An ordinary differentail operator and its applications to certain classes of multivalently meromorphic functions *

H. Irmak, G. Tınaztepe, N. Tuneski \& M. Şan

Abstract

In the present work, using an ordinary differential operator of order q ($q \in$ $\mathbb{N}_{0}:=\{0,1,2, \cdots\}$), a general class of meromorphic functions which are analytic and multivalent in the punctured unit disk is firstly introduced. Sufficient condition for a function in the related class is then obtained. Several useful consequences of the main results are also pointed out.

1 Introduction and Definitions

Let $\mathcal{M}(p)$ denote the class of functions f of the following form

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \quad\left(p \in \mathbb{N}:=\mathbb{N}_{0} \backslash\{0\} ; a_{k} \in \mathbb{C}\right), \tag{1}
\end{equation*}
$$

which are analytic and multivalently meromorphic in the punctured unit disk

$$
\mathbb{D}:=\{z: z \in \mathbb{C} \text { and } 0<|z|<1\}=\mathbb{U}-\{0\},
$$

where \mathbb{C} denotes the set of complex numbers.
Also let $\mathcal{M S}(p ; \alpha)$ and $\mathcal{M C}(p ; \alpha)$ be the well-known subclasses of the class $\mathcal{M}(p)$ consisting, respectively, of functions which are multivalently meromorphic starlike of order α and multivalently meromorphic convex of order α in \mathbb{D}, where $0 \leq \alpha<p(p \in \mathbb{N})$. (See [2], [3] and [7] for further details).

Upon differentiating both sides of (1), q-times with respect to the complex variable z, one easily obtains the following (ordinary) differential operator

$$
\begin{equation*}
f^{(q)}(z)=\frac{(p+q-1)!}{(p-1)!}(-1)^{q} z^{-p-q}+\sum_{k=p+1}^{\infty} \frac{k!}{(k-q)!} a_{k} z^{k-q}, \tag{2}
\end{equation*}
$$

[^0]where $f \in \mathcal{M}(p), p>q, p \in \mathbb{N}$, and $q \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.
The operator defined by (2) has been studied earlier by several researchers (see, for example, [1], [4] and [5]).

Using the ordinary differential operator defined in (2), we now introduce a general subclass $\Omega_{q}^{\lambda}(p ; \alpha)$ of the class of multivalently meromorphic functions $\mathcal{M}(p)$, which consists of functions f satisfying the following inequality:

$$
\Re e\left(\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}\right)<-\alpha \quad\left(z \in \mathbb{D} ; 0 \leq \alpha<p+q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right)
$$

where, here and throughout this paper, the above function \mathcal{F} is defined by

$$
\begin{equation*}
\mathcal{F}(z)=(1-\lambda) f^{(q)}(z)+\lambda z f^{(1+q)}(z) \quad\left(0 \leq \lambda \leq 1 ; p>q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right) \tag{3}
\end{equation*}
$$

One can note that by choosing specific values of p, q and/or λ we receive some well known classes of multivalently meromorphic functions. Namely,

$$
\begin{aligned}
& \Omega_{0}^{\lambda}(p ; \alpha)=: \mathcal{V}_{\lambda}(p ; \alpha) \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<p ; p \in \mathbb{N}), \\
& \Omega_{0}^{\lambda}(1 ; \alpha)=: \mathcal{W}_{\lambda}(\alpha) \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<1), \\
& \Omega_{q}^{0}(p ; \alpha)=: \mathcal{A}_{q}(p ; \alpha) \quad\left(0 \leq \alpha<p+q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right), \\
& \Omega_{q}^{1}(p ; \alpha)=: \mathcal{B}_{q}(p ; \alpha) \quad\left(0 \leq \alpha<p+q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right), \\
& \Omega_{0}^{0}(p ; \alpha) \equiv \mathcal{S}(p ; \alpha) \quad(0 \leq \alpha<1), \\
& \Omega_{0}^{1}(p ; \alpha) \equiv \mathcal{K}(p ; \alpha) \quad(0 \leq \alpha<1), \\
& \Omega_{0}^{0}(1 ; \alpha) \equiv \mathcal{S}(\alpha) \quad(0 \leq \alpha<1), \\
& \Omega_{0}^{1}(1 ; \alpha) \equiv \mathcal{K}(\alpha) \quad(0 \leq \alpha<1) .
\end{aligned}
$$

In this investigation we obtain sufficient condition for a function $f \in \mathcal{M}(p)$ to be in $\Omega_{q}^{\lambda}(p ; \alpha)$. In addition we give several corollaries of the main result. For that purpose we will use the method of the differential inequalities and the well-known assertion of Jack [6].

Lemma 1.1 Let the function w be non-constant and analytic in \mathbb{U} with $w(0)=$ 0 . If $|w(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point z_{0}, then $z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right)$, where c is real number and $c \geq 1$.

2 The Main result

Theorem 2.1 Let the functions f and \mathcal{F} be defined by (1) and (3), respectively. Also let the function \mathcal{H} be defined by

$$
\begin{equation*}
\mathcal{H}(z):=\left(1+q+\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}+p\right) \cdot\left(q+\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}+p\right)^{-1} \quad(z \in \mathbb{D}) \tag{4}
\end{equation*}
$$

If \mathcal{H} satisfies

$$
\begin{equation*}
\Re e\{\mathcal{H}(z)\}>1-\beta \tag{5}
\end{equation*}
$$

for all $z \in \mathbb{D}$, then $f \in \Omega_{q}^{\lambda}(p ; \alpha)$ and

$$
\begin{equation*}
\Re e\left\{[\mathcal{H}(z)]^{-1}\right\}<(1-\beta)^{-1} \quad(z \in \mathbb{D}) \tag{6}
\end{equation*}
$$

where $\beta:=[2(p+q)-\alpha]^{-1}$ and $0 \leq \alpha<p+q$.

Proof.

Let f be of the form (1) Then, in view of (3), one easily obtains that

$$
\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}=\frac{(p+q) \phi(q, \lambda ; p)(-1)^{1+q}+\sum_{k=p+1}^{\infty}(k-q) \psi(q, \lambda ; k) a_{k} z^{k+p}}{\phi(q, \lambda ; p)(-1)^{q}+\sum_{k=p+1}^{\infty} \psi(q, \lambda ; k) a_{k} z^{k+p}}
$$

where

$$
\phi(q, \lambda ; p):=\frac{(p+q-1)![1-\lambda(p+q+1)]}{(p-1)!}
$$

and

$$
\begin{gathered}
\psi(q, \lambda ; k):=\frac{k![1+\lambda(k-q-1)]}{(k-q)!} \\
\left(k \geq p+1 ; p>q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right)
\end{gathered}
$$

Now let us define a function $w(z)$ with

$$
\begin{equation*}
-q-\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}-p=(p+q-\alpha) w(z) \quad(w(z) \neq 0) \tag{7}
\end{equation*}
$$

It is clear that the function w is both analytic in \mathbb{U} with $w(0)=0$ and meromorphic in \mathbb{D}. We also find from (7) that

$$
\begin{align*}
-1-q & -\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}-p \\
& =(p+q-\alpha) w(z)\left[1-\frac{z w^{\prime}(z)}{w(z)} \cdot \frac{1}{p+q+(p+q-\alpha) w(z)}\right] \tag{8}
\end{align*}
$$

By using (7) and (8), we easily arrive at

$$
\begin{equation*}
\mathcal{G}(z):=1-\mathcal{H}(z)=\frac{z w^{\prime}(z)}{w(z)} \cdot \frac{1}{p+q+(p+q-\alpha) w(z)}, \tag{9}
\end{equation*}
$$

where \mathcal{H} is defined by (4).
Now let suppose that there exists a point $z_{0} \in \mathbb{U}$ such that $\max \{|w(z)|$: $\left.|z| \leq\left|z_{0}\right|\right\}=\left|w\left(z_{0}\right)\right|=1$ and $w\left(z_{0}\right)=e^{i \theta}(0 \leq \theta<2 \pi)$. By applying Jack lemma we then have $z_{0} w^{\prime}\left(z_{0}\right)=c w\left(z_{0}\right)(c \geq 1)$. Thus, in view of (9), we obtain

$$
\Re e\left\{\mathcal{G}\left(z_{0}\right)\right\}=c \Re e\left[\left(p+q+(p+q-\alpha) e^{i \theta}\right)^{-1}\right] \geq[2(p+q)-\alpha]^{-1}=\beta
$$

or, equivalently,

$$
\Re e\left\{\mathcal{H}\left(z_{0}\right)\right\} \leq 1-\beta,
$$

which is a contradiction to (5), where β is given by in the statement of the Theorem 2.1. Hence, we conclude that $|w(z)|<1$ for all z in \mathbb{U}, and the definition (7) immediately yields the inequality

$$
\left|q+\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}+p\right|<p+q-\alpha
$$

which implies

$$
\begin{gathered}
\Re e\left(-\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}\right)>\alpha \\
\left(z \in \mathbb{D} ; 0 \leq \alpha<p+q ; p \in \mathbb{N} ; q \in \mathbb{N}_{0}\right)
\end{gathered}
$$

that is $f \in \Omega_{q}^{\lambda}(p ; \alpha)$.
At the end (5) implies (6) since $1-\beta>0$ because of $2(p+q)-\alpha>1$. This completes the proof of the Theorem 1.2.

3 Certain consequences of the main result

As we indicated in the Section 1, i.e., by fixing some specific admissible values of parameters p, q and/or λ, from Theorem 2.1 we easily receive many interesting results concerning the functions f in the classes $\mathcal{V}_{\lambda}(p ; \alpha), \mathcal{W}_{\lambda}(\alpha), \mathcal{A}_{q}(p ; \alpha)$, $\mathcal{B}_{q}(p ; \alpha), \mathcal{S}(p ; \alpha), \mathcal{K}(p ; \alpha), \mathcal{S}(\alpha)$ and also $\mathcal{K}(\alpha)$. Here we only state some of them as corollaries.

By taking $q=0$ in Theorem 2.1, we first obtain the following corollary.
Corollary 3.1 Let $f \in \mathcal{M}(p), p \in \mathbb{N}, 0 \leq \alpha<p, 0 \leq \lambda \leq 1$, and also let $\mathcal{F}(z)=(1-\lambda) f(z)+\lambda z f^{\prime}(z)$. If

$$
\Re e\left(\frac{1+\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}+p}{\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}+p}\right)>1-\beta
$$

for all $z \in \mathbb{D}$, then $f \in \mathcal{V}_{\lambda}(p ; \alpha)$ and

$$
\Re e\left(\frac{\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}+p}{1+\frac{z \mathcal{F}^{\prime \prime}(z)}{\mathcal{F}^{\prime}(z)}+p}\right)<\frac{1}{1-\beta} \quad(z \in \mathbb{D})
$$

where $\beta:=1 /(2 p-\alpha)$.
By setting $q=0$ and $\lambda=0$ in Theorem 2.1, we receive
Corollary 3.2 Let $f \in \mathcal{M}(p), p \in \mathbb{N}$, and $0 \leq \alpha<p$. If

$$
\Re e\left(\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p}{\frac{z f^{\prime}(z)}{f(z)}+p}\right)>1-\beta
$$

for all $z \in \mathbb{D}$, then $f \in \mathcal{S}(p ; \alpha)$ and

$$
\Re e\left(\frac{\frac{z f^{\prime}(z)}{f(z)}+p}{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+p}\right)<\frac{1}{1-\beta} \quad(z \in \mathbb{D})
$$

where $\beta:=1 /(2 p-\alpha)$.
By letting $q=0$ and $\lambda=1$ in Theorem 2.1, we have
Corollary 3.3 Let $f \in \mathcal{M}(p), p \in \mathbb{N}$, and $0 \leq \alpha<p$. If

$$
\Re e\left(\frac{1+\frac{z\left(z f^{\prime}(z)\right)^{\prime \prime}}{\left(z f^{\prime}(z)\right)^{\prime}}+p}{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+p}\right)>1-\beta
$$

for all $z \in \mathbb{D}$, then $f(z) \in \mathcal{K}(p ; \alpha)$ and

$$
\Re e\left(\frac{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}+p}{1+\frac{z\left(z f^{\prime}(z)\right)^{\prime \prime}}{\left(z f^{\prime}(z)\right)^{\prime}}+p}\right)<\frac{1}{1-\beta} \quad(z \in \mathbb{D})
$$

where $\beta:=1 /(2 p-\alpha)$.

Acknowledgements The work on this paper was supported by the Joint Research Project financed by The Ministry of Education and Science of the Republic of Macedonia (MESRM) (Project No.17-1383/1) and The Scientific and Technical Research Council of Turkey (TUBITAK) (Project No. TBGA-U-105T056).

References

[1] M. P. Chen, H. Irmak and H. M. Srivastava, Some families of multivalently analytic functions with negative coefficients, J. Math. Anal. Appl. 214 (2) (1997), 674-690.
[2] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1983.
[3] A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, New Jersey, 1983.
[4] H. Irmak, N. E. Cho, Ö. F. Çetin and R. K. Raina, Certain inequalities involving meromorphically multivalent functions, Hacet. Bull. Nat. Sci. Eng. Ser. B 30 (2001), 39-43.
[5] H. Irmak and N. E. Cho, A differential operator and its application to certain multivalently analytic functions, Hacet. J. Math. Stat. 36 (1) (2007), 1-6.
[6] I. S. Jack, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469-474.
[7] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.

H. Irmak \& M. Şan
Department of Mathematics
Faculty of Science and Letters
Çankırı Karatekin University
Tr-18100, Çankırı, Turkey
e-mails: hirmak70@gmail.com, mufitsan@hotmail.com
N. Tuneski
Faculty of Mechanical Engineering
Karpoš II b.b., 1000 Skopje, Republic of Macedonia
e-mail: nikolat@mf.ukim.edu.mk
G. Tinaztepe
Vocational School of Technical Sciences
Akdeniz University
Tr-07058, Antalya, Turkey
e-mail: gtinaztepe@akdeniz.edu.tr

[^0]: * Mathematics Subject Classifications: 30C45.

 Key words: Multivalently meromrophic function, multivalently meromrophic starlikeness, multivalently meromrophic convexity, ordinary differential operator, differential inequalities, Jack's lemma
 © 2009 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted May, 2009. Published June, 2009.

