k-inscribed) polygons of first and second kind with
given index are considered. Existence result is proved for equilateral chordal
polygon which side lengths are already known. The convex and nonconvex cases
are discussed depending on the orientation of the polygon. Secondly, the num-
ber of different radii of circumcircles of equilateral k-inscribed n-gon cannot be
greater then

s[n] =
[
n− 1

2

]
+

[
n− 3

2

]
+

[
n− 5

2

]
+ · · ·+ 2 + 1.

A very natural conjecture is formulated on the existence of side lengths of k-
chordal n-gons when the minimal number of different circumcircle radii is

�[n] :=
[
n− 1
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]
+

(
n
1

)[
n− 3
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]
+

(
n
2

)[
n− 5

2

]
+· · ·+

(
n
µ

)[
n− 2µ + 1

2

]
,

where n−2µ = 3(4) for n odd (even). Thirdly, the so-called main equation (kind
of related characteristic algebraic equation for a polygon) is introduced for the
class Cn(a1, · · · , an) of k-chordal related polygons. In few illustrative examples
we obtain the number and the numerical values of different radii of quadrangle,
pentagon, octagon and enneagon, solving the related main equations, when only
the side lengths of initial polygons are known. In the final section certain in-
teresting properties of the so-called main equations are discussed, proving that
the positive roots of the main equations are the radii of the circumcircles of the
chordal n-gons whose sides have the lengths a1, · · · , an. The equilateral pentagon
is presented in detail with three different positive solutions of its main equation
which is an eigth degree algebraic equation. In the same section the main equa-
tion of λn-gons is characterized, when the initial n-gon is λ times continued on
the same circumcircle, λ positive integer.

Mathematics Subject Classification: 51E12, 12D10; 51M04, 26C10.
Key words: Algebraic equations, k-chordal polygon, k-inscribed chordal polygon,
main equation, circumcircle, polygon of first kind, polygon of second kind, index of
chordal polygon.

∗Balkan Journal of Geometry and Its Applications, Vol.8, No.2, 2003, pp. 57-80.
c© Balkan Society of Geometers, Geometry Balkan Press 2003.
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1 Introduction

The subject and the main purposes of this article are very closely connected to the
current interests of the first two authors in elementary geometry, more precisely
in properties of generalized plane polygons. The main tools and definitions of the
frequently mentioned basic geometrical object as k-chordal-, k-tangential-, (k, λ, l)-
chordal-, (k, f, l)-chordal polygon, polygon of first/second kind are introduced, treated
and discussed in ([6], [7], [8], [9], [10], [11]). There existence results are proved for
chordal polygons under necessary and sufficient conditions upon the side lengths, while
for (k, f, l)-chordal polygons upon the function f , i.e. upon the lengths a1, · · · , an and
f(a1), · · · , f(an) being side lengths of a k-chordal and l-chordal polygons respectively
in the same time ([6]). The approach in investigations by Góźdź in ([1]) and Pech in
([5]) is more or less different then in previously cited articles, namely, these authors
uses complex methods and harmonic/Fourier series methods in getting characteris-
tic inequalities and equations for different polygonal plane structures, such that are
convex. The classical works by Kürschák concerns to the isoperimetric questions on
the chordal and tangential n-gons to the given circle, where by their original method
it was shown that the equilateral case is the extremal ([3], [4]). Some comments and
explanations can be found in depending Horváth’s essay ([2]). Finally ([12]) is con-
taining many known inequalities relating circumradius (and further characteristics)
of planar convex sets, such that could be treated and generalized to our nonconvex,
k-inscribed setting and similarly Temesvári’s optimization paper could be found in-
teresting in further investigations for the maxima of the power sums of side lengths
of some classes of k-chordal polygons, compare ([13]).

In this paper we follow the previous investigations focusing mainly ourselves to
the so-called Main Equation of the k-chordal n-gon, and to computing all different
radii of depending circumcircles, when the polygons side lenghts are already known.

A polygon with vertices A1, · · · , An (in this order) will be denoted by A ≡
A1 · · ·An and the lengths of its sides by a1, · · · , an. The interior angle at the ver-
tex Ai will be denoted by αi or 6 Ai. Thus

6 Ai = 6 Ai−1AiAi+1, i = 1, n,

where A0 ≡ An, An+1 ≡ A1.

A polygon A is called chordal if there exists a circle CA such that ∀Ai ∈ CA.
Whenever A is chordal, then C, ρ and CA stand for the centre, radius and the cir-
cumcircle of A respectively. Throughout this paper very important roles are playing
by (oriented) angles

βi = 6 CAiAi+1,(1)
ϕi = 6 AiCAi+1, i = 1, n.(2)

Also it is important to emphasize that βi and ϕi are in opposite orientations, compare
the following figure.
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Figure 1. Angles of chordal polygons

Notice 1 We consider chordal polygons with property that no two of their consecutive
vertices are the same.

Of course, the measure |ψ| of an oriented angle ψ we take depending on the orientation
of ψ, in radians. So, by Notice 1. it is

0 ≤ |βi| < π

2
, 0 < |ϕi| ≤ π,

Notice 2 It will be no confusion there writing βi, ϕi the measures of oriented angles
βi, ϕi given by (1),(2).

Notice 3 In the following we shall suppose that no βi is zero.

Let us remark that in the case when some βi is equal to zero, then we have

2ρ = max{a1, · · · , an}.
Accordingly, in the following when we speak about a chordal polygon A it will be
meant (by Notice 1 and Notice 3) that A has no two the same consecutive vertices
and no one of its sides is its diameter.

Definition 1 Let A = A1 · · ·An be a chordal polygon. We say that A is of the first
kind if inside CA there exists a point O that all oriented angles 6 AiOAi+1 have the
same orientation. If such a point O does not exist, i.e. not all 6 AiOAi+1 have the
same orientation, we say that A is of second kind.

Definition 2 Let A be a chordal polygon and let X be a point inside CA such that
∣∣∣∣∣∣

n∑

j=1

ψj

∣∣∣∣∣∣
= 2ω(X)π,

where ψj = measure 6 AjXAj+1 and ω(X) is a positive integer. Then we say that A
is k-inscribed polygon of the first (second) kind when

k = max
X∈int(CA)

ω(X).

Here int(S) stays for the interior of the set S.
We say that j is the index of A if |ϕ1 + · · ·+ ϕn| = 2jπ, j ∈ {0, 1, · · · , k}.
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Definition 3 The polygon A is said to be k-chordal polygon if it is of first kind and
if j = k, where j is the index of A and k is given by Definition 2.

It is easy to see that A is k-chordal iff

|β1 + · · ·+ βn| = (n− 2k)
π

2
,

where βi > 0 i = 1, n or βi < 0, i = 1, n. For example, if ∀βi > 0, then ϕi < 0, i =
1, n, and it is valid

ϕ1 + · · ·+ ϕn = −2kπ,

or in other words 2β1 + · · · + 2βn = nπ − 2kπ, since ϕi = −π + 2βi. Thus, if βi >
0 , i = 1, n, then

β1 + · · ·+ βn = (n− 2k)
π

2
.

The sign of the sum β1 + · · · + βn depends of the orientation of the polygon, we
discuss this in brief. Let A be a chordal k-inscribed polygon and let B = B1 · · ·Bn be
a polygon with vertices Bj = An−1+j , j = 1, n. Then A ≡ B but their orientations
are opposite (orientation of A is positive (negative) depending on the circumscription
of CA to A ”counter-clockwise” (”clockwise”)).

If A is k-chordal, then βj , j = 1, n are negative if A is positively oriented and
vice versa. But in the case when A is a chordal polygon of second kind, then there
are βj ’s of opposite signes.

Notice 4 In the following we shall assume that polygons are negatively oriented. Then
ϕ1 + · · ·+ ϕn ≤ 0 but β1 + · · ·+ βn ≥ 0.

So, for example, the case Fig. 2.(a) gives β1 + · · · + β5 < 0, and the case Fig. 2.(b)
one concludes β1 + · · ·+ β5 > 0.

Lemma 1 If A = A1 · · ·An is a k-inscribed chordal polygon whose index is j, then

β1 + · · ·+ βn = (n− 2(ν + j))
π

2
,(3)

where ν = ]{m| βm < 0} and

|β1|+ · · ·+ |βn| = (n− 2(ν + j))
π

2
+ 2τ,(4)

where τ = − ∑
m: βm<0

βm.

Figure 2. Chordal pentagons of opposite orientations
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Proof. Since ϕj = −π + 2βj if βj > 0, and ϕj = π + 2βj for βj < 0, the equality
ϕ1 + · · ·+ ϕn = −2jπ can be written as

2β1 + · · ·+ 2βn + νπ − (n− ν)π = −2jπ,

from which follows (3). Now, by (3) we get (4) easily.
At this point we introduce certain symbols such that we will use frequently in the

sequel.

1. [a] denotes the largest integer contained in a. Obviously, if A = A1 · · ·An is
k-inscribed chordal polygon, then

k ≤
[
n− 1

2

]
,(5)

because it has to be n− 2k > 0. Of course, there are extremal cases, when the
equality holds in (5), e.g. when A is equilateral, i.e. a1 = · · · = an.

2. P (a1, · · · , an;β1, · · · , βn). Let A = A1 · · ·An be a chordal n-gon. Then this n-
gon will also be written as

P (a1, · · · , an;β1, · · · , βn).(6)

Sometimes instead of (6) we write

P (a1, · · · , an; β1, · · · , βn; ρ).(7)

In the equilateral case (aj = a) it stays P (a; β1, · · · , βn) or P (a; β1, · · · , βn; ρ).

3. P (a1, · · · , an; i1, · · · , iν). If βij , j = 1, ν are negative, then this situation we note
as

P (a1, · · · , an; i1, · · · , iν),(8)

or appropriately P (a; i1, · · · , iν).

4. Sn
p . Let p be an integer such that 0 ≤ p ≤ n. If p = 0, then

Sn
0 := cos β1 · · · cosβn.

If p > 0, then Sn
p is the sum of

(
n
p

)
products of the form

sin βi1 · · · sin βip cos βip+1 · · · cosβin ,

where (i1, · · · , in) is a permutation of the set {1, · · · , n}, e.g.

S3
2 = sin β1 sin β2 cosβ3 + sin β1 cosβ2 sin β3 + cosβ1 sin β2 sinβ3.
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2 Existence of k-inscribed chordal polygon

Let a1, · · · , an be given lengths such that satisfies the constraint

n∑

j=1

aj > 2max{a1, · · · , an}.(9)

Then there exists (at least) n-gon P (a1, · · · , an; β1, · · · , βn), where ∀βj > 0 and β1 +
· · · + βn = (n − 2)π/2. Namely, then there exists a positive real ρ (which is in fact
certain length), such that satisfies

n∑

j=1

arccos
aj

2ρ
= (n− 2)

π

2
.(10)

Intuitively it is easy to see this result. For example, observe the situation on Fig. 3.

Figure 3. Tightening of circumscribed circle one gets closed chordal polygon

Taking a sequence of circles with respect to decreasing radii we achieve the case
M1 ≡ M2; see the strong proof of (10) in ([7, proof of Theorem 2]).

Let us remark that (10) exists iff there are lengths r,R; r ≤ R, such that

n∑

j=1

arccos
aj

2r
≤ (n− 2)

π

2
≤

n∑

j=1

arccos
aj

2R
.

Generally speaking, if
∑n

j=1 βj = κπ/2, for κ integer, and if βj = (−1)εj |βj |, where
εj ∈ {0, 1}, then there exists P (a1, · · · , an; β1, · · · , βn) iff there are lengths (positive
reals) r,R; r ≤ R such that

n∑

j=1

(−1)εj arccos
aj

2r
≤ κ

π

2
≤

n∑

j=1

(−1)εj arccos
aj

2R
.
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Example 1 Put aj = 2 + .1j, j = 1, 5 and
∑5

j=1 βj = π/2, where β1 < 0, then
there is a pentagon P (2.1, · · · , 2.5;β1, · · · , β5), see Figure 4. below. In this case may
be taken 2r = 2.806, 2R = 2.807, namely then the radius ρ of the circumcircle CA
satisfies 2.806 < 2ρ < 2.807. But for β5 < 0 no pentagon is there, since it is

arccos
2.1
2ρ

+ arccos
2.2
2ρ

+ arccos
2.3
2ρ

+ arccos
2.4
2ρ

− arccos
2.5
2ρ

>
π

2
, 2ρ ≥ a5.

Figure 4. P (2.1, · · · , 2.5;β1, · · · , β5) with
∑5

j=1 βj = π
2 ; β1 < 0.

Theorem 1 If aj = a, j = 1, n, then for each angle

β(k) = (n− 2k)
π

2n
, k = 1, [(n− 1)/2]

there is a k-chordal equilateral n-gon P (a; β(k)).

Proof. It is easy to see that for 2ρk = a/ cos(n− 2k) π
2n it is

n arccos
a

2ρk
= (n− 2k)

π

2
.

As an ilustration of this result we give the case of equilateral 2-chordal pentagon
P (1; β(2)) presented on Figure 5.:
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Figure 5. 2 - chordal pentagon P (1, β(2))

3 Number of k-inscribed chordal polygons

Let s[n] be defined by

s[n] :=
[
n− 1

2

]
+

[
n− 3

2

]
+

[
n− 5

2

]
+ · · ·+ 2 + 1.(11)

Theorem 2 If a1 = · · · = an = a, then the number of k-inscribed chordal n-gons
wich have not equal radii cannot overgrow s[n].

Proof. From (n− 2ν)β(k, ν) = (n− 2(k + ν))π/2 it follows that

β(k, ν) =
(

1− 2k

n− 2ν

)
π

2
,(12)

where

k ∈
{

1, 2, · · · ,
[
n− 1

2

]}
, ν ∈

{
0, 1, · · · ,

[
n− 3

2

]}
, k + ν =

[
n− 1

2

]
.

Then by the Theorem 1. using the notation ν = ]{m| βm < 0} introduced in Lemma
1. we deduce that there are

[
n− 2ν − 1

2

]
polygons P (a; β(k, ν)), k ∈

{
1, 2, · · · ,

[
n− 2ν − 1

2

]}
.

Let us remark that here k refers to the term k-inscribed polygon in Definition 2. Now
obvious transformations lead to the assertion of the theorem.

As an example we give the heptagon with parameters a = 1, k = 1, ν = 2. If
i1 = 1, i2 = 5 (compare (8)), then the heptagon P (1; i1 = 1, i2 = 5) is presented on
Figure 6 a). On Figure 6 b) the heptagon P (1; i1 = 1, i2 = 2) is shown. Although
these heptagons are not equal, they have equal radii.
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Figure 6. a) Heptagon P (1; i1 = 1, i2 = 5); b) Heptagon P (1; i1 = 1, i2 = 2)

Remark 1 If n is even then there is one more equilateral n-gon A = A1 · · ·An,
where A1 ≡ A3 ≡ · · · ≡ An−1, A2 ≡ A4 ≡ · · · ≡ An. But in the Notice 3 terminology
speaking it is not included in s[n].

In the following considerations it is very important to see that the number of
different radii of corresponding circumcircles of the chordal polygons is less then s[n]
if n > 7. So, for example when n = 9 then the 3-chordal enneagon and the 1-inscribed
chordal enneagon with three negative angles have equal radii since β(3, 0) = π/6 =
β(1, 3).

Generally speaking if n− 2i and n− 2j are different entries of the sequences

n, n− 2, n− 4, · · · , 3 where n is odd
n, n− 2, n− 4, · · · , 4 where n is even

and GCD(n − 2i, n − 2j) ≥ 3(4) for n odd (even) respectively, then the number of
different radii is less then s[n].

In the continuation we introduce the symbol

σ[n] :=
[
n− 1

2

]
+

(
n
1

)[
n− 3

2

]
+

(
n
2

) [
n− 5

2

]
+· · ·+

(
n
µ

)[
n− 2µ + 1

2

]
,(13)

where

n− 2µ =
{

3 n in odd
4 n in even.

(14)

Having in mind Theorem 2 and the dicussion about Figure 3, we give the following
hypothesis.
Conjecture. There are the lengths a1, · · · , an such that the number of different radii
of the circumcircles is at least σ[n].

Here we point out that we have proved the assertion of the Conjecture for n =
3, 4, 5, 6, 7. Something about this will be exposed in following examples.

Intuitively, this conjecture is very reasonable having in mind the following fact (in
connection to Figure 3): if ε1, · · · , εn are different positive numbers, aj = a + εj , j =
1, n and

p = na +
n∑

j=1

εj ,

then
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p− (a + εj) 6= p− (a + εl)

whenever j 6= l.

Example 2 As in Example 1 consider pentagon with the given side lengths aj =
2 + .1j, j = 1, 5. (There is shown that β5 has to be positive!). Then using the
equations

β1 + · · ·+ β5 = (5− 2(j + ν))
π

2
,(15)

we find that

j ν negative angle 2ρ ∈
1 0 none (3.9, 4)
2 0 none (3.50, 2.51)
1 1 β1 (2.806, 2.807)
1 1 β2 (2.750, 2.760)
1 1 β3 (2.680, 2.690)
1 1 β4 (2.604, 2.605)

But, if we put e.g. aj = 3 + .1j, j = 1, 5, then β5 < 0 is acceptable as well. Namely,
then there is 3.6 < 2ρ < 3.7 such that

5∑

j=1

arccos
ai

3.6
<

π

2
,

5∑

j=1

arccos
ai

3.7
>

π

2
.

Thus by (15) we deduce that there are at least σ[5] = 7 chordal pentagons whose
sides have the lengths aj = 3 + .1j, j = 1, 5, and the corresponding radii ρj of the
circumcircles are different.

In the case n = 7; aj = 5 + .1j, j = 1, 7, it can be shown that there are σ[7] = 38
chordal heptagons with different corresponding radii of its circumcircles. As we can
see by (13) the number σ[n] increases with the n growing: σ[5] = 7, σ[6] = 8, σ[7] =
38, σ[8] = 47, σ[9] = 187, etc.

4 Classes of related polygons and their main
equations

In this section we consider certain relationships between polygons which possess the
sides with same lengths. Firstly we introduce the term related polygons.

Definition 4 Let a1, · · · , an be given lengths and let X = X1 · · ·Xn, Y = Y1 · · ·Yn

be chordal polygons with the property that the lengths of their sides satisfy

xi = yi = ai, i = 1, n.(16)

Then we say that X and Y are related polygons (with respect to their sides); the set
consisting from all related polygons with respect to given a1, · · · , an we denote with the
symbol Cn(a1, · · · , an).
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In our next considerations we deal according to the Notice 1; also whenever we consider
a polygon from Cn(a1, · · · , an) we will assume that no βj vanishes (Notice 3).

Let a1, · · · , an be already known and let X ∈ Cn(a1, · · · , an) and choose the angles
βj , j = 1, n so that X ≡ P (a1, · · · , an; β1, · · · , βn). If j is the index of X and ν =
]{m| βm < 0}, then by (3) we get

β1 + · · ·+ βn = (n− 2(j + ν))
π

2
.

Hence we have the following equalities

cos(β1 + · · ·+ βn) = 0, n odd,(17)
sin(β1 + · · ·+ βn) = 0, n even.(18)

Using the symbol S
n

p we can transform the above two equalities into

S
n

0 −S
n

2 + S
n

4 − · · ·+ (−1)θ1S
n

n−1 = 0, n odd(19)

S
n

1 −S
n

3 + S
n

5 − · · ·+ (−1)θ2S
n

n−1 = 0, n even(20)

where θ1 = (1 + 3 + 5 + · · · + n) + 1, θ2 = (1 + 3 + 5 + · · · + (n − 1)) + 1. Now, the
following steps will be done in (19) and (20). Replace sin βj with

√
1−

(
aj

2ρ

)2

,

and put aj/(2ρ) instead of cos βj . Then rationalizing and simplifying (19) and (20)
in ρ these equations become

F1(a1, · · · , an; ρ) = 0, n odd(21)
F2(a1, · · · , an; ρ) = 0, n even,(22)

where Fm(a1, · · · , an; ρ) are polynomials in ρ, m = 1, 2.

Definition 5 The equation (21) or (22) is said to be the Main Equation concerning
the k - inscribed polygons in Cn(a1, · · · , an) for each k admissible in the sense of
Definition 2.

Example 3 In this example we consider the main equation of chordal n-gons in
Cn(1, · · · , 1), when n is odd. Take n = 9. Let P (1; β1(k, ν), · · · , β9(k, ν)) be k - in-
scribed enneagon with ν negative angles. Of course, it could be ν ∈ {0, 1, 2, 3} and it
is unessential which ν angles are negative, since the depeneding radii of corresponding
circumcircles equals in length.

As |β1(k, ν)| = · · · = |β9(k, ν)|, let β(k, ν) = |β1(k, ν)| > 0. Then

β1(k, ν) + · · ·+ β9(k, ν) = (9− 2ν)β(k, ν)
= ((9− 2ν)− 2k)π

2 = (9− 2(k + ν))π
2 .

Consequently
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β(k, 0) = (9− 2k) π
18 , k = 1, 2, 3, 4,

β(k, 1) = (7− 2k) π
14 , k = 1, 2, 3,

β(k, 2) = (5− 2k) π
10 , k = 1, 2,

β(1, 3) = π
6 .

Hence we have

cos 9β(k, 0) = 0, k = 1, 2, 3, 4,(23)
cos 7β(k, 1) = 0, k = 1, 2, 3,(24)
cos 5β(k, 2) = 0, k = 1, 2,(25)
cos 3β(1, 3) = 0.(26)

Now, from(23-26) using the well - known trigonometric equality

cosnα = cosn α−
(

n
2

)
cosn−2 α sin2 α +

(
n
4

)
cosn−4 α sin4 α− · · · ,

it is easy to see that

1. x0
k = cos β(k, 0), k = 1, 2, 3, 4 are the positive roots of the equation

x9 − 36x7(1− x2) + 126x5(1− x2)2 − 42x3(1− x2)3 + 9x(1− x2)4 = 0,(27)

2. x1
k = cos β(k, 1), k = 1, 2, 3 are the positive roots of the equation

x7 − 21x5(1− x2) + 35x3(1− x2)2 − 7x(1− x2)3 = 0,(28)

3. x2
k = cos β(k, 2), k = 1, 2 are the positive roots of the equation

x5 − 10x3(1− x2) + 5x(1− x2)2 = 0,(29)

4. x3
1 = cos β(1, 3) is the unique positive root of

x3 − 3x(1− x2) = 0.(30)

Let the left hand sides of the equations (27-30) be denoted by fj(x), j = 9, 7, 5, 3
respectively. Then the main equation of the chordal enneagons from C9(1, · · · , 1) of
the form

F (x) = f9(x)f7(x)f5(x)f3(x),(31)

where x = 1/(2ρ). Its positive roots are

xkν =
1

2ρkν
, ν = 0 , k = 1, 2, 3, 4,

ν = 1 , k = 1, 2, 3,

ν = 2 , k = 1, 2,

ν = 3 , k = 1,
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where ρkν is the circumcircle radius of P (1; β1(k, ν, · · · , β9(k, ν)).
Analogous results hold for all n odd. With respect to this question we can remark

that the coefficients of the partial polynomials fn(x) could be expressed as

cn−2j = (−1)j

(n−2j−1)/2∑

i=0

(
n

2(i + j)

)(
i + j

i

)
, j = 0, (n− 1)/2.(32)

Now, when n = 9, it is

f9(x) = c9x
9 + c7x

7 + c5x
5 + c3x

3 + c1x where

c9 = 1 +
(

9
2

)
+

(
9
4

)
+

(
9
6

)
+

(
9
8

)
= 28 = 256,

−c7 =
(

9
2

)
+

(
9
4

) (
2
1

)
+

(
9
6

)(
3
2

)
+

(
9
8

)(
4
3

)
= 576,

c5 =
(

9
4

)
+

(
9
6

) (
3
1

)
+

(
9
8

)(
4
2

)
= 432,

−c3 =
(

9
6

)
+

(
9
8

) (
4
1

)
= 120,

c1 =
(

9
8

)
= 9.

Generally, if cn is the leading coefficient of fn(x), n odd, then cn = 2n−1.
So the main equation of chordal n-gons in Cn(1, · · · , 1), n odd may be written in

the form
fn(x)fn−2(x) · · · f5(x)f3(x) = 0.(33)

Of course, fj(x) in (31) are the same as in (33). The number of positive roots in the
equation (33) is at most s[n] = n2−1

8 . Also, each factor fj(x) in (33) has a root x = 0.
It is true because of cos nπ

2 = 0.
Finally, as the interesting consequence of the Example 1, we get some combinatorial/trigo-

nometrical formulæ. From fn(x)x−1 = 0, using Viète’s formulæ, it follows that

cos2
π

2n
+ cos2

3π

2n
+ · · ·+ cos2

(n− 2)π
2n

= − cn−2

2n−1
,

cos2
π

2n
cos2

3π

2n
· · · cos2

(n− 2)π
2n

=
n

2n−1
,

where cn−2 is given by (32).

Example 4 Here we consider the main equation of chordal n-gons in Cn(1, · · · , 1), n
even. At first concentrate to the octagon, i.e. n = 8. In the same way as in Example
3 it can be found that

β(k, 0) = (4− k)
π

8
, k = 1, 2, 3,

β(k, 1) = (3− k)
π

6
, k = 1, 2,

β(1, 2) =
π

4
,

sin 8β(k, 0) = 0, k = 1, 2, 3,
sin 6β(k, 1) = 0, k = 1, 2,
sin 4β(1, 2) = 0.
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Now, using the identity

sin nα =
(

n
1

)
cosn−1 α sin α−

(
n
3

)
cosn−3 α sin3 α + · · · ,

we clearly get

1. x0
k = cos β(k, 0), k = 1, 2, 3 are the positive roots of the equation

x6 − 7x4(1− x2) + 7x2(1− x2)2 − (1− x2)3 = 0,(34)

2. x1
k = cos β(k, 1), k = 1, 2 are the positive roots of the equation

3x4 − 10x2(1− x2) + 3x4(1− x2)3 = 0,(35)

3. x2
1 = cos β(1, 2) is the unique positive root of

2x2 − 1 = 0.(36)

Let the left hand side of equations (34-36) be denoted by fj(x), j = 8, 6, 4 respectively.

Figure 7. Degenerated C8(1, · · · , 1) octagon with β(k, ν) = 0

Then the main equation of the chordal octagons from C8(1, · · · , 1) can be written
as

f8(x)f6(x)f4(x) = 0, x =
1
2ρ

,(37)

excluding the polygon with circumcircle which possesses radius equal to 1/2. The
positive roots of (37) are now given by

xν
k =

1
2ρν

k

, ν = 0 , k = 1, 2, 3,

ν = 1 , k = 1, 2
ν = 2 , k = 1.
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At this point we have to discuss the case of the circumcircle CA which possesses
radius ρ = 1/2. As

sin nα = cos α sinα

{(
n
1

)
cosn−2 α−

(
n
3

)
cosn−4 α sin2 α + · · ·

}
,

there is a chordal octagon with x = 1, that means 2ρ = 1 (compare Figure 7). Indeed,
by

(8− 2ν)β(k, ν) = (4− k − ν)π; k + ν = 4,

it is sin β(k, ν) = 0, cosβ(k, ν) = 1.
So we don’t need Notice 3 in this example. Hence, instead of (37) the main equation

of the considered octagon becomes (x − 1)f4(x)f6(x)f8(x) = 0. On the other hand
cos β(k, ν) = 0 results with β(k, ν) = π/2, see Figure 8.

Figure 8. Degenerated C8(1, · · · , 1) octagon with β(k, ν) = π
2

In general, analogous holds for all n-gons from the class Cn(1, · · · , 1), n ≥ 4, n
even. Therefore the coefficients γj of the factors fn(x) in the main equation can be
expressed in the following form

cn−2(j+1) = (−1)j

(n−2j−2)/2∑

i=0

(
n

2(i + j) + 1

)(
i + j

i

)
, j = 0, n/2− 1.(38)

Now, in our case we get

f8(x) = c6x
6 + c4x

4 + c2x
2 + c0 where

c6 =
(

8
1

)
+ +

(
8
3

)
+

(
8
5

)
+

(
8
7

)
= 27 = 128,

−c4 =
(

8
3

)
+

(
8
5

)(
2
1

)
+

(
8
7

)(
3
2

)
= 192,

c2 =
(

8
5

)
+

(
8
7

)(
3
1

)
= 80,

−c0 =
(

8
7

)
= 8.

We see that the leading coefficient cn−2 of fn(x) is equal to 2n−1 similarly to the odd
n case. Therefore the main equation of the chordal n-gons in the class Cn(1, · · · , 1), n
even could be written in the form
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(x− 1)f4(x)f6(x) · · · fn−2(x)fn(x) = 0.

Finally as an application of (38) and the the Viète’s formulæ we derive the identity

cos2
(n

2
− 1

) π

n
· cos2

(n

2
− 2

) π

n
· cos2

(n

2
− 3

) π

n
· . . . · cos2

π

n
=

n

2n−1
.

Example 5 Let a1, a2, a3, a4 be given lengths. The main equation of the chordal
quadrangles in C4(a1, a2, a3, a4) will be considered. Since

β1 + β2 + β3 + β4 = (4− 2(j + ν))
π

2
,

we recognize three different cases; namely (j, ν) ∈ {(1, 0), (1, 1), (0, 2)}. For j = 1, ν =
0 it is β1 + β2 + β3 + β4 = π. So, by some heavy but straightforward trigonometry we
deduce

((cos β1 cos β2 + cos β3 cos β4)2 − sin2 β1 sin2 β2

− sin2 β3 sin2 β4)2 = 4 sin2 β1 sin2 β2 sin2 β3 sin2 β4.

Putting aj/(2ρ) instead of cosβj and
√

1− (aj/(2ρ))2 instead of sin βj , by rational-
izing we get the equation in ρ reads as follows

R1ρ
2 −Q1 = 0,(39)

with

R1 = −a4
1 − a4

2 − a4
3 − a4

4 + 2(a2
1a

2
2 + a2

1a
2
3 + a2

1a
2
4 + a2

2a
2
3

+ a2
2a

2
4 + a2

3a
2
4) + 8a1a2a3a4,

Q1 = a1a2a3a4(a2
1 + a2

2 + a2
3 + a2

4) + a2
1a

2
2(a

2
3 + a2

4) + a2
3a

2
4(a

2
1 + a2

2).

Figure 9. Three possible cases of C4(a1, a2, a3, a4) - quadrangles

Similarly for (j, ν) ∈ {(1, 1), (0, 2)} we have the main equation in the form

R2ρ
2 −Q2 = 0,(40)

where

R2 = a4
1 + a4

2 + a4
3 + a4

4 − 2(a2
1a

2
2 + a2

1a
2
3 + a2

1a
2
4

+ a2
2a

2
3 + a2

2a
2
4 + a2

3a
2
4) + 8a1a2a3a4,

Q2 = a1a2a3a4(a2
1 + a2

2 + a2
3 + a2

4)− a2
1a

2
2(a

2
3 + a2

4)− a2
3a

2
4(a

2
1 + a2

2).

Let us remark that R2 = Q2 = 0 when the quadrangle is equilateral. In this case (40)
has infinitely many solutions, compare the Figure 10.
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The cases (j, ν) = (1, 1), (0, 2) are mutually exclusive, cannot be satisfied simul-
taneously. Therefore just two different circumcircles exists, consult Figure 9 where
the second circle realizes in the case j = 1, ν = 1, while the third circle happens for
j = 0, ν = 2.

By β1 +β2 +β3 +β4 = (2−j−ν)π the main equation concerning chordal polygons
living in C4(a1, a2, a3, a4) we obtain using sin(β1 + β2 + β3 + β4) = 0. Repeating the
procedure explained about the equation (39), we get

(R1ρ
2 −Q1)(R2ρ

2 −Q2) = 0.(41)

Figure 10. Trivial degenerated C4(a, a, a, a) - quadrangles

Example 6 Let a1, a2, a3, a4, a5 be given. Then

β1 + β2 + β3 + β4 + β5 = (5− 2(j + ν))π/2,

so we begin the main equation derivation transforming e.g.

cos(β1 + β2 + β3) = ± sin(β4 + β5).

After hard, but obvious computation we deduce

G sin β1 sin β2 + H sin β2 sin β3 + K sin β3 sin β1 = L(42)

where

G = −64a3
1a

3
2a

4
3x

10 + 16(4a3
1a

3
2a

2
3 + 2a3

1a2a
4
3 + 2a1a

3
2a

4
3 − a1a2a

2
3a

2
4a

2
5)x

8

+ 8(−4a3
1a2a

2
3 − 4a1a

3
2a

2
3 − 2a1a2a

4
3 − a3

1a
3
2 + a1a2a

2
3a

2
4 + a1a2a

2
3a

2
5

+ a1a2a
2
4a

2
5)x

6 + 4(a1a
3
2 + a3

1a2 + 3a1a2a
2
3 − a1a2a

2
4 − a1a2a

2
5)x

4,

H = −64a4
1a

3
2a

3
3x

10 + 16(4a2
1a

3
2a

3
3 + 2a4

1a2a
3
3 + 2a4

1a
3
2a3 − a2

1a2a3a
2
4a

2
5)x

8

+ 8(−4a2
1a2a

3
3 − 4a2

1a
3
2a3 − 2a4

1a2a3 − a3
2a

3
3 + a2

1a2a3a
2
4 + a2

1a2a3a
2
5

+ a2a3a
2
4a

2
5)x

6 + 4(a2a
3
3 + a3

2a3 + 3a2
1a2a3 − a2a3a

2
4 − a2a3a

2
5)x

4,

K = −64a3
1a

4
2a

3
3x

10 + 16(4a3
1a

2
2a

3
3 + 2a1a

4
2a

3
3 + 2a3

1a
4
2a3 − a1a

2
2a3a

2
4a

2
5)x

8

+ 8(−4a1a
2
2a

3
3 − 4a3

1a
2
2a3 − 2a1a

4
2a3 − a3

1a
3
2 + a1a

2
2a3a

2
4 + a1a

2
2a3a

2
5

+ a1a3a
2
4a

2
5)x

6 + 4(a1a
3
3 + a3

1a3 + 3a1a
2
2a3 − a1a3a

2
4 − a1a3a

2
5)x

4,
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L = −64a4
1a

4
2a

4
3x

12 + 16(4a2
1a

4
2a

4
3 + 4a4

1a
2
2a

4
3 + 4a4

1a
4
2a

2
3 − a2

1a
2
2a

2
3a

2
4a

2
5)x

10

+ 8(−8a2
1a

2
2a

4
3 − 8a2

1a
4
2a

2
3 − 8a4

1a
2
2a

2
3 − a4

1a
4
2 − a4

1a
4
3 − a4

2a
4
3

+ a2
1a

2
2a

2
3a

2
4 + a2

1a
2
2a

2
3a

2
5 + a2

1a
2
2a

2
4a

2
5 + a2

1a
2
3a

2
4a

2
5 + a2

2a
2
3a

2
4a

2
5)x

8

+ 4(2a2
1a

4
2 + 2a4

1a
2
2 + 2a2

1a
4
3 + 2a4

1a
2
3 + 2a2

2a
4
3 + 2a4

2a
2
3 + 15a2

1a
2
2a

2
3

− a2
1a

2
2a

2
4 − a2

1a
2
2a

2
5 − a2

1a
2
3a

2
4 − a2

1a
2
3a

2
5 − a2

1a
2
4a

2
5 − a2

2a
2
3a

2
4 − a2

2a
2
3a

2
5

− a2
2a

2
4a

2
5 − a2

3a
2
4a

2
5)x

6 + (−a4
1 − a4

2 − a4
3 − a4

4 − a2
5 − 6a2

1a
2
2 − 6a2

2a
2
3

− 6a2
1a

2
3 + 2a2

1a
2
4 + 2a2

1a
2
5 + 2a2

2a
2
4 + 2a2

2a
2
5 + 2a2

3a
2
4 + 2a2

3a
2
5 + 2a2

4a
2
5)x

4,

and the abreviation x = 1/(2ρ) is used.
Now, transforming once more (42), writing sj = sin βj , we have

4s2
1s

2
2(HKs2

3 + GL)2 = (L2 + G2s2
1s

2
2 −H2s2

2s
2
3 −K2s2

1s
2
3)

2.(43)

The equation (43) can be written in the form f(x) = 0, where f is a polynomial in
x. To write this polynomial explicitely we need few pages therefore it is omitted. We
shall here restrict ourselves to the use of the form (43) and consider the following
special cases.

(i) Let a1 = a2 = a3 = 1, a4 = a5 =
√

2. In this case there are pentagons where
sin βj sinβk, j, k ∈ {1, 2, 3}, j 6= k are all positive. Then, (43) becomes

i 256x8 − 512x6 + 352x4 − 92x2 + 9 = 0,

where x1,2 = cos π
3 is its double root (compare the first and the second pentagon

on the Figure 11). Let us remark that x3 = cos β1 =
√

7
4 is not the root of (i)

but the root of (x2 − 1)G = L which becomes 16x2 − 7 = 0. Thus 2ρ3 =
4√
7

is the diameter of the circumcircle of the third pentagon. Finally, it is not hard
to see that if three consecutive sides of the chordal pentagon have the same
lengths, then at most three different circumcircles could arise.

(ii) Let a1 = a2 = a3 = 1, a4 = 2, a5 = 3. Then there is only one pentagon whose
sides have given lengths (Figure 11). Since

G = H = K = −64x10 − 448x8 + 304x6 − 32x4,
L = −64x12 − 384x10 + 752x8 − 480x6 + 32x4,

the equation (43) becomes now

16x8 − 96x6 + 188x4 − 93x2 + 8 = 0.

we find that 3.0364 < 2ρ < 3.0365 since

3 arccos 1
3.0364 + arccos 2

3.0364 + arccos 3
3.0364 = 269.990 < 3π

2 ,
3 arccos 1

3.0365 + arccos 2
3.0365 + arccos 3

3.0365 = 270.010 > 3π
2 .

Let us remark that using the equation (x2 − 1)G = M we deduce x = 0 or
ρ = ∞, compare the second pentagon on Figure 11.
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Figure 11. P (1, 1, 1, 2, 3) pentagons with 2ρ1 ≈ 3.0364, 2ρ2 = ∞

(iii) Now, let a1 = a2 = 1, a3 = 2, a4 = 3, a5 = 4. Then two pentagons are there
whose sides have these given lengths, see Figure 12. Since

G = −1024x10 − 7936x8 + 1432x6 − 44x4,
H = −512x10 − 3776x8 + 2288x6 − 136x4 = K,
L = −1024x12 − 6912x10 + 9368x8 − 3780x6 + 179x4,

then (43) can be written as

±2(1− x2)(HK(1− 4x2) + GL) = L2 + G2(1− x2)2

− (H2 + K2)(1− x2)(1− 4x2),

which means

iii 4(1− x2)(1− 4x2)H2 = (L−G(1− x2))2, L + (1− x2)G = 0,

where the first equation in (iii) corresponds to the sign +, and the second one
to sign − in its initial equation.

Figure 12. Pentagons P (1, 1, 2, 3, 4) with 2ρ1 ≈ 4.12004, 2ρ2 ≈ 4.13118

From the first equation we obtain 4.12004 < 2ρ1 < 4.12005, and for the second
one it is 2ρ2 ≈ 4.13118 (it is the diameter of the circumcircle of the the triangle
A3A4A5 on the Figure 12).

(iv) Let aj = j, j = 1, 5. Then there are only two different radii - the second and
the third pentagon have equal diameters, compare Figure 13.
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Figure 13. Pentagons P (1, 2, 3, 4, 5) with 2ρ1 ≈ 5.43513, 2ρ2 ≈ 507762

The diameters of these are 5.43513 < 2ρ1 < 5.43514 and 5.07762 < 2ρ2 <
5.07763.

5 On properties of main equation

It is clear that the main equations

21 F1(a1, · · · , an; ρ) = 0, n odd

22 F2(a1, · · · , an; ρ) = 0, n even

have the following properties.

1. The radius of the circumcircle of k - inscribed chordal polygon whose sides have
the lengths a1, · · · , an is a positive root of the equation (21) or (22).

2. The equations (21), (22) depending on a1, · · · , an may have no one positive root,
may have exactly one positive root or may have at least σ[n] positive roots if
our Conjecture is true.

Here we give an another property of the main equation.

Theorem 3 The positive roots of the main equations (21), (22) are the radii of the
circumcircles of the chordal n-gons whose sides have the lengths a1, · · · , an.

Proof. Let n be odd. We transform cos(β1 + · · ·+ βn) = 0 into the form

S
n

0 −S
n

2 + S
n

4 − · · ·+ (−1)θ1S
n

n−1 = 0,

where θ1 = (1 + 3 + 5 + · · ·+ (n− 1)) + 1, compare (19). Expressing sinβ1 from the
previous equality, we have

U1 sinβ1 = V1;(44)

no integer ζ1 exists that sin2ζ1+1 β1 is a factor of addends in U1 or V1 unless sin2ζ1+2 β1

is a factor there as well.
By squaring (44) we get U2

1 sin2 β1 = V 2
1 . Writing this equality as

U2 sinβ2 = V2,(45)
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we deduce that no integer ζ2 is there that sin2ζ2+1 β2 is a factor of an addend in U2

or of V2 unless sin2ζ2+2 β2 is a factor as well.
Repeating this procedure we finish with

U2
n sin2 βn = V 2

n .(46)

Now we replace

aj

2ρ
−→ cos βj ,

(
1−

(
aj

2ρ

)2
)ζ

−→ sin2ζ βj(47)

in all n equalities
U2

l sin2 βl = V 2
l , l = 1, n.

This iterative procedure ends with (46), which gives us equation (21).
If ρm is a positive root of (21), let p be the first integer with the property that ρm

is a root of algebaric equation obtained by the replacement procedure (47) from

U2
p sin2 βp = V 2

p .(48)

Then the following cases arise

• ρm is a root of the equation which originates back to Up sin βp = Vp,

• ρm is a root of the equation which originates back to Up sin βp = −Vp.

In both cases ρm is the radius of the circumcircle CA of the chordal n-gon A with
side lengths a1, · · · , an, whose angles are not all of the same sign.

Similar holds for n even.

Remark 2 We point out that

U2
p sin2 βp = V 2

p

may generate the main equation of the chordal polygon for p < n.

Example 7 So, consider e.g. a equilateral pentagon with unit side lengths. Then

cos(4β + (−1)εj β) = 0,(49)

since in this case only one angle may be negative. Transforming (49) we derive the
equation

64 cos6 β − 128 cos4 β + 80 cos2 β − 15 = 0

or
15ρ6

k − 20ρ4
k + 80ρ2

k − 1 = 0,(50)

where ρk cos β(k) = 1, k = 1, 2, 3 and

β(1) =
3π

10
, β(2) =

π

10
, β(3) =

π

6
.
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Figure 14. P (1) pentagons with ρ1 = 1
2 cos 3π

10
, ρ2 = 1

2 cos π
10

, ρ3 = 1
2 cos π

6

Adopting the expression (43) in the Example 4 to our case, it becomes

256x8 − 704x6 + 704x4 − 300x2 + 45 = 0,(51)

with positive solutions

x1 = cos
3π

10
, x2 = cos

π

10
, x3 = cos

π

6
.

Thus 2ρjxj = 1, j = 1, 2, 3, see Figure 14.
Also, let us remark that the equation (50) can be rewritten into

(5ρ4
k − 5ρ2

k + 1)(3ρ2
k − 1) = 0,

and then we have at most

s[5] =
[
5− 1

2

]
+

[
5− 3

2

]
= 2 + 1 = 3

positive roots.

Consider at the end a new kind of n-gons. Denote A(1) ≡ A = A1 · · ·An as above,
and let λ ≥ 2 positive integer. Then we are interested in the λn-gon

A(λ) = A(1) · · ·A(1)︸ ︷︷ ︸
λ

,

which circumcircle CA(λ) coincides with CA(1). Now, the new class of λn-gons
Cλn((a1, · · · , an)λ), say, we build with the polygons A(λ) whose initial side lengths
are a1, · · · , an using it λ times.

Theorem 4 Let a1, · · · , an be given lengths and let s and t be positive integers such
that s|t. Then

F ((a1, · · · , an)s; ρ)|F ((a1, · · · , an)t; ρ),

where F ((a1, · · · , an)s; ρ) = 0 and F ((a1, · · · , an)t; ρ) = 0 are the main equations of
the polygons in Csn((a1, · · · , an)s) and Ctn((a1, · · · , an)t) respectively.

Proof. Firstly it could be say that the assertion of the Theorem is evident, since the
polygons A(s), A(t) have equal diameters. Of course, it can be deduced the same
using the properties of sine and cosine too. Namely, noting τ = β1 + · · ·+βn, we have
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sin(sτ)| sin q(sτ) q integer,(52)

cos(sτ)| cos q(sτ) q odd,(53)

sin(sτ)| sin q(sτ) q even.(54)

Starting with sin(sτ) = 0 we get F ((a1, · · · , an)s; ρ) = 0, and starting with sin q(sτ)/ sin(sτ)
we finish with the equation T ((a1, · · · , an)q; ρ) = 0, that

F ((a1, · · · , an)s; ρ)T ((a1, · · · , an)q; ρ) = F ((a1, · · · , an)t; ρ).

Similarly we get the assertions for (53) and (54).
Example. The circumcircles of triangle A(1) = A1A2A3 and the hexagon A(2) have
the same diameters. Using

β1 + β2 + β3 + β1 + β2 + β3 = (6− 2(j + ν))
π

2

we have sin 2(β1 + β2 + β3) = 0, i.e. sin(β1 + β2 + β3) = 0, cos(β1 + β2 + β3) = 0.
Starting with cos(β1 + β2 + β3) = 0, we obtain the equation F (a1, a2, a3; ρ) = 0 and
transforming sin(β1+β2+β3) = 0 we finish the computation with T (a1, a2, a3; ρ) = 0,
so

F ((a1, a2, a3)2; ρ) = F (a1, a2, a3; ρ)T (a1, a2, a3; ρ) = 0.

The diameter of CA(1) and CA(2) is a root of the equation F (a1, a2, a3; ρ) = 0.
The diameters of the circumcircles of all other hexagons (whose sides have prescribed
lengths) are the roots of T (a1, a2, a3; ρ) = 0. In this case the equations are:

F (a1, a2, a3; ρ) = (4a2
1a

2
2a

2
3x

2 − 2a2
1a

2
2 − 2a2

1a
2
3 − 2a2

2a
2
3 + a4

1 + a4
2 + a4

3)x
4 = 0,

T (a1, a2, a3; ρ) = 4a2
1a

2
2a

2
3x

6 − (2a2
1a

2
2 + 2a2

1a
2
3 + 2a2

2a
2
3 + a4

1 + a4
2 + a4

3)x
4

+ 2(a2
1 + a2

2 + a2
3)x

2 − 1 = 0,

where x = 1/(2ρ).
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