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ABSTRACT. We define and study the spaces .#,(R?), 1 < p < +oo, that are
of Dpp-type. Using the harmonic analysis related to the Fourier transform
connected with the Riemann-Liouville operator, we give a new characterization
of the dual space ./, (R2) and we describe its bounded subsets. Next, we define
a convolution product in ///I’,(RQ) x My(R?), 1 < < p < +oo, where M, (R2)
is the closure of the space .7 (R?) in .#,(R?) and we prove some new results.

1. INTRODUCTION

The space D, (R™); 1 < p < +o0; is formed by the measurable functions on R™
such that for all @ € N”; the function D*(f) belongs to LP(R™,dx) (the space of
functions with p*® power integrable on R™ with respect to the Lebesgue measure
dx on R™).

Many aspects of these spaces have been studied [T}, 2, [6, 24]. In [8]; the authors
have defined some spaces of functions that are of Dy -type but replacing the usual
derivative by the Bessel operator Tm%% (7”20‘*1(1%), and they have established
many results for these spaces.

In [3]; we define the so-called Riemann-Liouville operator; defined on % (R?)
(the space of continuous functions on R?, even with respect to the first variable) by

o 1o
;[1[1f(rs 17152,:v+rt>
Ko (f)(r,z) = x(1-¢3)""2 (1- 52)0671 dtds; if a >0,

1/1f(r\/1—t2m+rt>dt : if 0 =0
<) ) -0

2000 Mathematics Subject Classification. 42B35,46F12.
Key words and phrases. Spaces of Dy, -type, Riemann-Liouville operator, convolution product,

Fourier transform.
(©2009 Universiteti i Prishtinés, Prishtingé, Kosové.
Submitted September, 2009. Published October, 2009.

16



SPACES OF D.p-TYPE 17
The dual operator ‘%, is defined by
+o0 uzfrz
/ / (u,z + v)
u277‘2
B (f)(r,7) = (u? —v? —1r2)"" Yududv; if o> 0,

1
—/f( r2+(x—y)2,y>dy; if = 0.
T JR
The operators %Z, and %, generalize the mean operator %, and its dual *%, (|28]),
defined respectively by

1 2m

Fo(f)(r;x) = o—

f(rsind,x +rcosé)do,
27

and
()0 =< [ (V=) dv

The mean operator %, and its dual ‘%, play an important role and have many
applications, for example, in image processing of so-called synthetic aperture radar
(SAR) data [12[14], or in the linearized inverse scaterring problem in acoustics [11].

The Fourier transform .%, connected with the Riemann-Liouville operator Z,,

is defined by
“+o0
z/ /f(r,x)gou’A(r,x)dua(r,x),
0 R

where '
« ou(r x) = Ko (cos(,u.)eil)") (r,x).
T2a+1
. dl/a(r, JJ) = md?‘ ® d.’If

We have constructed the harmonic analysis related to the Fourier transform %,
(inversion formula, Plancherel formula, Paley-Wiener theorem, Plancherel theo-
rem...)

On the other hand the uncertainty principle play an important role in harmonic
analysis, and many aspects of these principle have been studied. In particular,
the Heisenberg-Pauli-Weyl inequality [I3] has been established for several Fourier
transforms [21] 22] 23].

In [T77, 18 19] 20], the author gave many generalizations of this inequality for
the usual Fourier transform. In this context, we have established in [4] an LP — L4
version of Hardy theorem’s for the Fourier transform .%#,. Also, in [I6] the second
author with the other have established the Heisenberg-Pauli-Weyl inequality for
Fa.

Our investigation in the present work consists to define and study some function
spaces denoted by ///p(R2), 1 < p < +o0, similar to Dr», but replacing the usual
derivatives by the operator
0% 2a+190 0?
or? + r or + 8962)'

For this, let .7, (R?) be the space of infinitely differentiable functions on R?,
rapidly decreasing together with all their derivatives and even with respect to the
first variable and .#/(R?) its topological dual that is the space of tempered dis-
tribution on R? even with resect to the first variable. Then, the singular partial

Ay = —(
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differential operator A, is continuous from .7, (R?) into itself. Moreover, for all
T € Z!(R?) we define A, (T) by

Vo € Zu(R?); (Aa(T),¢) = (T, Aa()),

then, A, is also continuous from .#/(R?) into itself.

The space .#,(IR?) consists off all measurable functions on R? even with respect
to the first variable such that for all k& € N; there exists a function denoted by
AL(f) € LP(dvy) satisfying AL(Ty) = Tak (5); where

. T} is the tempered distribution, even with respect to the first variable given
by the function f.

. LP(dv,), 1 < p < 400, is the space of measurable functions f on [0, +00[XR,
such that

Hoo » 1/p
e = ([ [ 15000 dra(ri)) " < 00, 1 p< 400

00 Ve = ess Ssu r,x < o0, — +OQ
Ml = €38 5up 1f0) p
Using the convolution product and the Fourier transform %, associated with the
Riemann-Liouville operator, we establish firstly the following results which give a
nice characterization of the elements of the dual space .#’,(R?)

o Let T € ./(R?). Then T belongs to ///;(RQ), 1 < p < +o0, if and only if there

exist m € N and {fo, ..., fm} € L¥ (dvy);

/

p = ﬁ, such that

T =Y Ak(Ty,),
k=0

where

“+ o0
Vo € MR, (AK(TY),p) = / / F(r,2) MK (), ) v (r, 2);

o Let T € ./ (R?), p € [l,+0c0[, and p' = ppj. Then T belongs to ///Iﬁ(]l@) if,
and only if for every ¢ € 2,(R?), the function T ¢ belongs to the space ¥ (dvea),
where

. T ¢ is the function defined by T'* ¢(r,x) = (T, 7(; _4)(¢)), with @(r,z) =
90(707 —(E).

. T(r,z) is the translation operator associated with the Riemann-Liouville trans-
form, defined on LP(dv,,) by

Tra) f(8,) = \/% /0 f (\/T2 + 52+ 2rscosf, x + y) sin®*(0)d6.

. 2.(R?) is the space of infinitely differentiable functions on R?, even with respect
to the first variable and with compact support.

Next, by the fact that a subset of .2, (R?) is bounded if, and only if it is equicon-
tinuous, we show the coming result that is a good description of the bounded subsets
of the dual space . (R?)

e Let p € [1,00[ and let B’ be a subset of .2 (R?). The following assertions are
equivalent

(i) B’ is weakly (equivalently strongly) bounded in . (R?),
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(i) there exist C > 0 and m € N, such that for every T' € B’, it is possible to
find fo, ..., fm € L (dvy ) satisfying

_ k :
T= 30 AT with max [fel,y, <O,
k=0

(iii) for every ¢ € 2.(R?), the set {T ¢, T € B'} is bounded in L (dv,).

Finally, we define and study a convolution product on the space ,///;(RQ) X
M, (R?), 1 <r < p < +oo, where M,.(R?) is the closure of the space .7 (R?) in
A, (R?). More precisely

e Let p € [1, +oo[. For every (r,z) € [0, +0o[xR, the translation operator 7(, ;)
is continuous from .#,(R?) into itself.

eLet 1 <r <p<ooand g€ [l,+00], such that
1 1 1

a v p
Then for every T € .#',(R?), the mapping
¢ — T x¢

is continuous from M, (R?) into ., (R?).

2. THE FOURIER TRANSFORM ASSOCIATED WITH THE RIEMANN-LIOUVILLE
OPERATOR

In this section, we recall some harmonic analysis results related to the convolution
product and the Fourier transform associated with Riemann-Liouville operator. For
more details see [3, 5, [7], [16].

Let D and = be the singular partial differential operators defined by

0

P 20+10 0

T o
For all (u, A) € C?; the system

(1]

(r,z) €]0,+00[xR, « > 0.

Du(r,z) = —idu(r, x);

EU(T7 JU) = _:UQUJ(Tv ZE),
u(0,0) = 1, a—:f((),:z:) =0; Vz €R.
admits a unique solution ¢, », given by

Y(r,z) € [0, +oo[xR; Cu(rs ) = ja (r\/,uQ + /\2) exp (—i\x), (2.1)

where j, is the modified Bessel function defined by

.  oa Ja(s) = (=1)F s 2k
Jals) = 2°T (@ +1) =2 _F(a+1);ﬂw(2) 7
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and J, is the Bessel function of first kind and index « [9] 10, 15} 29]. The modified
Bessel function j, has the integral representation

Ja(8) = \/7% /_1 (1- t2)""% exp (—ist) dt. (2.2)

Consequently, for all £ € N and s € R; we have

5 ()] < 1. (2.3)
The eigenfunction function ¢, » satisfies the following properties
o sup |gua(rz)| =1 if, and only if (u,\) € T, (2.4)
(r,x)ER2
where IT' is the set defined by
I =R*U{(ip, A); (1, A) € R?, Jul <A} (2.5)

e The function ¢, » has the following Mehler integral representation

/ / cos /M“S —t ) exp (—iA(z + rt))
x (1- t2) % (1- sz)a_l dtds; if >0,

ur(rz) =9 1 !
g — / cos (ru 1- t2> exp(—i\(x + 1t))
™J-1
o at
V1—1t?
The precedent integral representation allows us to define the Riemann-Liouville
transform %, associated with the operators A; ans As by

/ / Vio# x+rt>

1 —
Ro(f)(r,x) = (1 t2) (1 — SQ)Q ! dtds; if a >0,
1t ( dt
— r\/l—t27x+7‘t> —_— if a =0.
™ /4 / V1—1¢2
where f is any continuous functions on R2, even with respect to the first variable.
e Irom the precedent integral representation of the eigenfunction ¢, x, we have

V(r,z) € [0,400[xR, pur(r,z) = R (cos(p.)e ) (r, x).

In the following, we will define the convolution product and the Fourier transform
associated with the Riemann-Liouville transform. For this, we use the product
formula for the function ¢, \ given by

Y(r,x), (s,y) € [0, +o0[XR,

MNa+1 i
Pua(r, @) pua(s,y) = \/7?I(‘(a+)1)/0 @u,/\(\/rz + 52+ 2rscosf,x + y)
2

if a =0.

x sin®®(6)d6. (2.6)

Definition 2.1.
(i) The translation operator associated with Riemann-Liouville transform is defined
on L' (dv,), by for all (r,z),(s,y) € [0, +oo[xR,

T 1 4
T(r2) [ (8,Y) = \/%I(‘OEOT—&—)%) /0 f (\/r2 + 82 4+ 2rscosf,xr + y) sin®*(0)d6.
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(ii) The convolution product of f,g € L'(dv,) is defined for all (r,z) € [0, +00[xR,
by

Feotra) = | ” [ 7o Do, ).,

where f(s,y) = f(s,~y).

We have the following properties
e The product formula (2.6)), can be written

Tr2) (L) (5,4) = ua(r, )0 (8, Y)-

e For all f € LP(dv,),1 < p < 400, and for all (r,z) € [0,+00[xR, the
function 7, ;) (f) belongs to LP(dv,) and we have

2.7)

J 2

7y (D], < 1]

e For f,g € L'(dv,), the function f * g belongs to L'(dv,); the convolution
product is commutative, associative and we have

1 gl b, < A, gl Trv.-

Moreover, if 1 < p,q,7 < 400 are such that 1 = % + % —1landif f €
LP(dvy), g € L(dv,), then the function f * g belongs to L"(dv, ), and we
have

Hf *g”T,Vu < ||f PyVa ||g||q}yu ° (2'8)

In the sequel, we use the following notations
e I', is the subset of I" given by

Iy =Ry xRU{(it,2); (t,z) eR* 0<t < ||}
e Pr, is the o-algebra defined on I'} by
Pr, ={07'(B) , B € Bpor([0,+0[xR)},
where 6 is the bijective function defined on the set I'y by
A) = (V2 + A2)0). (2.9)
e dv, is the measure defined on %r, by
VA€ Br,; valA) = va(6(4)).

o LP(dvy,), p € [1,400], is the space of measurable functions f on T'y, such

that

e = (f [ 15 VP a0 ) < 0, ifp e [140x,
+

1 fllooye = ess sup |f(r,2)| < +o0, if p = +o0.

(rz)€[0,+00 [

Proposition 2.2.
) For all non negative measurable function g on 'y, we have

1 oo
Ndva(p,\) = ———— , + A2 pdpd\
//F+ 91, N)drya(p, A) 2T (a1 1)var 27/ / 9 A (12 ) pdp

Al ,
/ / gip, A)(A" — )“ududA)



22 C.BACCAR AND L.T.RACHDI

ii) For all nonnegative measurable function f on [0,4+00[xXR (respectively integrable
on [0, +00[xR with respect to the measure dv,) fof is a nonnegative measurable
function on Ty (respectively integrable on 'y with respect to the measure dvy, ) and

we have N
// fo@)(, N)dya(p, A) / /frxdl/arx)
ry

Definition 2.3. The Fourier transform associated with the Riemann-Liouville op-
erator is defined on L'(dv,), by

+oo
YN €T, Full)(w ) = / / Fr, )@y (1 ) v (1, ),

where ¢, y is the eigenfunction given by the relation (2.1)) and T" is the set defined
by the relation (2.5).
We have the following properties

e From the relation (2.4)), we deduce that for f € L!(dv,) the function %, (f)
belongs to the space L>°(dvy,) and we have

170l < (2.10)
e For f € L'(dv,), we have
v(ﬂ“a )‘) er, Fa (f) (M’ )‘) :%(f)o@(#, )‘)7 (211)

where
__ +oo
W N) €R2, T (f) (1, A) = /0 /]R £ 2)ja(r 1) exp(—idz)dva(r, 2), (2.12)

and @ is the function defined by .

e Let f € L'(dv,) such that the function %, (f) belongs to the space L' (dv,),
then we have the following inversion formula for .%#,, for almost every
(r,x) € [0, +oo[XR,

f(r.z) = / [ Za ol 1),

o Let f € L' (dv,). For all (s,y) € [0, +00[xR, we have

V(A €T, Fa (1)) (152) = 0un(s,9) Fa(f) (1, N).
e For f,g € L'(dv,), we have

V(A €T, Fa(f * g) (1, A) = Zalf) (1, A) Fal(g) (1, A).
e Let p € [1,400]. the function f belongs to LP(dv,) if, and only if the
function f o @ belongs to the space LP(dy,) and we have
H.f OHHp,’yQ = Hf”p,ya : (213)

Since the mapping % is an isometric isomorphism from L?(dv, ) onto itself,
then the relations (2.11)) and (2.13) show that the Fourier transform .%,
is an isometric isomorphism from L?(dv,) into L?(dv,), namely, for every

f € L?(dv,), the function .%,(f) belongs to the space L?(dvy, and we have
1Za (P2, = 15Nz, - (2.14)
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Proposition 2.4. For all f in LP(dv,), p € [1,2]; the function Fo(f) lies in

LP (dva), P = 527, and we have

ar
’|ja(f) 2 Yo < ||f||p’ya .
Proof. The result follows from the relations (2.10), (2.14) and the Riesz-Thorin
theorem’s [25] [26]. O

We denote by

o 7, (I') (see [3, 28]) the space of functions f : I' — C infinitely differen-
tiable, even with respect to the first variable and rapidly decreasing together
with all their derivatives, that means for all ki, ko, ks € N,

(&) (8

sup (1 +u?+ 2)\2)k1 < 400,
(kA ET
where
2(f(r A)) if u=reR;
af ar b b /’(’ - b
H 10

SO, i =it ] < AL
e .7/ (R?) and .7/ (T') are respectively the dual spaces of ., (R?) and .%, (T').
Each of these spaces is equipped with its usual topology.

Remark 2.5. (See [3]) The Fourier transform .%#, is a topological isomorphism
from .7, (R?) onto .%,(T"). The inverse mapping is given by for all (r,z) € R?,

Zou N (f) () = / / £ (41, N () ey (1, A).

Definition 2.6. The Fourier transform %, is defined for all T € .%/(R?) by
(Za(T),0) =(T. 75 (), ¢S

Since the Fourier transform %, is an isomorphism from .7, (R?) into .7, (T'), we
deduce that .Z, is also an isomorphism from .7/(R?) into .7/(T).

3. THE SPACE .#,(R?)

We denote by
e A, the partial differential operator defined by

2 2
Aa:_(8+2a+16+8>.

or? r  Or 0z?
e For all f € LP(dv,),p € [1,+00], Ty is the element of .%/(R?) defined by

—+oo
Vo € 7. (R?), (Ty, ) / /f r,x)p(r, 2)dvy(r, ).
e For all g € LP(dv,),p € [1,4+00], T, is the element of .7/(I") defined by

Vi € (D), w=[[ s N i),
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From proposition 2.4 and remark[2.5] we deduce that for all f € LP(dv,), 1 < p < 2,
the function .%, (f) belongs to the space L? (dv,) and we have
_r
p—1
On the other hand, since the operator A,, is continuous from .7, (R?) into itself; we
define A, on S.(R?) by setting

Vo € L (R?), VT € S, (R%);  (Aa(T),¢) = (T, Aa(p)).
Then A, becomes a continuous operator from .#/(R?) into itself; moreover for all
f € Z.(R?) and for all integer k we have

AL(Ty) = Tax(p)-

with p’ =

Definition 3.1. Let p € [1, +00]. We define .#,(R?) to be the space of measurable
functions f on R2, even with respect to the first variable, and such that for all
k € N there exists a function Ak (f) € LP(dv,), satisfying

AL(Ty) = Tar(p), in SL(R?).

The space .#,(R?) is equipped with the topology generated by the family of
norms

Sosl$)= maz AP, meN.

0<k<m

Also, we define a distance d,,, on .#,(R?) by

— 1 ymp(f—9)
Y(f,g) € My(R?), E — o
(:9) € AR —~ 2" 1+ Yp(f — 9)
Then, a sequence (fi)ren converges to 0 in (.#,(R?),d,) if,and only if
Vm € N; Ymp (fi) — 0
k—o0

In the following, we will give some properties of the space ., (R?).
Proposition 3.2. (//lp(]RQ), dp) 1s a Frchet space.

Proof. Let (fm)men be a Cauchy sequence in (.#,(R?),d,) and (AE(fm))men C
L?(dv,), such that

AIOCL(Tfm) = TAQ(fm)’ k e N.
Then, for all k € N; (AL (fn))men is a Cauchy sequence in LP(dv, ). We put

gr = ml_l)rEOOA (fm), k€N, (3.2)
in L?(dv,,). Thus,
VkeN; im ARy, ) = Jlim Tagr,) = Ty, in S1(R?).

Since the operator A, is continuous from .#/(R?) into itself and using the relation
(3.2) we deduce that for all k € N

AI; (Tgo ) = T‘]k

This equality shows that the function go belongs to the space .#,(R?) and that for
all k € N, Ak (go) = g
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Now, the relation (3.2) implies that the sequence (fi,)m converges to go in
(///p(Rz)adp) O

Remark 3.3. The operator A, is continuous from .#,(R?) into itself. Moreover,
for all m € N; we have

Vfe ///p(R2)5 ’Ym,p(Aa(f)) < '7m+1,p(f)'

We denote by
e 4. (R?) the space of continuous functions on R?, even with respect to the first
variable.
e £.(R?) the subspace of %, (R?)consisting of infinitely differentiable functions
on R2.
Proposition 3.4. Let p € [1,2] and f € #,(R?) then
(i) For all k € N, the function

(1, A) — (1+ 1% + 2025 Z0 (f) (1, \)

belongs to the space LP' (dYa), with p' = pL

1"
(ii) #,(R?) NE.(R?) C &, (R?).
Proof. (i) Let f € .#,(R?), 1 < p < 2. From the relation (3.1}, we have
Fa(AL(Ty)) = Fa(Tarip) = T, (ax (7))
On the other hand,
Fa(DG(Ty)) = (1* + 20°) " Z0 (Ty),
= Tuerareyeza(fy
hence,
(12 +20°) Zo(f) = Fa(A6(F)),
this equality, together with the fact that the function .%,(AF(f)) belongs to the
space LP' (dv,) implies (i).

(ii) Let f € #,(R?) N %€.(R?). From the assertion (i) and the relations (2.11)
and (2.13]), we deduce that for all k¥ € N, the function

(1 A) = (17 + NP Z0 (£) (1, V),
belongs to the space ) (dve ). Hence, by using Holder’s inequality, we deduce that
the function %(f) belongs to the space L'(dv,) N L?(dvy,).
On the other hand, the transform % is an isometric isomorphism from L?(dv,)

onto itself, then from the inversion formula for %, and using the continuity of the
function f, we have for all (r,z) € R?,

+o0 .
oo = [ [ FamNialrw e a)dra(u . (63)
0
Then, the result follows from the derivative theorem, the relations (2.3)) and (3.3)).
|

Proposition 3.5. Let p € [1,2]. Then, for all n € [2,400],
M(R?) N EC.(R?) C A, (R?).
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Proof. Let f € M,(R*) N E.(R?), p € [1,2], n > 2 and ¥ = n/(n — 1). From
proposition we deduce that f € &, (R?) and that for all k¥ € N, the function

(1 A) — (1% + A EZ0 (F) (18, ),

belongs to the space Lp/(dl/a). By applying Hélder’s inequality it follows that this

last function belongs to the space L"l(dua)
On the other hand, for all (r,z) € R?,

+oo
AN = [ [ (45" Fal) s M) exp (i) ).

= Fo (12 + - Z0(D) ().
From proposition and the fact that for all g € L (dva),

| 7@, = | Zals)]

)
MV

we deduce that for all k € N, the function A¥ (f) belongs to the space L"(dv,). O

4. THE DUAL SPACE . (R?)

In this section, we will give a new characterization of the dual space ///;(R2) of
My (R?).
It is well known that for every f € .#,(R?), the family {M,, (), m € N,e > 0},
defined by
mm,p,a(f) = {g € %p(RQ)a'Ym,p(f - g) < 5}

is a basis of neighborhoods of f in (.#,(R?),d,) .
Hence, T € ///;(R2) if, and only if there exist m € N and C > 0, such that

Ve MR UT < Crmp(f)- (4.1)
For f € L¥ (dv,) and ¢ € .4, (R?), we put
(Ak /+OO/ f(r,2)AE (@) (r, 2)dvg (1, z); (4.2)

with A (T,) = Tak(p)- Then

(AL(T). o)l <
<

£l o, 1A () 1.1
11l va Ve (#),

this proves that for all f € L* (dv,) and k € N, the functional A¥(T}) defined by
the relation 1] belongs to the space ///; (R2) .
In the following, we will prove that every element of ./ (R?) is also of this type.

Theorem 4.1. Let T € .7/(R?). Then T belongs to ///;(Rz), 1 < p<+oo, if and
only if there ezist m € N and {fo, ..., fm} C L¥ (dvy), such that

T= iAZ(Tfk)v (4.3)

k=0
where AF(Ty,) is given by the relation .
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Proof. 1t is clear that if

T:ZASA(TH)? {wan,fm}CLp/(dVa),

k=0

then T belongs to the space . (R2) Conversely, suppose that T € .#, (R2) From
the relation , there exist m € N and C' > 0, such that

Ve ///p(RQ)v (T, ©)| < Cymp(p).
m—+1
Let (Lp(dya)) — {(fo, s fn)s fr € LP(dva), 0 <k < m}, equipped with the
norm
H(an “.’fm)H(LP(dl/a))m*l = O@Clgxm ||fk Ip,ua .

We consider the mappings

m+1

A M, (R?) — (Lp(dya))
@ — (¢, Aalp), -, AT (9)),
and
B A(,(R?)) — C; B(Ap) = (T, ).
From the relation (4.1, we deduce that

[B(A())| = [T
<A

(@) H (LP(dvg))m+1?
this means that B is a continuous functional on the subspace A(.#,(R?)) of the

m—+1
space (Lp (dya)) . From Hahn Banach theorem, there exists a continuous ex-
tension of B to (LP(dv,))™* !, denoted again by B.
, m+1
By Riesz theorem, there exist (fo, ...,fm) € (Lp (dz/a)) , such that for all

(por o) € (L))"

m +00
Bl wm) = 3 /O /R Filr, @) pn(r,2)dve(r, ).

By means of the relation (4.2), we deduce that for ¢ € ., (R?), we have

m

m +oo
= kzo/o Afk(rvx)Aﬁ( )(r, 2)dve (r,x) = Z k(Ty,),

k=0
]

Proposition 4.2. Let p > 2. Then for oll T € ///;(R?), there exist m € N and
F € LP(dry,); such that

ﬁa(T) == T(1+M2+2)\2)MF'
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Proof. Let T € .#,(R?). From Theorem 4.1} there exist m € N and (fo, ..., fm) C
, m—+1
(Lp (dya)) , p = p , such that

T= zm:AZ(Tfk)'

k=0
Consequently,

=3 Fu(DE(Ty,)) = (17 + 23 Fu(Ty,).
k=0 k=0
From the relation , we get

ya(T) == T(1+#2+2)\2)m,p7
where

SN (W2 222k .
F= —ﬂ* .
O

Proposition 4.3. Let T € .!(R?), then T € .#4(R?) if, and only if there exist
m €N and F € L*(dv,), such that

Fa(T) =Ta4p2+222)mF- (4.4)

Proof. From Proposition we deduce that if T € .#3(R?), then there exist m € N
and F € L?(dy,) verifying (4.4).

Conversely, suppose that (4.4) holds with F' € L?(d~,,). Since .%, is an isometric
isomorphism from L?(dv,) into L?(dv,), then there exists G € L?(dv, ), such that
Zo(G) = F and from the relation (3.1)), we have

Fo(Ty) =Tp.
Consequently,
Fo(T) = Fo((I+A0)™(Ts)),
thus,
T=> ChALTy),
k=0
and Theorem [4.1| implies that T belongs to .Z4(R?). O

We denote by

e 7.(R?) the space of infinitely differentiable functions on R?, even with
respect to the first variable and with compact support, equipped with its
usual topology.

e For a > 0, 9. ,(R?) the subspace of Z.(R?), consisting of function f, such
that suppf C B(0,a) = {(r,x) eR?, r2 422« a2}.

e For a > 0, 7', ,(R?) the dual space of %, ,(R?).

e For a > 0 and m € N, W™(R?) the space of function f : R? — C; of
class C?™ on R2, even with respect to the first variable and with support
in B(0, a), normed by

Noon(f) = maz [|AL(f)]]

0<k<m SR
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Lemma 4.4. For all m € N, there exists f € N sufficiently large, such that the

function
1
m) (N, /\)a (4-5)

is of class C?™ on R2, even with respect to the first variable, and infinitely differ-
entiable on R? \ {(0, 0)}

Proof. From the relation (2.12)), we have for all (4, \) € R?,
+oo ;
ru) exp(—iAx
/ / Jarp) exp( )dya(r,x).
(1472 +22)”
Using the relation and the derivative theorem, we can choose (8 sufficiently
large, such that the function gp is of class C?™ on R2.
On the other hand, from the integral representation (2.2)) of the function j, and
applying the Fubini’s theorem, we get
1
720730 (e + 3)

« /]R ( /0 o m( /0 R cos(ut)dt)dr) exp(—iAe)de

Ry S
= cos - rdr exp(—i\r)dz,
72030 (a+ 1) Jr \Jo PN 4 a2)p P

we obtain

(11, A) — g5, A) = Fa(

gﬁ(:“’» >‘)

242

mv
—a—3 +o0 cos(ut) exp(—ilx)

gﬁ(/m)— QQH/QF // 12 4 a2 Lz dtdz,

LR v [ wtEE R

RG] Jy (et

again, from the relation (2.2]), we deduce that for all x € R,

400 i (¢ +o0 too (42 _ g2 —1/2
/ L)ltdt:/ Cos(sx)(/ )Ty as,
o repat T, . (Ltppat

VT T(B—a—1) [T cos(sz)
2 T(B-a-3) /0 TENS

using the change of variables s =

tdt.

and therefore for all (u, \) € R?,

Vv T(f—a-1) /+°o Cos(s\//ﬂ—i—)@)d .
0

8s(mA) = 03 T(5) M4 2)pa1 %
Now, from [10} 29] it follows that for all (i, A) € R?\ {(0,0)},

1 3
g5(u, \) = m(, /1? + >‘2)’3_°“§K,37a7%(‘ /2 + \2)

where Kg_,_ 3 is the Bessel function of second kind and index  — a0 — , called
also the Mac-Donald function.

This shows that the function gg is infinitely differentiable on R? \ {(0,0)}, even
with respect to the first variable. (I
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Proposition 4.5. Let a > 0 and m € N. Then there exists n, € N, such that
for every n € N, n > n,, it is possible to find on € Di o(R?) and v, € W (R?)
satisfying

0=+ A7) Ty, +Ty,
in Z!(R?). Where § is the Dirac distribution.

Proof. Let k € P, ,(R?), such that

a2

4 )
From Lemma [4:4} there exists ng € N, such that for all n > ng, the function
gy is of class C*™ on R?, even with respect to the first variable and infinitely
differentiable on R?\{(0,0)}. Since the transform .%, defined by relation , is
an isomorphism from .7, (R?) onto itself, and for all p € .7, (R?), (r,x) € R?, we
have

V(r,z) € R? 2422 < k(r,x) = 1.

+oo _
o(r,z) = / / Fo9) (5, 9)o(rs) explizy)dva(s, ). (4.6)

Then, from the relations (4.5) and (4.6)), we deduce that for all ¢ € .7, (R?), we
have

(14 8a)" T, ) = (Tg,: (1 + Aa)"0),
+oo

gn(r,z)(L + Ay)"o(r, x)dvy (r, x)

I
+o0 1 __
| | ammmm P+ 2 ) @) )i ),
+o0 .
- [ [ Fomoir),
0 R
= ¢(0,0).
This means that for all n > ng; (I + Ay)" Ty, = 9. Then
KL+ AQ)"Ty, = (I +Ag)"T,, = 6. (4.7)

Using the fact that the function g, is infinitely differentiable on R*\{(0,0)}, even
with respect to the first variable, we deduce that the function

en(rz) = (k=1 + Aa)"gn + (I + Aa)"((1 = K)gn), (4.8)
belongs to the space %, ,(R?). From the relation (4.7)), we have
T(,{,l)(IJFAa)ng” = (H — 1)([ + Aa)nTgn =0,
and this implies, by using the relation (4.8]) that
Top = Tuvan(-man) = I+ 8a)"(Ta-r)g,.)-
Hence,
Ty, + (I 4+ A0) " Tg, = (L + A)" Ty, =90,
and this completes the proof of the proposition if we pick ¥,, = kg,,. (I

In the following, we will prove that the elements of all bounded subset B’ C
7. .(R?), can be continuously extended to the space WJ"(R?). For this we define
some new families of norms on the space Z, ,(R?).

For f € Z...(R?), a > 0, we denote by
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_ 9 k1 9 k2
o Pu(f) = Qe H(&“) (55) f’w#a,
- 0
_ ki 2 \k2
* Pulf) =, maz 1lH50) f)wa,
_ k
o NomlP) = jmaz AL € (1,40
where /,, is the Bessel operator defined by
B 02 200 +1 0

g“‘ﬁ* r  or

Lemma 4.6. (i)For all m € N, there exists C1 > 0, such that
Vo€ 2ua®),  Pulp) < CiPul(p).
(it) For all m € N, there exist Co > 0 and m’ € N, such that

V€ @*,a(R2)v ﬁm(%p) < CZNp,m’(@)~

Proof. (i) Let ¢ € 2. .(R?). By induction on k;, we have

) Mo 9D

ox

(505 (52)0(,2) = 3 Palr) (5 5)" () ()

31

(4.9)

where 6%2 = %% and P, is a real polynomial. Also, by induction, for all n > 1, we
get
0 0
)2 o(r,x) = (4.10)

(55" (5=

1 1
0 -t 142(n—
/.. / (=R p(rty .y, )20 TITROTD aklgy gy
0 0 ax

from the relations (4.9) and (4.10)), it follows that for all m € N,

Pm(p) < C1 75m (¢)-

(ii) Let p € [1,400], m € N and my € N, such that

< 00,

1Lva

1
my

(1+72 +22)
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then, for all ¢ € 2, , and ki, k2 € N such that k; + k2 < m, we have

0 \k ~ (== 0
Ekl _ 2 — ag—1 J‘a gk}l _ k?2
CaRC] It CACIEAR e |
< | Zat (L))
X a\ty Oz -
- Mzkl)\kZ%(SD))lu
<[a+p+ 23" Zue)|
1 —
=T [T+ Ay)™T™
e (807 ) e
1 —
By . P RN
rerw o I EACEER)]
1
Sl I+A,)mtm ,
(1 + p2 + AZ)m o H( +Aa) 90”1,ya
and by Holder’s inequality, we get
0 \k 1 =
ok g < B(0 I 4 Ay ™
“ (395) SOHOO,VG ‘(1+u2+/\2)m1 Lva (V( (’a))) (I+Aa) Pl
1 5
<||l————— P gmtm )
<], (B0.0)7 2 K )
which implies that
1
~ 5 1

Pruip) <20 (w(B(0,a))) ™| Nyt (9):

m”wa
0

Theorem 4.7. Let a > 0 and let B’ be a weakly bounded set of @i7a(R2). Then,
there exists m € N, such that the elements of B’ can be continuously extended to
W™ (R?). Moreover, the family of these extensions is equicontinuous.

Proof. Let p € [1,40c[. Since B’ is weakly bounded in 2/ ,(R?), then from [27]
and Lemma [£.6] there exist a positive constant C' and m € N, such that

VT € B', Vo € 2. 4(R?), (T, @) | < ONpm (). (4.11)

We consider the mappings

A W) — (L7(dre) "

¢ — (AL (#))ogkgm:
and for all T € B’,
L1 A(Za(R?) — C; (L1, Ap) = (T, ).
From the relation , we deduce that
Vo€ 2eal®); [0, AR)| < CAG Loy
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this means that £7 is a continuous functional on the subspace A (s q(R?)) of the

m+1
space (Lp(dua)) , and that for all T € B’,

HET”_A(@*,Q(RQ)) = Sup [(L€r, Ap)| < C

HASDH(Lp(dVQ))erlgl
From the Hahn Banach theorem, £7 can be continuously extended to the space

m—+1
(Lp (dua)) , denoted again by £7. Furthermore, for all T' € B’

”’QTH(Lp(dya))mH = sup |<£Ta1/)>’

191 (1o (dieyym+1 <1
= €7l a2, . r2)) < C. (4.12)
Now, from the Riesz theorem, for all T € B’, there exists (fi.7)o<k<m C v (dva),
such that for all ¥ = (o, ..., ¥m) € (LP(dya))mH’

+oo
(&7, Z/ /fkT 7, 2) Y (r, ©)dve (1, 7);

with
1€l o @y = max - ferllp v
Thus, from the relation (4.12)) it follows that
VI e B, VkeN, 0<k<m; el ., <C- (4.13)

In particular, for ¢ € W™ (R?), we have

m 400
= r,xT k r,xr)ava\r,T).
<£T>-A(p> - 3_0/0 /]Rfk?,T( ) )Aa((p)( ’ )d Ot( ) )

Using Holder’s inequality and the relation (4.13)), we get for all T € B’ and ¢ €
Wi (R?),

[(2r, Ag)] < Clm+ 1) (alBO. ) " Necon(),

this shows that the mapping £70.A is a continuous extension of 7" on W™ (R?), and
that the family {£70A4} ¢ g is equicontinuous, when applied to W (R?). O

In the following, we will give a new characterization of the space . (RQ).

Theorem 4.8. Let T € Z!(R?), p € [1,+0c0[, and p' = . Then T belongs to
the space ///;(R?) if, and only if for every ¢ € Z.(R?), the functzon T * ¢ belongs
to the space L¥ (dvy), where

T *p(r,z) = (T, 7(r,—g) (D))

Proof. e Let T € ., (R?). From Theorem there exist m € N and fy, ..., fn €
LP (dvy), such that

m

=Y AK(Ty,),

k=0
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in ./ (R?). Thus, for every ¢ € 2.(R?);

Txp=> Ty« Ak(e) =D fux Al(p).
k=0 k=0

Since, for all k € N, 0 < k < m, fr € L? (dva) and Ak (p) € L'(dvy); then from
the inequality , we deduce that f * A (¢) € L” (dv,). This implies that the
function T * ¢ belongs to the space Lp/(dua).

e Conversely, let T € .7/ (IR?) such that for every ¢ € Z,(R?)) the function T * ¢
belongs to the space L (dv,). For ¢, ¢ in 2,(R?), we have

<TT*397 ¢> = <T7 © * 'J}> = <T7 ¢ * ¢> = <TT*1Z)7 90>
Thus, from Hlder’s inequality and using the hypothesis, we obtain
|(Trso, ) < T 53l N0,
from which, we deduce that the set
B' = {TT*W Y e @*(R2)5 [ollpva < 1}a

is bounded in Z.(R?). Now, using Theorem u it follows that for all @ > 0 there
exists m € N, such that for all ¢ € Z,(R?); ||¢|lpw. < 1, the mapping Tr., can
be continuously extended to the space W™ (R?) and the family of these extensions
is equicontinuous, which means that there exists C' > 0, such that for all ¢ €

2.(R?), [lllp.ve <1, and ¢ € Wi (R?),

|<TT*W1/)>| < CNoom%(w)-
This involves that for all ¢ € Z,(R?), for all v» € W™(R?),

(Trsp, ¥)| < CNoo,m (V)@ llp,ve - (4.14)
On the other hand, we have for all p € 2,(R?), and ¢ € W™ (R?),
<TT*§05 ¢> = <T * Td)) ¢>3 (415)

where, for all p € .7, (R?),
(T'* Ty, 0) = (T, Ty ) = (T, * ).
The relations (4.14)) and (4.15) lead to, for all ¢ € Z.(R?),
(T % Ty, ©)] < CNoom ()| lpv-

This last inequality shows that the functional T'* T, can be continuously extended
to the space LP(dv,) and from Riesz theorem there exists g € L (dv,), such that

T«Ty=T, (4.16)

Furthermore, from proposition there exist n € N, ¢, € W™(R?), and ¢,, €
D..o(R?) satisfying
d=I+L)"Ty, +T,,,
then,
T=U+L)"(Tx*Ty,) +T*T,, =T+ L)"(T*Ty,)+ Trvp,-

We complete the proof by using the hypothesis, the relation (4.16) and Theorem
41 O
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In the following, we will give a characterization of the bounded subsets of
///;(RQ).

Theorem 4.9. Let p € [1,00] and let B’ be a subset of ///;(Rz). The following
assertions are equivalent

(i) the subset B is weakly bounded in .4 (R?),
(ii) there exist C > 0 and m € N, such that for every T € B’, it is possible to

find fo, ..., fm € LP (dvy) satisfying

e SO
T- kZOA (T3 with ax fell,,, < C
(iii) for every ¢ € Z.(R?), the set {T ¢, T € B'} is bounded in LY (dvy,).

Proof. (1) Suppose that the subset B’ is weakly bounded in .#)(R?), then from
[27] B’ is equicontinuous. There exist C' > 0 and m € N, such that

VT EB, Ve My®), |T.F) < Crnsplf). (4.17)

As in the proof of theorem [4.7] we consider the mappings
m—+1

Aty (®2) — (1))
[ (f;Aalf), - AT (),
and for all T € B’,
Sr: A(Mp(R?)) — C; (L1, A(f)) = (T f).
Then, the relation implies that for all p € ., (R?),
L7 (Ap)| < Cll AL (Lo (dv)ymt1-
Using Hahn Banach theorem and Riesz theorem, we deduce that £p can be con-

m—+1
tinuously extended to (Lp (dua)) , denoted again by £7, and that there exists

, m+1
(fk)OSkgm C Lp (d’/a), p/ p— 17 Verlfylng for allq/) (1/)03 au]m) € (Lp(d’/oz)) )

+oo
(Lr, 0 Z/ /fk r, )Y (r, x)dvy (r, x),

. _ , <
with ||2T|‘(Lp(dua))m+l Og}fag}in ||fk”p Va X C

In particular, if ¢ = A(f), f € #,(R?),
(o, AF) = (T, f) = 3 (AL(Ty),
k=0
this proves that (i) implies (ii).

(2) Suppose that there exist C' > 0 and m € N, such that for every T' € B’ one
can find fo, ..., fm € LP (dvy), satisfying

m
T=3 AKT),  max Sl <C
k:O AN
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then, for all f € .#,(R?) and T € B,

m +o00
Tn=3 / / Folr, ) gn(r, 2)dvis (1, 2):

consequently,

(T, A< Clm A+ Dymp(f),
which means that the set B’ is weakly bounded in .#’,(R?) and proves that (ii)
implies (i).
(3) Suppose that (ii) holds. Let ¢ € Z,(R?), then from Theorem we know
that for all T € B’ the function T % ¢ belongs to the space L (dv,). But

Txp=> T xAk(e)

k=0

thus, for all T € B/,
[l

v S Clm 4 1)y p(0).

This shows that the set {T'* ¢, T € B’} is bounded in L¥' (dvg) and therefore (ii)
involves (iii).
(4) Suppose that (iii) holds and let T' € B’. For all ¢, € Z,(R?), we have

[(Trsgs 0) = [(Trwgs )| <N Pllpr v |9 ]lp s

from which, we deduce that the set
{Trep, T B, 9 € 2.®8; I¢lpu, <1,

is bounded in Z.(R?).

Now, using Theorem it follows that for all a > 0 there exists m € N, such
that for all ¢ € Z.(R?);||¢llpv. < 1, and T € B’, the mapping Tr., can be
continuously extended on the space W™ (R?) and the family of these extensions
is equicontinuous. This means that there exists C' > 0 such that for all T € B’,
© € 2.(R?), and ¥ € W™(R?), the inequality (4.14) holds. Using the relations
and , we deduce that the functional T'+T);, can be continuously extended
on the space LP(dv,) and from Riesz theorem there exists gr., € L (dv,), such
that

TxTy="T,,,. (4.18)
Applying again the relations (4.14) and (4.15)), we deduce that for all T € B’,
||9T,w||p’,1/a < CNoo,m('L/))~ (4.19)

Again by Proposition it follows that there exist n € N,v,, € W™(R?) and
On € Dy o(R?) verifying for all T € B’,

T=Txd=(1+A)"(T*Ty,)+ Trep,,

and by the relation , we get
T=I+A,)"Ty,

On the other hand, from the hypothesis there exists C; > 0, such that
VI € B, |T*¢unllpu. <Ch, (4.21)

A Tra, - (4.20)

n
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However, by the relation (4.19), we have

VT € B, |lgrnllp ve < ColNoom(on)- (4.22)
The relations (4.2), (4.20)), (4.21) and (4.22) show that the set B’ is bounded in
My (R?). O

5. CONVOLUTION PRODUCT ON THE SPACE ./, (R?) x M, (R?)

In this section, we define and study a convolution product on the space ///; (R?) x
M, (R?), 1 <r < p < +oo, where M,.(R?) is the closure of the space .7, (R?) in
My (R?).

Proposition 5.1. Let p € [1,400[. For every (r,z) € [0,400[xR, the translation
operator T, ) given by Definition (i), is a continuous mapping from M ,(R?)
into itself. Moreover, for all f € #,(R?) and k € N, we have

ALty (f) = 7w (AL(S)), (5.1)
where

AL(Ty) = Tak(p)-

Proof. Let f € .#,(R?). Since for all (r,z) € [0, +00[xR, the translation operator
T(r,z) is continuous from LP(dv,) into itself; then the function 7, ,)(f) belongs to
the space LP(dv,). Moreover; for all ¢ € .%,(R?) and k € N; we have

<AZ(TT(T,I)(f)), ey =( T(r:c)(f),A ()

+oo
/ / F(5, 97—y (AR () (5, 9) v, )
+oo
- / / F(5,9) AR (7 (2)) (5, 9) a5, 9)
0 R

= (T, AL (T(r—a) ()
= (AL(TY), Tr—a) ()
= (Tak(p)s Tor—a) (¥))
= (T, ., (AL (f))+ P)-

Since the operator 7(, ;) is continuous from LP(dv,) into itself, we deduce that for
all f € #,(R?) and (r,z) € [0, +00[xR, the function 7(, ,)(f) belongs to the space
My(R?) and that for all k € N, A% (7, ) (f)) = 7(r2) (A% (f)). Moreover, from the

relations and . , we have

7m7p(7—(r,z)(f)): max |7 (Aa (D), < jmax JAGNpwe = Tmp (),

0<k< PV 0<k<m
which shows that the operator 7(, . is continuous from M, (R?) into itself. O
The precedent proposition allows us to define the coming convolution product

Definition 5.2. The convolution product of T € .#}(R?) and f € .#,(R?) is
defined by

V(’I‘,:Z?) € [07 +OO[XR; T .f(rr’ ZE) = <T7 T(r,—ﬁ)(.fv»'
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Let T € .4} (R?) and ¢ € .#,(R?). From Theorem [4.1] there exist m € N and
{fo,r fm} C L¥'(dvy), such that

m

T= ZA];(Tfk)'

k=0
Thus,

Tfk y T(r,—x) (90)>

Ms

Txp(r,z) =

=
i
o

Tfva(r —x) V(QD)»

I
Ms

e
I
o

I
Ms

k*A (7’17)
kO

Using the relation (2.8)) and the fact that ¢ € .#,(R?) we deduce that the function
T * ¢ belongs to L*°(dv,) and

1T * Plloova < Ymp(e) (Zlfkllp',ua> (5.2)

k=0

Let T € /', (R?), T = AL(Ty,) with {fi fockem C L (dva) and ¢ € M, (R?),
k=0

1 < r < p. From the inequality (2.8]), it follows that for 0 < k& < m the function

fr * Ak () belongs to the space L4(dv,) with, 1/¢ = 1/r+1/p' =1 =1/r—1/p

and by using the density of .7, (R?) in M, (R?), we deduce that the expression

Z fr * AZ (¢) is independent of the sequence {fx }o<k<m- Then, we put

Txg=> fuxAk(9).

k=0

Again, from the relation (2.8)), we deduce that the function T * ¢ belongs to the
space L4(dv,,) and

1T % Glgwe < Y (@O I fallpr ) (5.3)
k=0

This allows us to say that
2 2
M (R?) ¥ M,.(R?) C LY(dvy,).

Lemma 5.3. Let 1 <r <p<oo. Then

i) The operator A, is continuous from M, (R?) into itself.

i) For all T € A" ,(R?) and ¢ € M,.(R?), the function T x ¢ belongs to the space
My(R?) and we have

VkeN, AF(Tx¢)=TxAk ().
Proof. i) Let f € M,.(R?). There exists (fx)r C % (R?) such that
Vm € N, lim 'Ym,r(fk_f)zo’
k—+oco
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However,
’ym,r(Aoz(fk) - Aoz(f)) < ’Yerl,r(fk - f),
thus, the sequence (Ay(fx))r of 7 (R?) converges to Ay (f) in M,.(R?), which
shows that the function A, (f) belongs to the space M.,.(R?).
ii) If ¢ € 7, (R?), then the function T * ¢ is infinitely differentiable, and we have
AR (Tr.y) = Tak(1+¢) = Trank(g),

therefore, the result follows from the density of .7, (R?) in M,.(R?), the relation
(5.3) and the fact that the operator A, is continuous from M,.(R?) into itself. O

Proposition 5.4. Let 1 <r < p < oo and q € [1,+00], such that
1 1 1
—=-— - (5.4)
q r.p
Then for every T € .#',(R?), the mapping
¢ —Txo

is continuous from M., (R?) into .#,(R?).

Proof. Let T € 4" ,(R?); ZA (Ty,) and ¢ € M, (R?). From Lemma

k=0
the function T * ¢ belongs to the space .#,(R?) and for all [ € N

No(Tx¢) = max AT *)llgw, = max [T +AL(0)llqv.

According to the relation (5.3)), it follows that

Nq(T % §) < (ankup ve) A% T (AL(0))

0<k<l

< (}§||fk||pgyu)wm+l,r<¢>.

O

Definition 5.5. Let 1 < p,q,r < +00, such that ( . holds. The convolution
product of T' € .4, (R?) and S € .4’ ,(R?) is defined for all ¢ € M,.(R?), by

From this Definition and Proposition we deduce the following result

Proposition 5.6. Let 1 < p,q,r < 400 such that holds. Then, for all
T € M) (R?) and S € M’ ((R?), the functional S T is continuous on M, (R?).
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