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Abstract

The submanifold Dirac operator has been studied for this decade, which is
closely related to Frenet-Serret and generalized Weierstrass relations. In this ar-
ticle, we will give a submanifold Dirac operator defined over a surface immersed
in E4 with U(1)-gauge field as torsion in the sense of the Frenet-Serret relation,
which also has data of immersion of the surface in E4.
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1 Introduction

The submanifold quantum mechanics was opened by Jensen and Koppe [8] and de
Casta [4]. The submanifold Dirac equations were studied in [3, 11, 12, 13, 14, 15,
20, 21], which are closely related to recent movements in differential geometry. The
same Dirac operator as one in [15] appeared in a lecture by Pinkall in ICM of 1998
[22], in which conformal surfaces in the Euclidean space were studied using the Dirac
operator. The related Dirac equation is known as the generalized Weierstrass relation
in the category of differential geometry [10, 22, 24].

Recently, this author gave an algebraic construction of the submanifold quantum
mechanics, which exhibits nature of submanifold [19, 20].

On the other hand, for a space curve in three dimensional Euclidean space E3,
Takagi and Tanzawa found a submanifold Schrödinger operator with a gauge field
[25],

(1.1) S := −(∂s −
√−1a)2 − 1

4
k2,

whereas the original one in [4, 8] is given by

S := −∂2
s −

1
4
k2,

where k is a curvature of the curve. The existence of the gauge field a is due to the
fact that the codimension is two.
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In this article, we will generalize the Takagi-Tanzawa Schrödinger operator (1.1) to
the submanifold Dirac operator over a surface in E4 using the algebraic construction.

After giving a geometrical setting of our system in §2, and explaining our con-
ventions of the system of the Dirac equations in §3, we will define the submanifold
Dirac equation following the algebraic construction in §4. As the submanifold Dirac
equation is on a surface in E4 closely related to the generalized Weierstrass relation
in [10, 15, 22], we will show Theorem 4.1 as the generalized Weierstrass relation with
another proof based upon [20]. Further in §5, we will introduce another submanifold
Dirac operator which has a gauge field associated with the torsion in the sense of the
Frenet-Serret relation. We will provide Theorem 5.1 which is also connected with the
generalized Weierstrass relation.

Before finishing the Introduction, we will comment on our theory from viewpoints
of mathematics.

Theorem 4.1 can be easily extended to more general k−spin submanifold in n
dimensional Euclidean space En as shown in [20]. However since [20] is somewhat
complicate due to general dimensionality, in this article, we will restrict ourselves to
four dimensional theory in order to make theory simple and study the effects from
the torsion in the case of the codimention n− k > 1 or (n = 4, k = 2).

However due to the potentiality, our theory might be even complicate for differen-
tial geometers by comparing with the theories of [10, 22]. Thus we will give an answer
of a question why we persist the submanifold Dirac operators.

One of our motivations on this study is to construct a continuous variant of Frobe-
nius reciprocity for linear representation of subgroup in a linear representation theory
of finite group [23]. This article is a first step from [20]. For class functions ϕ and ψ
over a finite group G and over its subgroup H respectively, the Frobenius reciprocity
is given by,

〈Resϕ,ψ〉H = 〈ϕ, Indψ〉G(1.2)

for a certain restriction map Res, a map of an induced representation Ind and pairings
〈〉G and 〈〉H defined over G and H respectively [23]. On the other hand, our Theorem
4.1 and 5.1 can be expressed by following: For a point pt in a surface S in E4 and for
a spinor field ψ over S satisfying a certain Dirac equation 6Dψ = 0, we find a spinor
field ϕ in S ⊂ E4 using data of E4 and the relation,

〈ϕ,ψ〉S = 〈ϕ, ψ〉E4 at pt,(1.3)

for pointwise bilinear forms at pt, 〈ϕ, ψ〉S and 〈ϕ,ψ〉E4 , properly defined over S and E4

respectively. Here using a natural spin representation of SO(4), 〈ϕ,ψ〉E4 gives a germ
of sheaf of T ∗E4 which express the tangential component T ∗S ⊂ T ∗E4|S at the point
pt. In other words, the solution ψ of the differential equation and the pairing 〈, 〉S at
pt gives the local data of embedding or immersion of S into E4. These theorems give
the generalized Weierstrass relation and its essentials. Every bilinear representation
of SO(4) is uniquely identified with a spin representation and the spinor fields can
be characterized by kernel of a Dirac operator. Thus we have searched such a Dirac
operator whose kernel has the data of immersions for this decade [20]. Simultaneously
the fact gives answers of questions why the Dirac operator appears in generalized
Weirestrass relation and quaternion expresses the case of n = 4. It implies that
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our theory is natural and should contrast with others. Further we note that 6D is
constructed by restriction manipulations, which might be related to Res in the group
theory [23]. This author recognizers our theory as as a continuous variant of the
Frobenius reciprocity and wishes to extend these schemes to more general situations
than [20]. This article is its first attempt.

Further we have studied more simple submanifold system, loops in E2, for this
decade using the submanifold Dirac operator, spinor representation of operator in
Frenet-Serret relation for the curvature k and the arclength s,

6D =
(

∂s k/2
−k/2 ∂s

)
.(1.4)

This Dirac operator connects with the various mathematics, such as hyperelliptic
function theory, D-module theory, automorphic function theory and so on [17, 18].
The Dirac operator plays contributes classification of loop space of E2 in the category
of the differential geometry, [17, 18]. For 6Dψ = 0, we rewrite it by

(
∂s

∂s

)(
ψ1

ψ2

)
=

( −k/2
−k/2

)(
ψ1

ψ2

)
,(1.5)

the left hand side is in the category of differential ring whereas the right hand is
in a category of function space. If we restrict the right hand side by a holomorphic
function space, we encounter the hyperelliptic functions, via the Korteweg-de Vries or
the modified Korteweg-de Vries equation. The half of the curvature is connected with
the Weierstrass hyperelliptic al functions and might be related to modular function
theory as mentioned in [17]. The genus of hyperelliptic functions which the Dirac
operator brings us are connected to an infinite dimensional manifold [18]. Further as
mentioned in [11, 12], it leads us to index theorems.

Thus it is expected that higher dimensional variant is related to classification
of immersions of submanifolds in En as partially mentioned in [16] for the case of
(k, n) = (2, 3). From the viewpoint, it is natural to have a question how the internal
group appears for the case of codimension n− k > 1. Thus we focus on the case of a
surface in E4, (n− k = 2).

2 Geometrical preliminaries

In this section, we will give a geometrical preliminary. Though it is not difficult to
extend our theory more general, we will concentrate our attention on a case of a
smooth surface S embedded in four dimensional Euclidean space E4, i : S ↪→ E4. We
identify i(S) with S. Since our theory is local, we construct our theory over S ∩ U
instead of S itself for an appropriate open set U ⊂ E4 so that S ∩ U is topologically
trivial and its closure is compact in E4. For simplicity by replacing S with its piece
S ∩ U , we assume that S is homeomorphic to R2 and is in a compact subspace in E4

hereafter.
We fix the notations of the Cartesian coordinates in E4 by x := (x1, x2, x3, x4). Let

S be locally expressed by real parameters (s1, s2). Let a tubular neighborhood of S be
denoted by TS , πTS : TS → S. Due to the above assumptions, TS is homeomorphic to
R4. Let q := (q3, q4) be a normal coordinate of TS whose absolute value

√
(q3)2 + (q4)2
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is the distance from the surface S; dqα̇ belongs to kernel of πTS ∗ and dqα̇(∂sα) =
0, (α = 1, 2, α̇ = 3, 4): ∂α := ∂sα ≡ ∂/∂sα. The normal bundle T⊥ptS is given by
TptE4/TptS at a point pt ∈ S. Further let ∂α̇ := ∂qα̇ ≡ ∂/∂qα̇, (α̇ = 3, 4). We use
the notation, u = (uµ) = (u1, u2, u3, u4) := (s1, s2, q3, q4). Hereafter we will assume
that the indices “α, β, · · · ” are for (s1, s2), “α̇, β̇, · · · ” for (q3, q4), “µ, ν, · · · ” for
u = (s, q) and “i, j, · · · ” for the Cartesian coordinates x.

For a point of TS expressed by the Cartesian coordinates x in E4 can be uniquely
written by

x = πTS x + q3e3 + q4e4,

where e3 and e4 are normal unit vectors T⊥πTS
xS which satisfy

∂αeβ̇ = Γβ

β̇α
eβ ,

for ei
β := ∂β(πTS

xi). A moving frame Ei
µ := ∂µxi, (µ, i = 1, 2, 3, 4), in TS is expressed

by
Ei

α = ei
α + qα̇Γβ

α̇αei
β , Ei

α̇ = ei
α̇.

In general, more general normal unit vectors ẽα̇ ∈ T⊥ptS at pt ∈ S obey a relation,

(2.6) ∂αẽβ̇ = Γ̃β

β̇α
ẽβ + Γ̃α̇

αβ̇
ẽα̇.

These bases can be connected with

(2.7)
(
e3

e4

)
=

(
cos θ sin θ
− sin θ cos θ

) (
ẽ3

ẽ4

)
, ∂αθ = Γ3

α4,

due to the relation Γα̇
αβ̇

= −Γβ̇
αα̇.

Thus the induced metric, gTSµν := δijE
i
µEj

ν , in TS from that in the Euclidean
space E4 is given as

(2.8) gTS =
(

gSq 0
0 1

)
,

(2.9) gSqαβ = gSαβ + [Γγ
α̇αgSγβ + gSαγΓγ

α̇β ]qα̇ + [Γδ
α̇αgSδγΓγ

β̇β
]qα̇qβ̇ ,

where gSαβ := δije
i
αej

β . The determinant of the metric is expressed as

(2.10) det gTS = ρ det gS , ρ = (1 + Γα
α̇αqα̇ +O((qα̇)2, q3q4))2.

As we use primitive facts in sheaf theory [6], we will give our conventions. For a
fiber bundle A over a paracompact differential manifold M and an open set U ⊂ M ,
let AM denote a sheaf given by a set of smooth local sections of the fiber bundle A
and AM (U) ≡ Γ(U,AM ) sections of AM over U . For example, CM is a sheaf given by
smooth local sections of complex line bundle over M .

Further for open sets U ⊂ V ⊂ M , we will denote the restriction map of a sheaf
AM by ρUV . Using the direct limit for {U | pt ∈ U ⊂ M}, we have a stalk Apt of AM
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by setting Apt ≡ Γ(pt, AM ) := limpt←U AM (U). An element of Apt is called germ.
Similarly for a compact subset K in M , iK : K ↪→ M and for {U | K ⊂ U ⊂ M}, we
have Γ(K, AM ) := limK←U AM (U). On the other hand, for a topological subset N of
M , iN : N ↪→ M , there is an inverse sheaf, AM |N := i∗NAM given by the sections
AM |N (U) = Γ(iN (U), AM ) for U ⊂ N . When N is a compact set, i.e., K, we have an
equality Γ(K,AM ) = Γ(K, i∗KAM ) (Theorem 2.2 in [6]) and we identify them in this
article.

We say that a sheaf AM over M is soft if and only if for every compact subset
K ⊂ M , a sheaf morphism Γ(M,AM ) → Γ(K, AM ) is surjective. For example, CRn

is soft (Theorem 3.2 [6]) and thus for a point pt and an open set U , pt ∈ U ⊂ Rn,
CRn(U) → Γ(pt,CRn) is surjective. Our theory is of germs and based upon these facts.

3 The Dirac system in E4

For the above geometrical setting, we will consider a Dirac equation over TS as an
equation over a preHilbert space H = (Γc(TS , Cliff∗TS

)× Γc(TS , CliffTS
), 〈, 〉, ϕ). Here

1) Γc(TS ,CliffTS
) is a set of global sections of the compact support Clifford module

CliffTS
over TS , Cliff∗TS

is a natural Hermite conjugate of CliffTS
, 2) 〈, 〉 is the L2-type

pairing, for (Ψ1,Ψ2) ∈ Γc(TS , Cliff∗TS
)× Γc(TS ,CliffTS ),

(3.11) 〈Ψ1, Ψ2〉 =
∫

TS

d4xΨ1Ψ2,

and 3) ϕ is the isomorphism from CliffTS
to Cliff∗TS

. Further in this article, we will
express the preHilbert space using the triplet with the inner product (◦, ·) := 〈ϕ◦, ·〉.
Here in (3.11), we have implicitly used another paring given by the pointwise product
for the germs at pt ∈ TS , i.e., Ψ1Ψ2|pt ∈ Γ(pt,CTS ), which also gives us a preHilbert
space Hpt = (Γ(pt, Cliff∗TS

)× Γ(pt,CliffTS ), ·, ϕpt). Here ϕpt is the Hermite conjugate
operation.

Let the sheaf of the Clifford ring over E4 and TS be denoted by CLIFFE4

and CLIFFTS
, CLIFFTS

≡ CLIFFE4 |TS
. Since the gamma-matrix, the generator of

CLIFFE4 , depends upon the orthonormal system {e}, we will sometimes refer it by
γ{e}(aie

i) := aiγ{e}(ei). In the same way, we use a representation of the Clifford mod-
ule CliffE4 , CliffTS = CliffE4 |TS , using the orthonormal system {e} as Ψ{e}. Using the
Pauli matrices,

τ1 :=
(

0 1
1 0

)
, τ2 :=

(
0 −√−1√−1 0

)
, τ3 :=

(
1 0
0 −1

)
, τ4 :=

(
1 0
0 1

)
,

we will use the convention,

γ{dx}(dxi) := τ1 ⊗ τi, (i = 1, 2, 3), γ{dx}(dx4) := τ2 ⊗ τ4.

However for abbreviation, let γi := γ{dx}(dxi).
Here the Dirac operator is given by 6D{dx},x := γi∂i, and the Dirac equation is

given by

(3.12)
√−1 6D{dx},xΨ{dx} = 0 over TS .

Immediately we have a proposition for the solution space of the Dirac equation.
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Proposition 3.1. Let us define a set of constant section in the Clifford module CliffE4

in E4:

Ψ[1] :=




1
0
0
0


 , Ψ[2] :=




0
1
0
0


 , Ψ[3] :=




0
0
1
0


 , Ψ[4] :=




0
0
0
1


 .

Ψ
[a]

:= ϕ(Ψ[a]) is given by the Hermite conjugate of each Ψ[a].

1. They satisfy the relation,
Ψ

[a]
Ψ[b] = δa,b.

We call this relation orthonormality relation in this article.

2. A germ of solutions of Dirac equation (3.12) are expressed by
∑

a ba(pt)Ψ[a] for
ba ∈ Γ(pt,CE4) at a point pt ∈ E4.

Due to properties of the gamma-matrices, δijΨ1γ
iΨ2dxj is a one-form over TS .

Direct computations lead us the following Proposition which gives the properties of
Clifford module.

Proposition 3.2. Let us define a set of constant sections in Clifford module CliffE4

in E4:

Ψ(1) :=
1
2




1
1
1
1


 , Ψ(2) :=

1
2




1√−1
1√−1


 ,

Ψ(3) :=
1√
2




1
0
1
0


 , Ψ(4) :=

1
2




1
1√−1√−1


 .

Ψ
(k)

:= ϕ(Ψ(k)) is given by the Hermite conjugate of each Ψ(k). They satisfy the
relation,

δijΨ
(k)

γiΨ(k)dxj = dxk (not summed over k).

We call this relation SO(4)-representation in this article.

Remark 3.1. Using a C-valued smooth compact function b ∈ Γc(E4,CE4) over E4

such that b ≡ 1 at U ⊂ TS and its support is in TS , bΨ[a], bΨ(k) and their partners
belong to Γc(TS , CliffTS

) and Γc(TS ,Cliff∗TS
). Hereafter we assume Ψ[a], Ψ(k) and their

partners are sections of Γc(TS , CliffTS ) and Γc(TS , Cliff∗TS
) in the sense.

Next let us give expressions of these players of the Dirac system in terms of
the coordinate system u in TS . An orthonormal bases of T ∗TS will be denoted as
dξ = (dζ1, dζ2, dq3, dq4). Then the expressions are given by the transformations,

Ψ{dξ}(u) := e−ΩΨ{dx}(x), Ψ{dξ}(u) := Ψ{dx}(x)eΩ,

e−Ωγ{dx}(dxi)eΩ = Ei
µγ{dξ}(duµ) =: Ei

µγµ.
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Here eΩ and e−Ω are sections of the spin group sheaf SPINTS
≡ SPINE4 |TS

. For
Ψ ∈ Γc(TS , CliffTS

), the pairing (3.11) is expressed by

(3.13) 〈Ψ1, Ψ2〉 =
∫

(det gS)1/2ρ1/2d2sd2q Ψ1,{dζ}Ψ2,{dζ},

and the Dirac equation (3.12) is expressed by

(3.14)
√−1 6D{dξ},uΨ{dξ} = 0, 6D{dξ},u = γµ(∂µ + ∂µΩ).

Using Proposition 3.1, we have the following

Corollary 3.1. For an open set U ⊂ TS and e−Ω ∈ Γ(U,SPINE4), by letting Ψ[a]
{dξ} :=

e−ΩΨ[a] ∈ Γ(U,CliffTS
) and Ψ

[a]

{dξ} := Ψ
[a]

eΩ ∈ Γ(U,Cliff∗TS
) over U, the orthonormal

relation holds

(3.15) Ψ
[a]

{dξ}Ψ
[b]
{dξ} = δa,b at U ⊂ TS .

Inversely for given such orthonormal bases Ψ[b]
{dξ} ∈ Γ(U, CliffTS

) and ϕ(Ψ[b]
{dξ})

satisfying (3.15), the relation,

Ψ[a]
{dξ} = e−ΩΨ[a] for a = 1, 2, 3, 4,

completely characterizes the spin matrix e−Ω ∈ Γ(U, SPINTS
).

Proposition 3.2 gives the following

Corollary 3.2. For an open set U ⊂ TS and e−Ω ∈ Γ(U,SPINE4), by letting Ψ(i)
{dξ} :=

e−ΩΨ(i) ∈ Γ(U,CliffTS
) and Ψ

(i)

{dξ} := Ψ
(i)

eΩ ∈ Γ(U,Cliff∗TS
) over U , the SO(4)-

representation holds

gTSµνΨ
(i)

{dξ}γ
µΨ(i)

{dξ}duν = dxi at U ⊂ TS (not summed over i).

4 The submanifold Dirac operator over S in E4

In this section, we will define the submanifold Dirac operator over S in E4 and in-
vestigate its properties. In the papers in [11, 12, 13, 14, 15, 21], we add a mass type
potential in (3.14), which confines a particle in the tubular neighborhood TS ; the
mass potential makes the support of the Clifford module in TS . After taking a squeez-
ing limit of the mass potential, we decompose the normal and the tangential modes,
suppress the normal mode, and obtain the submanifold Dirac equation as an effec-
tive equation for low energy states. Instead of the scheme, we will choose another
construction and give a novel definition of the Dirac operator as in Definition 4.1 [20].

Let us consider such a Dirac particle algebraically. Confinement of the particle
into a surface requires that the momentum and position of the particle vanish. In
order to realize the vanishing momentum, we wish to consider kernel of ∂α̇. However
pα̇ :=

√−1∂α̇ is not self-adjoint in general due to the existence of ρ in (3.13).
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For an operator P over CliffTS
, let Ad(P ) be defined by the relation

〈Ψ1, PΨ2〉=〈Ψ1Ad(P ),Ψ2〉 if exists. Further for Ψ ∈ Γc(TS , CliffTS
), P ∗ is defined

by P ∗Ψ = ϕ−1(ϕ(Ψ)Ad(P )). If pα̇ is not self-adjoint, the kernel of pα̇ is not iso-
morphic to the kernel of Ad(pα̇). Thus the kernel of pα̇ cannot become a preHilbert
space and ϕpt or ϕ−1

pt is not well-defined there. It means that SO(4)-representation,
Corollary 3.2, which should be regarded as a fundamental properties of the Clifford
module, will neither be well-defined.

Accordingly we introduce another preHilbert space H′ ≡ (Γc(TS , ˜Cliff
∗
TS

) ×
Γc(TS , ˜CliffTS

), 〈, 〉sa, ϕ̃) so that pα̇’s become self-adjoint operators there. Using the
half-density (Theorem 18.1.34 in [5]), we construct self-adjointization: ηsa : H → H′
by,

ηsa(Ψ) := ρ1/4Ψ, ηsa(Ψ) := ρ1/4Ψ, ηsa(P ) := ρ1/4Pρ−1/4.

Here since ρ does not vanish in TS , ηsa gives an isomorphism ηsa : Cliff∗TS
×CliffTS

→
˜Cliff

∗
TS
× ˜CliffTS

. For (Ψ1,Ψ2) ∈ Γc(TS , ˜Cliff
∗
TS

) × Γc(TS , ˜CliffTS
), by letting ϕ̃ :=

ηsaϕη−1
sa , the pairing is defined by

(4.16) 〈Ψ1,Ψ2〉sa :=
∫

TS

(det gS)1/2d2sd2q Ψ1Ψ2.

Here we have the properties of ηsa that 1) 〈◦, ·〉sa = 〈η−1
sa ◦, η−1

sa ·〉, 2) for an operator P
of CliffTS

, ηsa(P ) = ηsaPη−1
sa , and 3) pα̇’s themselves become self-adjoint in H′, i.e.,

pα̇ = p∗α̇. The self-adjointization is not a unitary operation in some sense because due
to the operation, the inner product changes from 〈ϕ◦, ·〉 to 〈ϕ̃◦, ·〉sa if we regard them
as inner products for Γc(TS , ˜CliffTS )×Γc(TS , ˜CliffTS ). Due to this trick, pα̇’s become
self-adjoint.

Noting ρ = 1 at a point in S, Corollaries 3.1 and 3.2 lead the following lemma.

Lemma 4.1. 1. For (Ψ, Ψ) ∈ Γ(S, Cliff∗TS
) × Γ(S, CliffTS ), ηsa(Ψ) = Ψ and

ηsa(Ψ) = Ψ at S.

2. For the quantities defined in Corollary 3.1, the orthonormality relation holds:

ηsa(Ψ
[a]

{dξ})ηsa(Ψ
[b]
{dξ}) = δa,b at S.

3. For the quantities defined in Corollary 3.2, by letting Φ(i) := ηsa(Ψ
(i)
{dξ}) and

Φ
(i)

:= ηsa(Ψ
(i)

{dξ}), the SO(4)-representation holds

gTSµνΦ
(i)

γµΦ(i)duν = dxi at S (not summed over i).

We have the following proposition.

Proposition 4.1. By letting pq := a3p3 + a4p4 for real generic numbers a3 and a4,
the projection,

πpq : ˜Cliff
∗
TS
× ˜CliffTS

→ Ker(Ad(pq))×Ker(pq),

induces the projection in the preHilbert space [1], i.e.,
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1. ϕ̃|Ker(pq) : Ker(pq) → Ker(Ad(pq)) is isomorphic. We simply express ϕ̃|Ker(pq)

by ϕ̃ hereafter.

2. Hpq
:= (Γc(TS , Ker(Ad(pq)))× Γc(TS , Ker(pq)), 〈, 〉sa, ϕ̃) is a preHilbert space.

3. $pq := πpq | ˜CliffTS
, $pq = $2

pq
= $∗

pq
in Hpq .

4. $pq induces a natural restriction of pointwise multiplication for a point in Ts,
Hpt

pq
:= (Γ(pt,Ker(Ad(pq))) × Γ(pt,Ker(pq)), ·, ϕ̃pt) becomes a preHilbert space.

The Hermite conjugate map ϕ̃pt is still an isomorphism.

Proof. Since pα̇ is self-adjoint, Ker(pq) = Ker(p∗q) and Ker(pq) is isomorphic to
Ker(Ad(pq)), i.e., ϕ($pq

Ψ) = ϕ(Ψ)Ad($pq
). $∗

pq
Ψ = ϕ−1(ϕ(Ψ)Ad($pq

)) gives
$pq

= $∗
pq

.

Since TS is homeomorphic to R4, CTS
is soft (Theorem 3.1 in [6]). Hence we have

the following proposition.

Proposition 4.2. CliffTS
is soft.

Proof. Due to Proposition 3.1 (2), CliffTS
is a sheaf of CTS

vector bundle. From the
proof of Theorem 3.2 in [6], it is justified.

Due to the Proposition 4.2, for a point pt in S, pt ∈ U ⊂ TS and for a germ
Ψpt ∈ Γ(pt,CliffTS

), there exists Ψc ∈ Γc(TS , CliffTS
) Ψo ∈ Γ(U,CliffE4) such that

Ψpt = Ψc, Ψpt = Ψo, at pt.

Thus when we deal with an element of Γ(pt, CliffTS
), we need not distinguish which

it comes from Γc(TS ,CliffTS
) or Γ(U,CliffE4).

Remark 4.1. At a point pt in S, we can find (Φ
(i)

, Φ(i)) in Hpt
pq

obeying the SO(4)-
representation,

gTSµνΦ
(i)

γµΦ(i)duν = dxi at pt (not summed over i).

because 1) we can easily find such an element in H′ and 2) extend its domain to a
vicinity of S so that its value preserves for the normal direction, , i.e., ∂α̇Φ(i) = 0 and
Φ

(i)
Ad(∂α̇) = 0; (Φ

(i)
,Φ(i)) belongs to Ker(pq)∗ ×Ker(pq).

Since we kill a normal translation freedom in Hpq , we can choose a position q and
make q vanish. Thus we will give our definition of the submanifold Dirac operator.

Definition 4.1. We define the submanifold Dirac operator for the surface S in E4

by,
6DS↪→E4 := ηsa(6D)|Ker(pq)|q=0,

as an endomorphism of Clifford submodule Ker(pq)|S ⊂ ˜CliffTS |S, i.e., 6DS↪→E4 :
Ker(pq)|S → Ker(pq)|S.
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Here we note that the first restriction |Ker(pq) is as an operator but the second one
|q=0 is given by ρS,TS

, which is given by a direct limit ρS,TS
:= limS→U ρU,TS

.

Here we will connect the CLIFFTS
|S with the sheaf of proper Clifford ring CLIFFS

over S. We will fix the orthonormal base {dζ} ≡ (dζα) associated with the local
coordinate (dsα) and the gamma-matrix as a generator in CLIFFS by γS,{dζ}(dζα).
For abbreviation, σ̃α := γS,{dζ}(dζα) and σα := γS,{dζ}(dsα).

We have an inclusion as vector space for generators,

ιg : CLIFFS 3 σ̃α 7→ τ1 ⊗ σ̃α ∈ CLIFFTS
|S .

Let ιg(σ̃ασ̃β) := ιg(σ̃α)ιg(σ̃β), ιg(σ̃ασ̃β σ̃γ) := ιg(σ̃α)ιg(σ̃β)ιg(σ̃γ) and so on. This
does not become the homomorphism between the Clifford rings whereas the natural
ring homeomorphism is given by

ιr : CLIFFS 3 c 7→ 1⊗ c ∈ CLIFFTS |S .

However the inclusion ιg generates the homomorphism of the spin groups because
ιg(σ̃ασ̃β) = ιr(σ̃ασ̃β). A spin matrix exp(ΩS) ∈ Γ(pt,SPINS), of the spin group sheaf
SPINS properly defined over S, is given by exp(ΩS) = exp(aαβ σ̃ασ̃β). On the other
hand, a germ exp(Ω) of SPINTS at a point pt in S is given by exp(Ω) = exp(aµνγµγν).
Thus ιg and ιr induce the natural inclusion of SPINS into SPINTS as a sheaf morphism
by exp(Ω) = exp(aαβ(1⊗ σ̃ασ̃β)).

Using these facts, we will give explicit form of the submanifold Dirac operator,
which was obtained in [15] using a mass potential.

Proposition 4.3. The submanifold Dirac operator of the surface S in E4 can be
expressed by

(4.17) 6DS↪→E4 = ιg(σα∇α) +
1
2
γ3Γα

3α +
1
2
γ4Γα

4α,

where ∇α is the proper spin connection over S and γα̇ := γ{dξ}(dqα̇).

Proof. First we note that ηsa(6D{dξ},u) has a decomposition,

ηsa( 6D{dξ},u) = 6D‖{dξ},u+ 6D⊥{dξ},u,

where 6D⊥{dξ},u := γα̇∂α̇ and 6D‖{dξ},u does not include the normal derivative pα̇. 6D⊥
{dξ},u

vanishes at Ker(pq). Due to the constructions, ιg(σα) and γα̇ become generator of the
CLIFFTS

at sufficiently vicinity of S. The geometrically independency due to (2.8)
and direct computations give above the result.

Now we will give the first theorem:

Theorem 4.1. Let a point pt in S be expressed by the Cartesian coordinates (xi) and
C4

S sheaf of complex vector bundle over S with rank four. A set of germs of Γ(pt,C4
S)

satisfying the submanifold Dirac equation,
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√−1 6DS↪→E4ψ = 0 at pt,

is given by {baψ[a] | a = 1, 2, 3, 4, ba ∈ C} such that

ϕpt(ψ[a])ψ[b] = δa,b at pt.

At the point pt, there exists a spin matrix eΩ ∈ Γ(pt, SPINE4) satisfying ψ[a] = e−ΩΨ[a]

(a = 1, 2, 3, 4). We define ψ(i) := e−ΩΨ(i) and ψ
(i)

:= Ψ
(i)

e−Ω (i = 1, 2, 3, 4) at the
point. Then the following relation holds:

(4.18) gS,α,βψ
(i)

[ιg(σβ))]ψ(i) = ∂sαxi, at pt, (not summed over i).

Remark 4.2. 1. As our theory is a local theory, this theorem can be extended to
any surfaces immersed in E4.

2. If the surface is conformal, this theorem represents the generalized Weierstrass
relation in E4 given by Konopelchenko [10] and Pedit and Pinkall [22] as men-
tioned in [15].

3. This can be easily generalized to a k submanifold Sk immersed in the n-
Euclidean space En. In the above statements, the index “a = 1, · · · , 4”should
be replaced to “a = 1, 2, · · · , 2[n/2]”, “i”to “i = 1, · · · , n”, “α = 1, · · · , k”, and
“α̇ = k + 1, · · · , n” [20].

Proof. Since 6DS↪→E4 is the four rank first order differential operator and has no
singularity over S due to the construction, a germ of its kernel in Γ(pt,C4

E4) is given
by four dimensional vector space at each point of S. Since 6DS↪→E4 is defined as an
endomorphism of Ker(pq) and Ker(pq) contains the zero section, the germ of kernel
of the Dirac operator, Ker( 6DS↪→E4), is a submodule of Ker(pq)|S . Let 6D⊥ := γα̇∂α̇ at
S. From the construction, we have

6DS↪→E4+ 6D⊥ = ηsa(6D{dξ},u)|S .

Hence the solution of 6DS↪→E4 becomes a solution of ηsa(6D{dξ},u)|S . Noting Remark
4.1, ϕ̃pt is an isomorphism and Hpt

pq
gives SO(4)-representation. Thus we prove it.

5 The submanifold Dirac operator over S in E4 with
torsion

For the transformations (2.7), we have the relation,
(

Γβ
3α

Γβ
4α

)
=

(
cos θ sin θ
− sin θ cos θ

)(
Γ̃β

3α

Γ̃β
4α

)
.

Now let us choose ϑ in {θ ∈ [0, 2π]} as

Γα
3α sin ϑ + Γα

4α cosϑ = 0,

and define
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Γ̂α
3α := Γα

3α cosϑ + Γα
4α sinϑ, Γ̂α

4α = 0, Γ̂3
α4 := ∂αϑ.

We call Γ̂3
α4 torsion in this system in the sense of the Frenet-Serret relation. It obeys

the relation,
Γα

3α = Γ̂α
3α cos ϑ, Γα

4α = −Γ̂α
3α sinϑ.

The Dirac operator (4.17) can be expressed by

6DS↪→E4 = γα∇α +
1
2
γ3Γ̂α

3αeσ34ϑ,

where σ34 := γ3γ4. This type operator appears in [12]. For the gauge transformation,

6Dϑ
S↪→E4 := e−σ34ϑ 6DS↪→E4eσ34ϑ,

we have
6Dϑ

S↪→E4 = γα(∇α + γασ34Γ̂3
α4) +

1
2
γ3Γ̂α

3α.

Here γα := gSα,βγβ . We call this operator gauged submanifold Dirac operator. This is
a generalization of the Takagi-Tanzawa Schrödinger operator in [25].

The main result of the article follows:

Theorem 5.1. Fix a point pt in S expressed by the Cartesian coordinates (xi). The
germs in Γ(pt,C4

S) satisfying the gauged submanifold Dirac equation,
√−1 6Dϑ

S↪→E4ψ = 0 at pt,

is given by {baψ[a] | a = 1, 2, 3, 4, ba ∈ C} such that

ϕpt(ψ[a])ψ[b] = δab.

There exists a spin matrix eΩ̂ ∈ Γ(pt,SPINE4) satisfying ψ[a] = e−Ω̂Ψ[a], (a =
1, 2, 3, 4). By defining ψ(i) := e−Ω̂Ψ(i) and ψ

(i)
:= Ψ

(i)
e−Ω̂, (i = 1, 2, 3, 4), the follow-

ing relation holds:

(5.19) gS,α,βψ
(i)

[ιg(σβ))]ψ(i) = ∂sαxi (not summed over i).

Proof. Let e−Ω̂ = e−Ωe−σ34
. Then we use the proof of Theorem 4.1.

Remark 5.1. 1. When we extend the gauged submanifold Dirac operator to that
over a compact surface, there appears a problem whether ϑ can be globally
defined or not. Γ̂3

α4 appears as an associated gauge field.

2. If Γ̂α
3α is constant case, it can be regarded as a mass of the Dirac particle and

further the torsion plays a role of the U(1)-gauge field. This is very interesting
from physical viewpoint. Even though in the string theory, the extra dimensions
are connected with gauge fields, it is surprising that the gauge field appears as
the torsion of the submanifold.

3. It is not difficult to extend our theory to that in k-submanifold in En. Then it
is expected that there appears as a SO(n− k)-gauge field.
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4. The determinants of the submanifold Dirac operators are related to the geo-
metrical properties as in [11, 12, 14]. It should be expected that the gauged
submanifold Dirac operator also brings us to the data of submanifold such as
index theorem.

5. The Dirac operator of a conformal surface in E3 are related to the extrinsic string
as in [14, 16]. The gauged submanifold Dirac operator might also be connected
with the extrinsic string.
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