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Abstract

In this paper we characterize the critical sets of the sphere and of the closed
cylinder. Necessary conditions for a subset of a closed surface to be critical are
given in the last part of the paper.
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1 Introduction

Let M be a smooth 2-dimensional manifold and f : M → R a smooth function. The
point p ∈ M is called critical point of f if, for some chart (U,ϕ) around p, ϕ(p) is
a critical point of the function f ◦ ϕ−1 : ϕ(U) → R, i.e. rankϕ(p)f ◦ ϕ−1 = 0, or,
equivalently, dϕ(p)(f ◦ ϕ−1) = 0. Otherwise, p will be a regular point of f . The set of
all critical points of f is the critical set of f and it will be denoted by C(f). A number
y0 ∈ R is a critical value of f if it is the image of a critical point and a regular value
if it is the image of a regular point. The set of all critical values of f is called the
bifurcation set of f and is denoted by B(f). A set C ⊂ M is called critical if it is the
critical set of some smooth function f : M → R; C = C(f). The set C is properly
critical if f can be chosen to be proper, i.e. the inverse images by f of compact sets
are also compact.

In the first part of this paper, we characterize the critical sets of the sphere and
of the closed cylinder. In the second part, we give some necessary conditions for a
subset of a 2-dimensional surface M of genus g, orientable or not, to be the critical
set of some smooth function defined on M .

2 Critical sets of the sphere and of the closed
cylinder

Let M be a smooth manifold and let f : M → R be a smooth map. If there exists
an open set U ⊂ M such that C(f) = M \U , f will be called boundary-critical Morse
function for U . Inside U , f has no critical points, while outside U , all the points are
critical. On connected components of M \ U , f is constant.
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Lemma 2.1 [6] Open multiply connected subsets of S2 have boundary critical Morse
functions.

Theorem 2.2 Let C ⊂ S2, C 6= S2 be a closed set. Then C is critical if and only if
the components of S2 \ C are all multiply connected.

Proof. The case C = S2 is trivial, since S2 is the critical set of any constant function
f : S2 → R.

First of all, let us suppose that there is a smooth function f : S2 → R with
C(f) = C and that there exists some connected component U of S2 \ C, which is
simply connected. Let c be a regular value of f in U . Then f−1(c)∩U is a non-empty
compact boundaryless 1-dimensional manifold, hence it consists of Jordan curves J
and f = c on J . At some point p inside J , we have either a maximum f(p) > c, or
a minimum f(p) < c, or f = c inside J . In any case, (df)p = 0. Since U is simply
connected, p ∈ U , contrary to U being in the complement of the critical set.

To prove the converse, consider a non-empty compact subset K of S2, such that
all the connected components of S2 \K are multiply connected. Suppose that S2 \K
is the union of its components U1, U2, . . ..Since each Ui is connected, there exist
fi : S2 → [0, 1] the boundary critical Morse functions for Ui. Every fj has no critical
point inside Uj and it is constant in every connected component of S2 \Uj . Since Uk

is connected, then Uk lies entirely in one of the connected components of S2 \Uj , for
j 6= k, hence fj is constant in each Uk, for k 6= j.

We can choose some constants aj such that, for any x ∈ S2, ajfj(x) ≤ 1
2j

. Consider

the function f : S2 → R, defined by

f(x) =
∑

j∈N∗
ajfj(x).

It is clear that the series defining, f converges uniformly, and it can be integrated
term by term. One also has

(df)x =
{

aj(dfj)x for x ∈ Uj

0 for x ∈ K.

It follows that C(f) = K and the proof is completed. ut
In order to study the critical sets of the closed cylinder S1 × [−1, 1], we remark

first that, by using the stereographic projection, S1 × [−1, 1] is diffeomorphic with a
closed annulus (Figure 1).
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Figure 1



Critical Sets of 2-Dimensional Compact Manifolds 115

Let C be the closed annulus, with the boundary given by two concentric circles C1

and C2 and such that the center of these circles is the origin of a coordinates system
of the Euclidean plane.

Consider K a subset of C. We say that K is interior to C if
K ∩ (C1 ∪ C2) = ∅. If K ∩ C1 6= ∅ (respectively K ∩ C2 6= ∅), then K will be
called riparian to C1 (respectively to C2).

Lemma 2.3 Let K ⊂ C be an open connected set, riparian to C1, and DC1 the disk
bounded by C1. Then K∪ int DC1 \ {0} is arcwise connected, hence it is connected.

Proof. Since K is open and connected and C is locally arcwise connected, il follows
that K is arcwise connected.

Consider x ∈ K. Then K is riparian to C1, hence K∩C1 6= ∅. Choose x0 ∈ K∩C1

and y ∈ int DC1 \ {0}. There is an arc α : [0, 1] → K, with α(0) = x and α(1) = x0.
There is, also, an arc β : [0, 1] → K∪ int DC1 \{0} such that β(0) = x0 and β(1) = y.
We can choose the arc β such that Imβ ∩K = {x0} (Figure 2).
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Figure 2

We glue together α and β in order to obtain the arc β ∪ α, joining x and y. It
follows that K∪ int DC1 \ {0} is arcwise connected . ut

In the same way, one obtains:

Lemma 2.4 Let K ⊂ C be an open connected set, riparian to C2. Then K∪ int(ext
DC2) is arcwise connected, hence it is connected.

Theorem 2.5 Let K ⊂ C, K 6= C be a closed set. Then K is critical in C if and only
if every connected component of C \K which is interior to C is multiply connected.

Proof. Let P be a component of C \K, interior to C and let us suppose that P would
be simply connected. Choose a point p ∈ P . Because K is critical in C, there is a
function f : C → R, with C(f) = K. It follows that f(p) is a regular value of the
smooth function f|intC : int C → R.

Since C \ K is open in C and P is a connected component of C, it follows that
P is open in R2. Because P is simply connected, (f|intC)−1(f(p))∩ P will contain at
least one Jordan curve, which will be entirely included in P .

Conversely, let K be closed in C, so in R2. One has the obvious relation

R2 \ (K ∪ {0}) = int(extDC2) ∪ (C \K) ∪ (intDC1 \ {0}).
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The union is disjunct and the sets int(extDC2) and (int DC1)\{0} are connected. Then
the connected components of R2 \ (K ∪ {0}) are the connected components of C \K
interior to C, the connected component of int DC1 \{0} and the connected component
of int(ext DC2). Indeed, if P is a connected component of R2\(K∪{0}) which is not a
component of C\K, it will be riparian to C1 or to C2. In the first case, using Lemma 2.3
it follows that P∪ int DC1 \{0} is connected, and P lies in the connected component of
int DC1 , while for the last case, P will lie in the connected component of int(ext DC2),
according to the Lemma 2.4.

Hence the connected components of R2 \ (K ∪ {0}) are multiply connected. Since
K∪{0} is compact, there is a smooth function f : R2 → R, such that C(f) = K∪{0}
[6]. The required map will be f|C : C → R, since C(f|C) = K. ut

As a consequence, one has

Theorem 2.6 Let C be a closed cylinder and K ⊂ C closed. Then K is critical in C
if and only if the connected components of C \K interior to C are multiply connected.

The interior sets to a closed cylinder are those which do not intersect the boundary
of the cylinder, seen as a 2-manifold with boundary.

3 Critical sets of a 2-dimensional surface

Any closed surface is topologically equivalent either to a sphere with p handles
(an orientable Mp-type surface), or to a sphere with q Möbius strips glued to it (a
non-orientable Nq-type surface).

In any case, a closed surface can be covered by R2.

Theorem 3.1 [7] For any positive integers p ≥ 1, q > 1, there is a
covering p : R2 → Mp (or p : R2 → Nq) which is isomorphic to a covering
p′ : R2 → R2/π1(Mp) (or p′ : R2 → R2/π1(Nq)). For q = 1 there is a covering
p1 : S2 → PR2, isomorphic to p′1 : S2 → S2/Z2.

Let G be a group which acts free, smoothly and properly on a smooth manifold
M . The space M/G can be endowed with a differentiable structure, such that the
projection p : M → M/G is a covering, hence, in particular, a local diffemorphism.
One has:

Proposition 3.2 Let C be critical in M/G. Then p−1(C) is critical in M .

Proof. Since C is critical in M/G, there is a smooth map f : M/G → R such that
C(f) = C. Take g = f ◦ p : M → R. Then

(Tg)x = (T (f ◦ p))x = (Tf)p(x) ◦ (Tp)x,

where (Tf)x is the tangent map of f at the point x.
Since p is a local diffeomorphism, it follows that (Tp)x 6= 0, ∀x ∈ M . Moreover,

the map (Tp)x is invertible, for all x ∈ M . We have

x ∈ C(g) ⇔ (Tf)p(x) ◦ (Tp)x = 0.

Compose at right by (Tp)−1
x , one obtains
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(Tf)p(x) = 0 ⇔ p(x) ∈ C(f) ⇔ x ∈ p−1(C(f)) = p−1(C). ut

Applying Theorem 3.1 and Proposition 3.2 for M = R2 and G = π1(Mp), p ≥ 1,
respectively G = π1(Nq), q > 1, gives:

Theorem 3.3 Let C be critical in Mp, p ≥ 1 (respectively Nq, q > 1). Then p−1(C)
is critical in R2, where p is the given by p : R2 → R2/π1(Mp) (respectively p : R2 →
R2/π1(Nq)).

Using the characterization of the critical sets in the plane [6], a set K ⊂ Mp

(respectively K ⊂ Nq), p−1(K) will be critical and unbounded in R2 if and only if ∞
is arcwise accessible in each simply connected component of R2 \ p−1(K). One has

R2 \ p−1(K) = C(p−1(K)) = p−1(C(K)) = p−1(Mp \K) (respectively p−1(Nq \K)).

Theorem 3.4 Let C be critical in Mp (p ≥ 1) (respectively Nq

(q > 1)). Then ∞ is arcwise accessible in each simply connected component of
p−1(Mp \ C) (respectively p−1(Nq \ C)).

Let us apply Theorem 3.4 for M2. The group π1(M2) = Z × Z acts on R2 as
follows:

(m,n)× (x, y) → (x + m, y + n), for any (x, y) ∈ R2 and for any (m,n) ∈ Z× Z.

The covering p : R2 → R2/Z2 is isomorphic to the covering

p′ : R2 → S1 × S1, p′(x, y) = (e2πix, e2πiy),

the isomorphism being induced by the map

h : S1 × S1 → R2/Z2, h(e2πix, e2πiy) = ([x, y]), 0 ≤ x < 1, 0 ≤ y < 1,

whose inverse is

h−1 : R2/Z2 → S1 × S1, h−1([x, y]) = (e2πix, e2πiy).

Consider the set (A = S1 ×{1})∪ ({1}× S1) and apply the theorem for the covering
p′.

{ 1 } x S
1

S x { 1 }
1

2 π

Figure 3

One has
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p′−1(A) = {(x, 2kπ), (2kπ, y) : k ∈ Z, x, y ∈ R}.
Since R2 \ p

′−1(A) consists in a system of rectangles, then its components are simply
connected. Also, ∞ is arcwise accessible in none of the components of R2 \ p

′−1(A).
Hence, S1 × {1} ∪ {1} × S1 cannot be critical in T 2.

Let C be a curve in T 2. The curve C is called fundamental if it is not homotopic
to a constant curve in T 2. Two curves C1 and C2 are called equivalent in T 2 if they
are homotopic in T 2.

Since π1(T 2) = Z × Z, there exist two equivalence classes which generate this
fundamental group. These two classes can be represented by two non-equivalent fun-
damental curves. One can prove that the two classes may be represented by the curves
(S1 × {1}) ∪ ({1} × S1) in T 2. The assertion that the set

A = (S1 × {1}) ∪ ({1} × S1)

is not critical in T 2 can be generalized as follows:

Theorem 3.5 Let C be a closed subset of T 2, which contains two fundamental non-
equivalent curves. Then C is not critical in T 2.

Proof. Let C1 and C2 be the two fundamental non-equivalent curves of C. Clearly,
p′−1(C1 ∪ C2) ⊂ p−1(C). On the other hand, the following relation holds:

p′−1(C1 ∪ C2) = p′−1(C1) ∪ p′−1(C2).

Taking into account the above considerations, we may suppose that
C1 ≈ S1 × {1} and C2 ≈ S1 × {1}. It follows that

p′−1(C1) = {(x, α(x) + 2kπ) : x ∈ R and α : R → R is unbounded }

p′−1(C2) = {(β(y) + 2kπ, y) : y ∈ R and β : R → R is unbounded }.

Figure 4
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Then any connected component of R2 \ p′−1(C1) will be contained in one of the
domains bounded by the curves which form p′−1(C1) and p′−1(C2), therefore ∞ will
be arcwise accessible in none of these components. ut

Unfortunately, the necessary conditions for a set C to be critical in a closed surface
are not sufficient.
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Proposition 3.6 Consider the torus T 2 and S1 × {1} ⊂ T 2. Then
p′−1(S1 × {1}) is critical in R2, but S1 × {1} is not critical in T 2.

Proof. Since R2 \ p′−1(S1 × {1}) is the union of parallel strings in R2, then ∞ is
arcwise accessible in each of these strings.

0 x

y

Figure 5

Suppose that S1 × {1} is the critical set of some differentiable map
f : T 2 → R. Since S1 × {1} is connected, it follows that f/S1×{1} is constant, i.e.
f/S1×{1} = c, c ∈ R. But T 2 being compact, there exist x1, x2 ∈ T 2 such that
f(x1) = M = max

x∈T 2
f(x) and f(x2) = m = min

x∈T 2
f(x). If M = m, then f is constant,

f = M and C(f) = T 2, which is false. Hence, at least one of M and m is non-equal
to c. Suppose M 6= c. That means that x1 /∈ S1 × {1}. There exists a neighborhood
V of x1 in T 2 such that x ∈ V , V ∩ (S1 × {1}) = ∅ and x1 is a maximum of f in V .
There exists a diffeomorphism ρ : V → U = ρ(V ) ⊆ R2.

The map f ◦ ρ−1 : U → R is a local representation of f . Since x1 is a maximum
of f in V , then ρ(x1) is a maximum of f ◦ ρ−1 in V . It follows that ρ(x1) is a critical
point of f ◦ ρ−1 and so will be x1 for f . But C(f) = S1 × {1}, hence x1 ∈ S1 × {1},
which is a contradiction with the fact that V ∩ S1 × {1} = ∅. Then S1 × {1} cannot
be critical in T 2. ut
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de Math, 104 (1939), 362-372
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