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Abstract

We construct constant mean curvature (CMC) bubbleton surfaces in the
three-dimensional space forms R3, S3 and H3 using the DPW method. We
show that bubbletons in S3 and H3 have properties analogous to the properties
of bubbletons in R3. In particular, we give explicit parametrizations in all three
space forms, and we show that the parallel CMC surface is congruent to the
original bubbleton in all three space forms. Furthermore, we prove that the
construction here via the DPW method gives the same surfaces as Bianchi’s
Bäcklund transformation (as in [20]) for the case of the round cylinders.
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1 Introduction

We consider a smooth surface f immersed in one of the three-dimensional space
forms R3, S3 or H3 that are the unique complete simply-connected three-dimensional
Riemann manifolds of constant sectional curvature 0, 1 and -1, respectively. Defining
H to be the mean curvature of f , we say that f is a constant mean curvature (CMC)
surface if H is constant on f . Soap films have the property of attaining the least area
with respect to the fixed volumes they bound, and are examples of CMC surfaces.
Mathematically, H being constant implies that compact portions of the surface f are
critical values for boundary-preserving, volume-preserving variations.

The sphere is a simple example of a closed CMC surface. For a long time, there
were no known closed CMC immersions besides the sphere, and Hopf asked if there
are no closed CMC surfaces different from the standard sphere. It was plausible to
believe there were no other surfaces, because:

(1) Hopf showed that the only genus-zero closed CMC surfaces in R3 are spheres.

(2) Alexandrov showed that the only embedded closed CMC surfaces in R3 are
spheres.
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However, Wente [23] showed existence of immersed CMC tori in 1984 and this led to
renewed interest in the field. Then Pinkall, Sterling, and Bobenko found all CMC tori
[16], [1], [2].

The bubbletons are CMC surfaces made from Bäcklund transformations (in
Bianchi’s sense) of round cylinders. They are shaped like cylinders with attached
bubbles, thus they are called bubbletons [20], [22]. The parallel constant positive
Gaussian curvature surfaces of bubbletons are well known, and as they were first
found by Sievert [18], they are called Sievert surfaces. Bubbletons in R3 have been
closely examined by Kilian, Sterling and Wente [12], [20], [22].

In the present paper, analogous to Delaunay surfaces in R3 we define Delaunay
surfaces in S3 and H3 (see Definition 2 in Section 4.1). Using loop group techniques
applied to harmonic maps (via the DPW method), we represent these Delaunay sur-
faces in space forms. We then define bubbletons based on Delaunay surfaces in space
forms by a simple type dressing action, like those of Terng and Uhlenbeck [21], on loop
groups (see Definition 3 in Section 5.1). Then we solve the period problems for these
Delaunay bubbletons and additionally find explicit immersion formulas for those bub-
bletons in space forms based on round cylinders. In the case of R3, this was originally
done in [12], [20], [22]. Furthermore we prove that the cylinder bubbletons produced
here (by the DPW method) are the same as those produced in [20] in the case of R3,
and that the parallel CMC surface of a round cylinder bubbleton is congruent to the
starting bubbleton, in any of the three space forms. Recently, Mahler [14] interpreted
the simple type dressing as the Bianchi Bäcklund transformation in the case of R3.

So what is new in this paper is the following:

(1) We show existence of round cylinder bubbletons and Delaunay bubbletons in
all three space forms.

(2) We give explicit parametrizations for round cylinder bubbletons in all three
space forms.

(3) We show the equivalence of Bianchi-Bäcklund transformation and simple type
dressing for round cylinders in R3.

The first two of these three items are new results for the cases of S3 and H3, and the
third item is a new result in R3.

In order to apply the DPW method, we first note that classical surface theory can
be rewritten in modern fashion using quaternions. If we write quaternions using 2× 2
matrices and identify the 3-dimensional Euclidean space with the space of imaginary
quaternions, the classical surface theory can be described using 2 × 2 matrices. For
CMC surfaces, the Gauss-Codazzi equations are then the compatibility conditions for
a particular system of equations of Lax pair type and allow a one-parameter family of
deformations preserving H and the metric that changes only the Hopf differential. The
parameter for this family is called the spectral parameter. Existence of this spectral
parameter means that we are working with an integrable equation. The solutions of
this Lax pair that we use are in SU(2) = 2× 2 special unitary matrices, and we call
these solutions the extended frames for the CMC surfaces, which are inserted into a
CMC immersion formula called the Sym-Bobenko formula. In fact, these solutions in
SU(2) depend on the spectral parameter and thus lie in the loop group ΛSU(2) (which
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we define in Section 3). The spectral parameter then becomes the loop parameter in
the unit circle of the complex plane.

The DPW method [5] was created by Dorfmeister and Pedit and Wu for making
CMC surfaces in R3, and is advantageous for dealing with the asymptotic behavior
and period problems of CMC surfaces. The DPW method uses loop group theory
involving the loop groups ΛSL(2,C), ΛSU(2) and Λ+SL(2,C) (defined in Section 3)
and is related to methods of integrable systems. The DPW method also (equivalently)
makes extended frames corresponding to harmonic maps from Riemann surfaces to the
unit sphere S2. Using holomorphic 1-forms, the DPW method constructs holomorphic
maps to ΛSL(2,C) and extended frames corresponding to harmonic maps. More
concretely, one first chooses a Λsl(2, C)-matrix-valued holomorphic 1-form called a
holomorphic potential. Next one solves a linear first-order (homogeneous) ordinary
differential equation whose coefficient is the above holomorphic potential. The solution
of this equation is ! in ΛSL(2, C) when the initial condition is chosen in ΛSL(2, C). We
then decompose ΛSL(2,C) to ΛSU(2)×ΛSL+(2, C) via Iwasawa splitting, producing
a ΛSU(2) element from a ΛSL(2, C) element. The ΛSU(2) element is an extended
frame of a CMC surface. Finally, the Sym-Bobenko formula takes the extended frame
and produces a CMC immersion.

The paper is organized as follows: In Section 2 we give basic notations and results
for all space forms CMC surfaces, using 2 × 2 matrices. In Section 3 we explain the
DPW method. In Section 4 we construct simple examples (cylinders and Delaunay
surfaces) by the DPW construction. In Section 5 we give the construction and explicit
parametrization of CMC bubbletons, using the simple examples from Section 4, and
we show equivalence of the simple type dressing and Bianchi’s Bäcklund transforma-
tion. Finally, at the end of Section 5, we show that the parallel CMC surface of a
bubbleton is congruent to that bubbleton.

Figure 1: CMC bubbletons in R3, S3 and H3. The R3 bubbleton was first described
in [22].
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2 Lax pairs for CMC surfaces in space forms

2.1 Surfaces in space forms.

R3 (resp. S3, H3) is the unique complete simply-connected three-dimensional Rie-
mannian manifold with constant sectional curvature 0 (resp. 1,−1). R3 is the standard
flat Euclidean three-space. S3 is the unit three-sphere in R4 with the metric induced
by R4. To define H3 we shall use the Lorentz space R3,1:

H3 = {(t, x, y, z) ∈ R3,1 |x2 + y2 + z2 − t2 = −1 , t > 0}

with the metric induced by R3,1, where R3,1 is the four-dimensional Lorentz space

{(t, x, y, z) | t, x, y, z ∈ R}

with the Lorentz metric

〈(t1, x1, y1, z1), (t2, x2, y2, z2)〉 = x1x2 + y1y2 + z1z2 − t1t2 .

To visualize surfaces in S3 and H3, we use specific projections. In the case of
S3, we stereographically project S3 from its north pole to the space R3 ∪ {∞}.
In the case of H3, we use the Poincare model, which is stereographic projection
of the Minkowski model in Lorentz space from the point (0, 0, 0,−1) to the 3-ball
{(0, x, y, z) ∈ R3,1 |x2 + y2 + z2 < 1} ∼= {p = (x, y, z) ∈ R3 | |p| < 1}.

Let Σ be a simply connected surface with conformal coordinate z = x+ iy defined
on Σ, and let f : Σ →M3 be a CMC conformal immersion, where M3 is either R3

or S3 or H3. We write f = f(z, z̄) as a function of both z and z̄ to emphasize that f
is not holomorphic in z.

Each of the three space forms lies isometrically in a vector space V : M3 = R3 ⊂
V = R3, M3 = S3 ⊂ V = R4, or M3 = H3 ⊂ V = R3,1. Let 〈·, ·〉 be the inner
product associated to V , which is the Euclidean inner product in the first two cases,
and the Lorentz inner product in the third case. Then the space form metric for each
of R3, S3 and H3 is the one induced from the metric of the associated vector space
V . Since M3 ⊂ V is an embedding, we may also view f as a C∞ map into V,

f : Σ →M3 ⊆ V , where V is R3 or R4 or R3,1 .

The derivatives fx = ∂xf and fy = ∂yf are vectors in the tangent space Tf(z,z̄)V
of V at f(z, z̄). Because V is a vector space, fx and fy can be viewed as lying in V
itself. We will also use fz = (1/2)(fx − ify) and fz̄ = (1/2)(fx + ify), defined in the
complex extension VC = {v1 + iv2|v1, v2 ∈ V } of V . The inner product of V extends
to a bilinear form 〈v1 + iv2, v1 + iv2〉 = 〈v1, v1〉+ 2i〈v1, v2〉+ 〈v2, v2〉 (which we also
denote by 〈·, ·〉 although it is not actually a true inner product on VC ). Note that f
is conformal if and only if

(2.1) 〈fz, fz〉 = 〈fz̄, fz̄〉 = 0 , 〈fz, fz̄〉 = 2e2µ ,

where the right-most equation defines the function µ : Σ → R.
In each space form, a unit normal vector N = N(z, z̄) ∈ Tf(z,z̄)V ≡ V of f is

defined by the properties
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(1) 〈N, N〉 = 1,

(2) N ∈ Tf(z,z̄)M3, and

(3) 〈N, fz〉 = 〈N, fz̄〉 = 0 .

The mean curvature of f is then given by

(2.2) H =
1

2e2µ
〈fzz̄, N〉 .

We also define the Hopf differential

(2.3) Q = 〈fzz, N〉dz2 .

2.2 The vector spaces V in terms of quaternions

Define the matrices

σ0 =
(−i 0

0 −i

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We can think of H = spanR{iσ0, iσ1, iσ2, iσ3} as the quaternions because it has the
quaternionic algebraic structure.

The R3 case. When M3 = V = R3, we associate M3 with the imaginary quater-
nions Im H = spanR{iσ1, iσ2, iσ3} ⊆ H by the map

(2.4) (x1, x2, x3) → x1
i

2
σ1 + x2

i

2
σ2 + x3

i

2
σ3 .

Then for X, Y ∈ Im H, the inner product inherited from R3 is

(2.5) 〈X,Y 〉 = −2 · trace(XY ) = 2 · trace(XY ∗) ,

where Y ∗ = Ȳ t. Also, any oriented orthonormal basis {X, Y, Z} of vectors of M3 ≡
ImH satisfies

(2.6) X = F

(
i

2
σ1

)
F−1 , Y = F

(
i

2
σ2

)
F−1 , Z = F

(
i

2
σ3

)
F−1

for some F ∈ SU(2), and this F is unique up to sign. In other words, rotations S of
R3 fixing the origin are represented in the quaternionic representation ImH of R3

by matrices F ∈ SU(2). And the image of F under Im H → SO(3) is the rotation S.
The S3 case. When M3 = S3 and V = R4, we associate V with H by the map

(2.7) (x1, x2, x3, x4) → x1iσ0 + x2iσ1 + x3iσ2 + x4iσ3 ,

so points (x1, x2, x3, x4) ∈ V = R4 are matrices of the form

(2.8) X =
(

a b
−b̄ ā

)
,

where a = x1 + ix4 and b = x3 + ix2. That is, they are matrices X that satisfy
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(2.9) X = σ2X̄σ2 .

The inner product on H inherited from V is

(2.10) 〈X, Y 〉 = (1/2) · trace(XY ∗) ,

where Y ∗ = Ȳ t. Note that this inner product is the same as in (2.5), up to a factor
of 4, and this factor of 4 appears only because we include a factor of 1/2 in (2.4) but
not in (2.7).

The H3 case. When M3 = H3 and V = R3,1, we can associate V with the set of
self-adjoint 2× 2 matrices {X ∈ Mat(2, C) |X∗ = X} by the map

(2.11) (x0, x1, x2, x3) ∈ R3,1 → X = x0iσ0 + x1σ1 + x2σ2 + x3σ3 .

One can check that σ2X
tσ2 = X−1 detX and that the inner product inherited from

V is
〈X, Y 〉 = (−1/2)trace(Xσ2Y

tσ2) ,

for self-adjoint matrices X,Y . Thus 〈X, X〉 = −det X.

2.3 The Lax Pair in the space forms

Let f be a conformal immersion, as in Section 2.1. Because f is a surface in M3 = R3

(resp. S3, H3), µ and H and Q satisfy the following Gauss and Codazzi equations for
R3 (resp. S3, or H3), and the F1 (resp. F1, F2, or F1), which correspond to the moving
frame of a surface f by the map (2.4) (resp. (2.7), (2.11)), satisfies the following Lax
pair equations.

(2.12) 4µzz̄ −QQ̄e−2µ + 4Hke2µ = 0 , Qz̄ = 2Hze
2µ ,

and

(2.13) Fk,z = FkUk , Fk,z̄ = FkVk

with

(2.14) Uk =
1
2

(
µz −2Hkeµλ−1

Qe−µλ−1 −µz

)
, Vk =

1
2

( −µz̄ −Q̄e−µλ
2Hk+1e

µλ µz̄

)
,

where Hk is H (resp. H − (−1)ki, H − (−1)k) in the case of R3 (resp. S3, H3), with
k ∈ {1, 2}. (k will be 2 only in the S3 case.)

For H constant, we see that the Gauss and Codazzi equations for M3 remain
satisfied when Q is replaced by λ−2Q for any λ ∈ S1 = {p ∈ C | |p| = 1}. Hence, up
to rigid motions, there is a unique surface fλ with metric determined by µ and with
mean curvature H and Hopf differential λ−2Q. (We use the notation fλ to state that
f depends on λ; it does not denote the derivative ∂λf .) The surfaces fλ for λ ∈ S1

form a one-parameter family called the associate family of f . The parameter λ is
called the spectral parameter and is essential to the DPW method. From [15], we have
the following facts. When the ambient space is R3, the parallel surfaces of fλ are

fλ,t = fλ + tN , t ∈ R.
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When the ambient space is S3, the parallel surfaces of fλ are

fλ,t = cos(t)fλ + sin(t)N , t ∈ R.

When the ambient space is H3, the parallel surfaces of fλ are

fλ,t = cosh(t)fλ + sinh(t)N , t ∈ R.

There are special values of t for which the parallel surfaces fλ,t also have CMC
surfaces. In the case of R3 (resp. S3,H3), this is true when the parallel surface is
f∗λ = fλ,1/(2H) (resp. f∗λ = fλ,arccot(H), f

∗
λ = fλ,arccoth(H)).

The R3 case. In the case of R3, by applying a homothety if necessary, we may
assume H = 1/2. We have the following theorem, proven in [2] and [13] using dif-
ferent notations, with the notations here matching those of [5], [6]. We also include
information on the parallel surfaces f∗λ here.

Theorem 2.1. Let u and Q solve the Gauss-Codazzi equations

(2.15) 4uzz̄ −QQ̄e−2u + e2u = 0 , Qz̄ = 0 ,

and let F (z, z̄, λ) be a solution of the system

(2.16) Fz = FU , Fz̄ = FV

with

(2.17) U =
1
2

(
uz −euλ−1

Qe−uλ−1 −uz

)
, V =

1
2

(−uz̄ −Q̄e−uλ
euλ uz̄

)

such that F (z, z̄, λ) ∈ SU(2) for all λ ∈ S1 and F (z, z̄, λ) is complex analytic in λ.
Define

(2.18) fλ =
[−i

2
Fσ3F

−1 − iλ(∂λF ) · F−1

]∣∣∣∣
λ=1

, N =
−i

2
Fσ3F

−1 .

(2.19) f∗λ = f − 2N , N∗ = −N .

Then fλ and f∗λ are of the form

(2.20) r · i

2
σ1 + s · i

2
σ2 + t · i

2
σ3 and r∗ · i

2
σ1 + s∗ · i

2
σ2 + t∗ · i

2
σ3 ,

where r, s, t, r∗, s∗ and t∗ are real-valued, and (r, s, t) and (r∗, s∗, t∗) are both conformal
parametrizations of CMC with H = 1/2 surfaces in R3, parametrized by z. fλ and
f∗λ are parallel surfaces. Also, µ and Q satisfy e2µ = e2u and Q = Q, where µ
and Q are defined as in (2.1) and (2.3). Furthermore, with µ∗ and Q∗ defined by
2e2µ∗ = 〈f∗λ,z, f

∗
λ,z̄〉 and Q∗ = 〈f∗λ,zz, N

∗〉, we have e2µ∗ = e−2u|Q|2 and Q∗ = Q.
Conversely, for every conformal CMC immersion with H = 1/2 into R3, there

exists a system (2.16)-(2.17) and solution F producing the immersion via (2.18).
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The S3 case. Consider a conformal CMC immersion f : Σ →M3 = S3 ⊂ V = R4,
with 〈·, ·〉 as in (2.10). Similar to the R3 case, we have the following theorem, proven
in [2] and [13] using different notations.

Theorem 2.2. Let u and Q solve (2.15) and let F (z, z̄, λ) be a solution of the system
(2.16)-(2.17) such that F (z, z̄, λ) ∈ SU(2) for all λ ∈ S1 and F (z, z̄, λ) is complex
analytic in λ. Define F1 = F (z, z̄, λ = eiγ1) and F2 = F (z, z̄, λ = eiγ2) for some fixed
γ1, γ2 ∈ R, and set

(2.21) fλ = F1AF−1
2 , N = iF1Aσ3F

−1
2 , where A =

(
e

i(γ1−γ2)
2 0
0 e

i(γ2−γ1)
2

)
,

(2.22) f∗λ = cos(γ2 − γ1)f + sin(γ2 − γ1)N , N∗ = sin(γ2 − γ1)f − cos(γ2 − γ1)N .

Then fλ and f∗λ are conformal CMC immersions with H = cot(γ2 − γ1) into S3. fλ

and f∗λ are parallel surfaces. Also, µ and Q satisfy e2µ = sin2(γ2 − γ1) · e2u/4 and
Q = sin(γ2 − γ1) ·Q, where µ and Q are defined as in (2.1) and (2.3). Furthermore,
with µ∗ and Q∗ defined by 2e2µ∗ = 〈f∗λ,z, f

∗
λ,z̄〉 and Q∗ = 〈f∗λ,zz, N

∗〉, we have e2µ∗ =
sin2(γ2 − γ1) · |Q|2e−2u/4 and Q∗ = sin(γ2 − γ1) ·Q.

Conversely, for every conformal CMC immersion with H = cot(γ2 − γ1) into S3,
there exists a system (2.16)-(2.17) and solution F producing the immersion via (2.21).

The H3 case. Let f : Σ →M3 = H3 ⊂ V = R3,1 be a conformal CMC immersion
with H > 1 in H3. Again, similar to the R3 and S3 cases, we have the following
theorem, proven in [2] and [13] with different notations.

Theorem 2.3. Let u and Q solve (2.15) and let F = F (z, z̄, λ = eq/2eiψ), for some
fixed q, ψ ∈ R (with q 6= 0), be a solution of the system (2.16)-(2.17) such that
F (z, z̄, λ) ∈ SU(2) for all λ ∈ S1 and F (z, z̄, λ) is complex analytic in λ. We set

(2.23) fλ = FAF ∗ , N = FAσ3F
∗ ,where A =

(
eq/2 0
0 e−q/2

)
, F ∗ = F

t
.

(2.24) f∗λ = cosh(−q)f + sinh(−q)N , N∗ = sinh(−q)f − cosh(−q)N .

Then fλ and f∗λ are CMC conformal immersions with H = coth(−q) > 1 into H3.
fλ and f∗λ are parallel surfaces. Also, µ and Q satisfy e2µ = sinh2(−q) · e2u/4 and
Q = sinh(−q) · Q, where µ and Q are defined as in (2.1) and (2.3). Furthermore,
with µ∗ and Q∗ defined by 2e2µ∗ = 〈f∗λ,z, f

∗
λ,z̄〉 and Q∗ = 〈f∗λ,zz, N

∗〉, we have e2µ∗ =
sinh2(−q) · |Q|2e−2u/4 and Q∗ = sinh(−q) ·Q.

Conversely, for every CMC conformal immersion with H = coth(−q) into H3,
there exists a system (2.16)-(2.17) and solution F producing the immersion via (2.23).

Remark. The parallel surface f∗λ can have singular points. At points where the Hopf
differential Q of the original CMC surface fλ is zero, then the metric of f∗λ is degen-
erate.



52 S. Kobayashi

3 The DPW recipe

We saw in Section 2 that finding CMC surfaces with H 6= 0 in R3 and CMC surfaces
in S3 and CMC surfaces with H > 1 in H3 is equivalent to finding integrable Lax
pairs of the form (2.16)-(2.17) and their solutions F . Then the surfaces are found
by using the Sym-Bobenko type formulas (2.18), (2.21) and (2.23). So to prove that
the DPW recipe finds all of these types of surfaces, it is sufficient to prove that the
DPW recipe produces all integrable Lax pairs of the form (2.16)-(2.17) and all their
solutions F . Here we describe how these Lax pairs and solutions F are found by the
DPW method in [5].

3.1 The loop groups and Iwasawa splitting

Let Cr := {λ ∈ C | |λ| = r} be the circle of radius r with r ∈ (0, 1], and let
Dr := {λ ∈ C | |λ| < r} be the open disk of radius r. We denote the closure of Dr

by Dr := {λ ∈ C | |λ| ≤ r}.
Definition 1. For any r ∈ (0, 1] ⊂ R, we define the following loop algebra and loop
groups:

(1) The twisted sl(2,C) r-loop algebra is

Λrsl(2, C) =
{

A : Cr
C∞−→ sl(2, C)

∣∣ A(−λ) = σ3A(λ)σ3

}
.

(2) The twisted SL(2, C) r-loop group is

Λr SL(2,C) =
{

φ : Cr
C∞−→ SL(2, C)

∣∣ φ(−λ) = σ3φ(λ)σ3

}
.

(3) The twisted SU(2) r-loop group is

Λr SU(2) =
{
F ∈ Λr SL(2, C)

∣∣F (λ)−1 = F (λ̄−1)∗, and

F (λ) extends holomorphically to D1/r \Dr } .

When r = 1, we abbreviate Λ1 SU(2) to ΛSU(2), and in this case the condition
that F extends holomorphically to D1/r \Dr is vacuous.

(4) The twisted plus r-loop group with R+ is

Λ+,rSL(2,C) = {B ∈ Λr SL(2, C) | B(λ) extends holomorphically to Dr,

and B|λ=0 =
(

ρ 0
0 ρ−1

)
with ρ > 0 } .

When r = 1, we abbreviate Λ+,1SL(2,C) to Λ+SL(2, C). Here we defined
Λ+,rSL(2,C) such that Λ+,rSL(2, C) ∩ Λr SU(2) = id.

We will give ΛrSL(2, C) an Hs-topology for a fixed s > 1/2 and take its comple-
tion. Then, ΛrSL(2, C) is a complex Banach Lie group and its elements have Fourier
expansions in the loop parameter λ. We quote the following result from [5].
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Lemma 3.1. (Iwasawa decomposition) For any r ∈ (0, 1], we have the following glob-
ally defined real-analytic diffeomorphism from Λr SL(2,C) to Λr SU(2)×Λ+,r SL(2,C)
: For any φ ∈ ΛrSL(2,C), there exist unique F ∈ Λr SU(2) and B ∈ Λ+,rSL(2,C)
so that

φ = FB .

We call this r-Iwasawa splitting of φ. When r = 1, we call it simply Iwasawa split-
ting. Because the diffeomorphism is real-analytic, if φ depends real-analytically (resp.
smoothly) on some parameter z, then F and B do as well.

3.2 The DPW method

We now describe the DPW method. Let

(3.1) ξ = A(z, λ)dz , A(z, λ) ∈ Λsl(2, C) , λ ∈ C \ {0} ,

where A := A(z, λ) is holomorphic in both z and λ for z ∈ Σ. Furthermore, we assume
that A has a pole of order at most 1 at λ = 0, and the upper-right and lower-left
entries of A have poles of order exactly 1 at λ = 0. We call ξ a holomorphic potential.

Let φ be the solution to

dφ = φξ , φ(z∗) = id

for some base point z∗ ∈ Σ. Then φ is holomorphic in z ∈ Σ and λ ∈ C∗, and

φ ∈ ΛSL(2, C) .

By Lemma 3.1 above, we can perform an Iwasawa splitting, and write the result as

(3.2) φ = FB .

From [9], we have the following proposition.

Proposition 3.2. Up to a conformal change of the coordinate z, F is a solution to
a Lax pair of the form (2.16)-(2.17), and then the Sym-Bobenko formula (2.18) or
(2.21) or (2.23) produces a conformal CMC immersion in the corresponding space
form R3, S3 or H3.

Also from [9], conversely the conformal CMC immersion has a holomorphic po-
tential, as the next proposition shows.

Proposition 3.3. For any solution F ∈ ΛSU(2), defined for all z ∈ Σ and all λ ∈
C\{0} with F (z∗) = id, to a Lax pair of type (2.16)-(2.17), there exists a holomorphic
potential ξ = Adz with A as in (3.1) and a solution φ ∈ Λ SL(2, C) of dφ = φξ so
that φ Iwasawa splits into φ = FB for some B ∈ Λ+SL(2, C).

3.3 Dressing

Let Σ be a simply connected surface and let φ be a solution to dφ = φξ with φ(z∗) = id
on Σ, where ξ is defined as in Equation (3.1). If we define

φ̂ = h+ · φ ,
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for h+ = h+(λ) ∈ Λ+,r SL(2,C) depending only on λ, then this multiplication on the
left by h+ is called a dressing.

Note that φ̂ satisfies dφ̂ = φ̂ξ, because h+ is independent of z. Hence the dressing
h+ does not change the potential ξ, and changes only the resulting surface. To see
how the surface is changed by h+, one must Iwasawa split h+F into h+F = F̃ B̃, and
then F̃ ∈ ΛSU(2) is the frame for the changed surface. This change in the frame from
F to F̃ is nontrivial to understand in general, hence the change in the surface is also
nontrivial to understand.

3.4 Period problems

Let Σ be a connected Riemann surface with universal cover Σ̃ and let ∆ denote the
group of deck transformations. Let ξ be a holomorphic potential as in Equation (3.1)
and φ be a solution of dφ = φξ. We assume τ∗ξ = ξ for any τ ∈ ∆. For each τ ∈ ∆,
we define the monodromy matrix Mτ of φ by Mτ (λ) = (φ ◦ τ) · φ−1.

From [8], we have the following theorem.

Theorem 3.4. Let Mτ be the monodromy matrix of a solution φ, with respect to
some deck transformation τ ∈ ∆ of Σ̃. Then Mτ is unitarizable via dressing for some
r ∈ (0, 1] if and only if, for all λ ∈ S1,

(3.3) trace(Mτ ) ∈ (−2, 2) or Mτ = ±id .

We introduce the following theorem to solve the period problems in R3, S3 or H3,
respectively, as in [13].

Theorem 3.5. Let Mτ be as in Theorem 3.4. Assume Mτ ∈ ΛrSU(2), so Mτ is also
the monodromy matrix of F about τ , where F is as in (3.2). Let f be one of the
Sym-Bobenko formulas (2.18) or (2.21) or (2.23) for F , respectively. Then

• R3 case: f ◦ τ = f holds if and only if

(3.4) Mτ |λ=1 = ±id and ∂λMτ |λ=1 = 0 ,

• S3 case: f ◦ τ = f holds if and only if

(3.5) Mτ |λ=eiγ1 = Mτ |λ=eiγ2 = ± id ,

• H3 case: f ◦ τ = f holds if and only if

(3.6) Mτ |λ=eq/2eiψ = ±id .

4 Surfaces of Revolution

4.1 Delaunay surfaces via DPW

Delaunay surfaces are periodic surfaces of revolution in R3 and are described via
DPW in detail in [12]. The generalization of Delaunay surfaces, which are rotational
W-hypersurfaces of σ1-type in Hn+1 and Sn+1, are studied in [19]. We also give a
description here. First we give the definition of Delaunay surfaces in space forms.



Bubbletons in 3-dimensional space forms 55

Definition 2. Let f : Σ = S2 \ p1, p2 → R3 (resp. S3, H3) be a CMC immersion.
Then f is a Delaunay surface in R3 (resp. S3, H3) if f is a surface of revolution in
R3 (resp. S3, H3), i.e. a surface of revolution about a fixed geodesic line in R3 (resp.
S3, H3).

Using stereographic projection and a Moebius transformation, we may assume
Σ = C∗ = C\{0}. Define

(4.1) ξ = D
dz

z
, where D =

(
l sλ−1 + tλ

sλ + tλ−1 −l

)
,

with l, s, t ∈ R.
One solution of dφ = φξ is

(4.2) φ = exp (ln z ·D) .

This φ can be split (this is not r-Iwasawa splitting) in the following way:

φ = F1B1 , F1 = exp (iθD) , B1 = exp (ln ρ ·D) ,

where z = ρeiθ, with ρ = |z| and θ = arg(z). We note that F1 ∈ Λr SU(2).
Since D2 = X2 id, where X =

√
l2 + (s + t)2 + st(λ− λ−1)2, we see that

(4.3) F1 =
(

cos(θX) + ilX−1 sin(θX) iX−1 sin(θX)(sλ−1 + tλ)
iX−1 sin(θX)(sλ + tλ−1) cos(θX)− ilX−1 sin(θX)

)
,

B1 =
(

cosh(ln ρ ·X) + lX−1 sinh(ln ρ ·X) X−1 sinh(ln ρ ·X)(sλ−1 + tλ)
X−1 sinh(ln ρ ·X)(sλ + tλ−1) cosh(ln ρ ·X)− lX−1 sinh(ln ρ ·X)

)
.

We can now r-Iwasawa split B1, i.e. B1 = F2 · B, where F2 ∈ ΛrSU(2) and B ∈
Λ+,rSL(2,C). We define F = F1 · F2. Thus φ = FB is the r-Iwasawa splitting of φ
(for any choice of r ∈ (0, 1]).

Because F2 and B depend only on |z| = ρ and F1 depends only on θ, we have
that, under the rotation of the domain

z → Rθ0(z) = eiθ0z , θ0 ∈ R ,

the following transformations occur:

F → Mθ0F and B → B , where Mθ0 = exp(iθ0D) .

We note that Mθ0 ∈ Λr SU(2), and that Mθ0 is of the same explicit form as F1 in
(4.3), but evaluated at θ = θ0. When θ = 2π, we have

(4.4) Mτ = M2π .

Clearly Mτ is the monodromy matrix of the generating counterclockwise deck trans-
formation τ ∈ ∆ of the universal cover of C \ {0}.

Now we consider the closing conditions in each of the three space forms:
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• When M3 = R3, M2π must satisfy (3.4) for λ = 1, so that the surface will close
about the deck transformation τ . This is satisfied if

(4.5) l2 + (s + t)2 = 1/4 ,

so we impose this condition when M3 = R3.

• When M3 = S3, M2π must satisfy (3.5), so that the surface will close about τ .
With λ1 = eiγ and λ2 = e−iγ , (3.5) is satisfied if

(4.6) l2 + (s + t)2 − 4st sin2(γ) = 1/4 ,

so we impose this when M3 = S3.

• When M3 = H3, M2π must satisfy (3.6), so that the surface will close about τ .
With λ = q/2 ∈ R+, (3.6) is satisfied if

(4.7) l2 + (s + t)2 + 4st sinh2(
q

2
) = 1/4 ,

so we impose this when M3 = H3.

With these conditions, Delaunay surfaces are produced in R3, S3 and H3, and
this can be seen as follows:

In the case of R3, under the mapping z → Rθ0(z), we have that f as in (2.18)
changes as

(4.8) f → Mθ0fM−1
θ0

− i(∂λMθ0)|λ=1M
−1
θ0

.

One can check that Equation (4.8) represents a rotation of angle θ0 about the line

{x · (−s− t, 0, l) + 2(s− t) · (2l, 0, 2s + 2t) |x ∈ R} ,

hence f is a surface of revolution, and thus a Delaunay surface in R3.
In the case of S3, under the mapping z → Rθ0(z), f as in (2.21) changes by

(4.9) f → (Mθ0 |λ=e−iγ )f(M−1
θ0
|λ=eiγ ) .

One can check that Equation (4.9) represents a rotation of angle θ0 about the geodesic
line

(4.10) {(x1, x2, 0, x4) ∈ S3 | sin(γ)(s− t)x1 + rx2 − cos(γ)(s + t)x4 = 0} .

So we have a surface of revolution in this case also (since the geodesic line (4.10) does
not depend on θ0), and hence a Delaunay surface in S3.

In the case of H3, under the mapping z → Rθ0(z), f as in (2.23) changes by

(4.11) f → (Mθ0 |λ=eq/2)f(Mθ0

t|λ=eq/2) .

One can check that Equation (4.11) represents a rotation of angle θ0 about the geo-
desic line

(4.12) {(x1, 0, x3, x0) ∈ H3 | sinh(q)(s− t)x0 − rx1 + cosh(q)(s + t)x3 = 0} .

Therefore f is a surface of revolution (since the geodesic line (4.12) does not depend
on θ0), and hence a Delaunay surface in H3.

We summarize this in the following theorem.
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Theorem 4.1. The holomorphic potential ξ defined in Equation (4.1) with the con-
dition (4.5) (resp. (4.6), (4.7)) produces a Delaunay surface in R3 (resp. S3, H3).

Which Delaunay surface one gets depends on the choice of r, s and t. An unduloid
is produced when st > 0. A nodoid is produced when st < 0, and for the limiting
singular case of a sphere, st = 0. A cylinder is produced when s = t and l = 0. In
the next subsection, we will show that we can explicitly compute f in the case of
cylinders.

4.2 Cylinders via DPW

We choose l = 0 and s = t for D in Equation (4.1). Thus ξ is

ξ = (λ−1 + λ)
(

0 s
s 0

)
dz

z
.

By (4.5), (4.6) and (4.7), s = 1/4 or s = 1/(4 cos(γ)) or s = 1/(4 cosh(q/2)) in the
respective space form. Furthermore, the φ in Equation (4.2) is

φ = exp
(

log z

(
0 s
s 0

)
(λ−1 + λ)

)

=
(

cosh(s(λ−1 + λ) log z) sinh(s(λ−1 + λ) log z)
sinh(s(λ−1 + λ) log z) cosh(s(λ−1 + λ) log z)

)
,

which has the explicit r-Iwasawa splitting

φ = FB , where B = exp
(

λ(log z + log z̄)
(

0 s
s 0

))
and

F = exp
(

(λ−1 log z − λ log z̄)
(

0 s
s 0

))
,

for any r ∈ (0, 1].
Inserting this F into equations (2.18), (2.21), and (2.23), one can explicitly com-

pute the parametrizations for the surfaces and see that cylinders are produced. In
the case of S3, the cylinder wraps around onto itself to become of torus, since the
geodesic lines in S3 are closed loops.

In the case of R3, from Section 4.4 in [4] Delaunay surfaces are obtained from the
dressing of cylinders. Similar arguments show the following results for S3 and H3.

Theorem 4.2. Delaunay surfaces in S3 (resp. H3) are obtained from the dressing of
cylinders in S3 (resp. H3).

5 Bubbletons

5.1 Bubbletons via DPW

Let Σ̃ be the universal cover of the Riemann surface C∗. Let φ(z, λ) be a solution of
dφ = φξ on Σ̃ with some initial condition φ(z∗, λ) at z = z∗ and let φ = F ·B be the
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Figure 2: A Delaunay bubbleton in R3. (A cylinder bubbleton in R3 is shown in
Figure 1.) This figure was made by Y. Morikawa.

r-Iwasawa splitting of φ, where ξ is as in (4.1). Choose D/z ∈ Λrsl(2, C) for some
r ∈ (0, 1] satisfying either (4.5) or (4.6) or (4.7), depending on the ambient space
form. Let f be as in the Sym-Bobenko formula (2.18) or (2.21) or (2.23), respectively,
made from the extended frame F . By Theorem 4.1, f is well defined on C∗.

Consider the dressing φ → φ̃ = h · φ, where h is the matrix

(5.1) h =




√
1−ᾱ2λ2

λ2−α2 0

0
√

λ2−α2

1−ᾱ2λ2


 , α ∈ C∗.

Let φ̃ = F̃ · B̃ be the r-Iwasawa splitting of φ̃ and let f̃ be the Sym-Bobenko formula
(2.18) or (2.21) or (2.23), respectively, made from the extended frame F̃ . We note
that if |α| < r or r−1 < |α|, then h ∈ ΛrSU(2). So the surface f̃ differs from f by
only a rigid motion. Therefore we assume r < |α| < 1. We note that in general f̃ is
not well defined on C∗.

Definition 3. Let f : C∗ −→ M3 and f̃ : Σ̃ −→ M3, where M3 is R3 (resp. S3

or H3), be CMC immersions derived from the above solutions φ and φ̃. Let Mτ be
the monodromy matrix of φ defined in Equation (4.4). Then f̃ is a bubbleton of the
Delaunay surface f in R3 (resp. S3, H3) if hMτh−1 ∈ ΛrSU(2).

Lemma 5.1. The bubbleton f̃ satisfies the closing condition (3.4) or (3.5) or (3.6),
so is defined on C∗.

Proof. In the R3 case, we show that since Mτ |λ=1 = ±id and ∂λMτ |λ=1 = 0 are
satisfied, thus (hMτh−1)|λ=1 = ±id and ∂λ(hMτh−1)|λ=1 = 0 are also satisfied. This
follows from the following computations:

(
hMτh−1

) |λ=1 = h|λ=1 (±id) h−1|λ=1 = ±id ,

∂λ

(
hMτh−1

) |λ=1 =
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(
(∂λh)Mτh−1

) |λ=1 +
(
h (∂λMτ ) h−1

) |λ=1 +
(
hMτ

(−h−1 (∂λh) h−1
)) |λ=1 = 0 .

The H3 and S3 cases are similar, in fact they are even simpler, because no derivatives
with respect to λ are involved.

Remark. We saw in Lemma 5.1 that Definition 3 implies the bubbleton is topologically
a cylinder.

Lemma 5.2. hMτh−1 is in ΛrSU(2) if and only if Mτ is a lower triangular matrix
at λ = ±α and an upper triangular matrix at λ = ±ᾱ−1.

Proof. Let mij be the entries of Mτ . We have

hMτh−1 =

(
m11

1−ᾱ2λ2

λ2−α2 m12

λ2−α2

1−ᾱ2λ2 m21 m22

)
.

Thus hMτh−1 is in ΛrSU(2) if and only if 1−ᾱ2λ2

λ2−α2 m12(λ) and λ2−α2

1−ᾱ2λ2 m21(λ) are
holomorphic on r < |λ| < r−1. This happens if and only if Mτ is a lower triangular
matrix at λ = ±α and an upper triangular matrix at λ = ±ᾱ−1.

Theorem 5.3. There exist round cylinder bubbleton and Delaunay bubbleton surfaces
for all three space forms.

Proof. The monodromy matrix Mτ is

Mτ =
(

cos(2πX) + ilX−1 sin(2πX) iX−1 sin(2πX)(sλ−1 + tλ)
iX−1 sin(2πX)(sλ + tλ−1) cos(2πX)− ilX−1 sin(2πX)

)
,

where

X =

√
1
4
− a + st(λ− λ−1)2 ,

and 



R3 case: a = 0
S3 case: a = −4st sin2(γ)
H3 case: a = 4st sinh2(q/2)

.

Mτ is in ΛrSU(2) for all r ∈ (0, 1] and satisfies the closing conditions. We take

(5.2) α =
√

δ + 4−
√

δ

2
∈ R ∪ iR \ {0,±1,±i} with δ =

1
st

(
k2 − 1

4
+ a

)
,

k2 ≥ max{−16st− 4a + 1,−4a + 1, 4} and k ∈ N .

We can immediately compute Mτ |λ=±α,±ᾱ−1 = −id. We can choose r so that α
satisfies r < |α| < 1. Thus Lemma 5.2 and Definition 3 imply existence of bubbletons
of cylinders and Delaunay surfaces.



60 S. Kobayashi

5.2 Computing the change of frame for the simple type dress-
ing

Now we consider the explicit Iwasawa factorization of hφ with the simple type dress-
ing h defined in Equation (5.1). This will lead to an explicit parametrization of the
bubbletons of round cylinders in all three space forms. In this section, we allow ξ to be
a general potential. Let Σ be a Riemann surface with coordinate z. Let φ be a solution
of dφ = φξ on Σ with some initial condition φ(z∗, λ) at z∗ and let φ = F · B be the
r-Iwasawa splitting of φ, where ξ ∈ Λrsl(2,C) and r ∈ (0, 1]. We assume r < |α| < 1,
for the same reason as in Section 5.1.

We consider C2 with the standard inner product 〈·, ·〉, and e1, e2 forming the
orthonormal basis

e1 =
(

1
0

)
, e2 =

(
0
1

)

of C2. We define two subspaces V1, V2 spanned by specific vectors v1, v2 in C2:

V1 =
{

a · v1

∣∣∣ v1 =
(

Ā
λ−1ᾱ−1B̄

)
, a ∈ C

}
,

V2 =
{

a · v2

∣∣∣ v2 =
(−λα−1B

A

)
, a ∈ C

}
,

where

F |λ=α =
(

A B
C D

)
, F ∈ ΛrSU(2)

We now define projections π1, π2, π̃1, π̃2 and linear combinations h, h̃ of these pro-
jections.

(5.3)





π1 = orthogonal projection to the span of e1

π2 = orthogonal projection to the span of e2

h = f−1/2π1 + f1/2π2

,

(5.4)





π̃1 = projection to V1 parallel to V2

π̃2 = projection to V2 parallel to V1

h̃ = f−1/2π̃1 + f1/2π̃2

,

where

f =
λ2 − α2

1− ᾱ2λ2
, α ∈ C∗ .

Note that in general π̃1 and π̃2 are non-orthogonal projections.
We have the following two lemmas, the first of which is obvious.

Lemma 5.4.

π1 ◦ π1 = π1 , π1 ◦ π2 = 0 , π2 ◦ π1 = 0 , π2 ◦ π2 = π2 .

π̃1 ◦ π̃1 = π̃1 , π̃1 ◦ π̃2 = 0 , π̃2 ◦ π̃1 = 0 , π̃2 ◦ π̃2 = π̃2 .
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Lemma 5.5.

h−1 = f1/2π1 + f−1/2π2 , h̃−1 = f1/2π̃1 + f−1/2π̃2 .

Proof.

(f−1/2π1 + f1/2π2) ◦ (f1/2π1 + f−1/2π2)

= π1 ◦ π1 + f−1π1 ◦ π2 + fπ2 ◦ π1 + π2 ◦ π2

= π1 + π2 = id ,

by Lemma 5.4. Similarly
(
f1/2π1 + f−1/2π2

)◦(
f−1/2π1 + f1/2π2

)
= id. Replacing π1

by π̃1 and π2 by π̃2, we get the analogous result for h̃−1.

Lemma 5.6. In terms of the basis e1, e2, we can write πj , π̃j (j = 1, 2) in the follow-
ing matrix forms:

π1 =
(

1 0
0 0

)
, π2 =

(
0 0
0 1

)
,

π̃1 =
1

|A|2 + |α|−2|B|2
( |A|2 λα−1ĀB

λ−1ᾱ−1AB̄ |α|−2|B|2
)

,

π̃2 =
1

|A|2 + |α|−2|B|2
( |α|−2|B|2 −λα−1ĀB
−λ−1ᾱ−1AB̄ |A|2

)
.

Proof. The matrix forms for π1 and π2 are evident. Regarding π̃1 and π̃2, we have
π̃j · wi = wiδij , ∀wi ∈ Vi (i, j = 1, 2), where δij is the Kronecker δ function, and so
for

x =
(

x1

x2

)
∈ C2,

we have

π̃1 · x =
Ax1 + λα−1Bx2

|A|2 + |α|−2|B|2
(

Ā
λ−1ᾱ−1B̄

)
,

π̃2 · x =
−λ−1ᾱ−1B̄x1 + Āx2

|A|2 + |α|−2|B|2
(−λα−1B

A

)
.

Thus π̃1 and π̃2 have matrix forms as in the lemma.

We now define a matrix C ∈ Λr SU(2):

(5.5) C =
1√

|T |2 + 1

(
eiθ λeiθT

−λ−1e−iθT̄ e−iθ

)
,

where T =
ĀB

(
1 + ᾱ2

)

α|A|2 − ᾱ|B|2 and θ = arg
(
|A|2 − ᾱ

α
|B|2

)
+ arg

(√
−α2

)
.

Theorem 5.7. Let φ be a solution of dφ = φξ on Σ with some initial condition
φ(z∗, λ) ∈ Λr SL(2, C) at z∗, and let φ = FB be the r-Iwasawa splitting of φ. We
consider the dressing φ → h ·φ. Then hφ = (hF h̃−1C−1)(Ch̃B) is r-Iwasawa splitting
of hφ, i.e. hF h̃−1C−1 ∈ Λr SU(2) and Ch̃B ∈ Λr+ SL(2, C), where h, h̃, C are as in
(5.3), (5.4) and (5.5).
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Proof. C is already in ΛrSU(2), so we first show hF h̃−1 ∈ ΛrSU(2). F satisfies the
reality condition F (λ̄−1) = (F−1(λ))∗. We show that h and h̃ also satisfy the same
reality condition:

h(λ̄−1) = f(λ̄−1)
−1/2

π1 + f(λ̄−1)
1/2

π2 ,

(
h−1 (λ)

)∗
=

(
f(λ)1/2

π1 + f(λ)−1/2
π2

)∗

= f(λ̄−1)
−1/2

π1 + f(λ̄−1)
1/2

π2 .

h̃(λ̄−1) = f(λ̄−1)
−1/2

π̃1(λ̄−1) + f(λ̄−1)
1/2

π̃2(λ̄−1) ,
(
h̃−1 (λ)

)∗
=

(
f(λ)1/2

π̃1(λ) + f(λ)−1/2
π̃2(λ)

)∗

= f(λ̄−1)
−1/2

π̃1(λ̄−1) + f(λ̄−1)
1/2

π̃2(λ̄−1) .

Thus we have shown the reality condition for h and h̃. F is holomorphic on r <
|λ| < r−1. h, h̃ are holomorphic on r < |λ| < r−1 with singularities only at λ =
±α,±ᾱ−1. Thus we need only check that hF h̃−1 has no singularities at λ = ±α,±ᾱ−1.

hF h̃−1
∣∣∣
λ=±α,±ᾱ−1

=
((

f−1/2π1 + f1/2π2

)
F

(
f1/2π̃1 + f−1/2π̃2

))∣∣∣
λ=±α,±ᾱ−1

=
(
π1Fπ̃1 + fπ2Fπ̃1 + f−1π1Fπ̃2 + π2Fπ̃2

)∣∣
λ=±α,±ᾱ−1 .

The only possible singularities in this sum of four terms can occur in fπ2Fπ̃1 when
λ = ±ᾱ−1 and in f−1π1Fπ̃2 when λ = ±α. But the reality condition of F and a
calculation shows that in fact such singularities do not occur.

Finally we show Ch̃B ∈ Λ+rSL(2,C). B is in Λ+rSL(2,C), so we need only check
that Ch̃ is in Λ+,rSL(2, C). We can easily see Ch̃ ∈ ΛrSL(2,C) and is holomorphic
on 0 < |λ| < r and continuous on 0 < |λ| ≤ r, and a direct computation shows that

Ch̃|λ=0 =
(

ρ1 0
0 ρ1

−1

)
,

where ρ1 =

√
|α|−1|A|2 + |α||B|2
|α||A|2 + |α|−1|B|2 ∈ R+ .

Thus the theorem is proven.

Theorem 5.7 has the following corollary:

Corollary 5.8. We have explicit parametrizations for round cylinder bubbletons in
all three space forms using the r-Iwasawa splitting in Theorem 5.7, the extended frame
in Section 4.2 and the Sym-Bobenko formulas (2.18), (2.21) and (2.23).

Remark. Let ξ = Σj≥−1λ
jAjdz be a holomorphic potential on Σ and let φ be a

solution of dφ = φξ with some initial condition φ(z∗, λ) ∈ Λr SL(2,C) at z∗. Let
φ = F ·B be r-Iwasawa splitting and let f be as in the Sym-Bobenko formula (2.18)
or (2.21) or (2.23), respectively, made from the extended frame F . Then the conformal
factor of the metric 4e2µdzdz̄ of f is (see [12])
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(5.6) 4e2µ = 16ε2e2u|a−1|2 = 16ε2ρ4|a−1|2 ,

where a−1 is the upper right entry of A−1, B|λ=0 =
(

ρ 0
0 ρ−1

)
and ε = 1 (resp.

ε = sin((γ2 − γ1)/2), ε = sinh(−q/2)) in the case of R3 (resp. S3, H3).

5.3 Equivalence of the simple type dressing and Bianchi’s
Bäcklund transformation on the round cylinder

In this section we prove the equivalence of the simple type dressing (5.1) and Bianchi’s
Bäcklund transformation in R3, when applied to a cylinder. (The latter is a bubbleton
surface in the sense of [20].) We show that the metric, Hopf differential and mean
curvature of Bianchi’s Bäcklund transformation of a round cylinder are the same as
those resulting from the simple type dressing of (5.1) with real α. For general CMC
surfaces in R3, Burstall [3] has proven the equivalence of the simple type dressing
(5.1) for α either real or pure imaginary and the Darboux transformation. Hertrich-
Jeromin and Pedit [11] have proven that any of Bianchi’s Bäcklund transformations
of a CMC surface is a Darboux transformation of the surface, but not the converse.

In the S3 and H3 cases, we have not seen a notion of Bianchi’s Bäcklund trans-
formation. So we do not prove the equivalence for the S3 and H3 cases.

First we introduce the metric, Hopf differential and mean curvature of Bianchi’s
Bäcklund transformation using [20]. Using the notation in [20], we can write the first
and second fundamental forms and the principal curvatures of a CMC surface as
follows: 




ds2 = e2udwdw̄
II = eu

(
sinh (u) dx2 + cosh (u) dy2

)
k1 = e−u sinh (u) , k2 = e−u cosh (u)

,

where w = x + iy. The Gauss equation becomes

(5.7) 2uww̄ + sinh(2u) = 0 .

In particular, in the round cylinder case we have u = 0. We do the Bäcklund trans-
formation on the cylinder, and using Bianchi’s Permutability formula ([20]), we have
the new solution u1 satisfying the Gauss equation (5.7):

tanh
(u1

2

)
= tanh (β1)

cos (y cosh (β1))
cosh (x sinh (β1))

,

where β1 ∈ R. Under Bianchi’s Bäcklund transformation, the mean curvature and
the Hopf differential do not change. So the mean curvature and the Hopf differential
of the bubbleton are H = 1/2 and Q = (−1/4)dw2.

We consider the change of coordinate log z = w. Thus we have the following:

tanh
(u1

2

)
= tanh (β1)

cos (Im (log z) cosh (β1))
cosh (Re (log z) sinh (β1))

,

H = 1/2 ,

Q = − 1
4z2

dz2 .
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Theorem 5.9. Bianchi’s Bäcklund transformation of the round cylinder and the sim-
ple type dressing with real α of the round cylinder are the same surface.

Proof. Using Corollary 5.8, and Equations (5.6), (2.2) and (2.3), the simple type
dressing by h has the following conformal factor for the metric 4e2µdzdz̄, and the
following mean curvature and Hopf differential:

4e2µ = 16e2u1 |a−1|2 = 16ρ4|a−1|2

= 16
( |α|−1|A|2 + |α||B|2
|α||A|2 + |α|−1|B|2

)2

|a−1|2

= 16
(

α−1| cosh(X)|2 + α| sinh(X)|2
α| cosh(X)|2 + α−1| sinh(X)|2

)2

|a−1|2 ,

H = 1/2 ,

Q = − 1
4z2

dz2 ,

where X = α−1 log z−α log z̄
4 and a−1 = 1/(4z). Then tanh(u1/2) = eu1−1

eu1+1 implies that

tanh
(u1

2

)
=

(
α−1 − α

) (| cosh(X)|2 − | sinh(X)|2)

(α−1 + α) (| cosh(X)|2 + | sinh(X)|2) .

Using addition properties for the hyperbolic sine and cosine functions, we can rewrite
the equation as follows:

tanh
(u1

2

)
=

(
α−1 − α

)
cosh

(
X − X̄

)

(α−1 + α) cosh
(
X + X̄

) .

We have X + X̄ = Re(log z)(α−1−α
2 ) and X − X̄ = i Im(log z)(α−1+α

2 ). Thus the
equation finally becomes

tanh
(u1

2

)
=

(
α−1−α

2

)
cosh

(
i Im (log z) α−1+α

2

)
(

α−1+α
2

)
cosh

(
Re (log z) α−1−α

2

)

=
sinh (β1) cos (Im (log z) cosh (β1))
cosh (β1) cosh (Re (log z) sinh (β1))

,

where we set α−1+α
2 = cosh(β1) and α−1−α

2 = sinh(β1). Therefore both transforma-
tions give the same metric, mean curvature and Hopf differential. So the fundamental
theorem of surface theory implies that the two transformations of the round cylinder
are the same.

5.4 Parallel surfaces of the bubbletons

In this section, we prove that the parallel surfaces of the round cylinder bubbletons
are the same surface as the original bubbletons.
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Theorem 5.10. The parallel surface of a round cylinder bubbleton is the same sur-
face as the original cylinder bubbleton, up to a rigid motion, in any of the three space
forms R3, S3 and H3.

Proof. Using Corollary 5.8 and Equations (5.6), (2.2) and (2.3), we can describe the
conformal factor for the metric 4e2µdzdz̄, mean curvature H and Hopf differential Q
of the round cylinder bubbletons as follows:

4e2µ = 16ε2e2u|a−1|2 = 16ε2
(

α−1|A|2 + α|B|2
α|A|2 + α−1|B|2

)2

|a−1|2 ,

H = b ,

Q = − 1
4z2

εdz2 ,

where A = cosh(α−1 log z−α log z̄
4 ), B = sinh(α−1 log z−α log z̄

4 ), and ε = 1, a−1 = 1/(4z)
and b = 1/2 (resp. ε = sin(−2γ), a−1 = 1/(4z cos(γ)) and b = cot(−γ), or ε =
sinh(−q), a−1 = 1/(4z cosh(q/2)) and b = coth(−q/2)) in the case of R3 (resp. S3, or
H3), and where α ∈ R as in (5.2).

Using Theorem 2.1, Theorem 2.2 and Theorem 2.3, we can also describe the con-
formal factor for the metric 4e2µ∗dzdz̄, mean curvature H∗ and Hopf differential Q∗
of the bubbleton parallel surface as follows:

4e2µ∗ = 16ε2e−2u|a−1| = 16ε2
(

α|A|2 + α−1|B|2
α−1|A|2 + α|B|2

)2

|a−1|2 ,

H∗ = b ,

Q∗ = − 1
4z2

εdz2 .

We consider the conformal change of the coordinate z → z exp( 2πi
α+α−1 ) on the parallel

surface. Under this change, the mean curvature and Hopf differential do not change.
For the metric, |A|2 and |B|2 change to |B|2 and |A|2, respectively, thus the conformal
factor 4e2µ∗ of the metric changes to

16ε2
(

α−1|A|2 + α|B|2
α|A|2 + α−1|B|2

)2

|a−1|2 = 4e2µ .

Thus both surfaces have the same metric, mean curvature and Hopf differential
up to this change of coordinate. Hence the fundamental theorem of surface theory
implies the two surfaces are the same.

Remark. The parallel surface of a Delaunay bubbleton in general is not the same
surface as the original Delaunay bubbleton. For example, if the bubbles of Delaunay
bubbleton attach at a neck of the Delaunay surface, then the bubbles of the parallel
Delaunay bubbleton attach at a bulge of the Delaunay surface.
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