SOME RESULTS ON $(L C S)_{2 n+1}$-MANIFOLDS

(DEDICATED IN OCCASION OF THE 65-YEARS OF PROFESSOR R.K. RAINA)

G.T. SREENIVASA, VENKATESHA AND C.S. BAGEWADI

Abstract. In this paper we study Lorentzian Concircular Structure manifolds
(briefly $(L C S)_{2 n+1}$-manifold) and obtain some interesting results.

1. Introduction

An (2n+1)-dimensional Lorentzian manifold M is a smooth connected paracompact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth symmetric tensor field g of type $(0,2)$ such that for each point $p \in M$, the tensor $g_{p}: T_{p} M \times T_{p} M \rightarrow R$ is a non-degenerate inner product of signature $(-,+, \ldots .,+)$, where $T_{p} M$ denotes the tangent space of M at p and R is the real number space.

In a Lorentzian manifold (M, g) a vector field P defined by

$$
g(X, P)=A(X)
$$

for any vector field $X \in \chi(M)$ is said to be a concircular vector field [8] if

$$
\left(\nabla_{X} A\right)(Y)=\alpha[g(X, Y)+\omega(X) A(Y)]
$$

where α is a non-zero scalar function, A is a 1 -form and ω is a closed 1 -form.
Let M be a Lorentzian manifold admitting a unit timelike concircular vector field ξ, called the characteristic vector field of the manifold. Then we have

$$
\begin{equation*}
g(\xi, \xi)=-1 \tag{1.1}
\end{equation*}
$$

Since ξ is a unit concircular vector field, there exists a non-zero 1 -form η such that

$$
\begin{equation*}
g(X, \xi)=\eta(X) \tag{1.2}
\end{equation*}
$$

the equation of the following form holds:

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)=\alpha[g(X, Y)+\eta(X) \eta(Y)] \quad(\alpha \neq 0) \tag{1.3}
\end{equation*}
$$

for all vector fields X, Y where ∇ denotes the operator of covariant differentiation with respect to Lorentzian metric g and α is a non-zero scalar function satisfying

$$
\begin{equation*}
\nabla_{X} \alpha=(X \alpha)=\rho \eta(X) \tag{1.4}
\end{equation*}
$$

[^0]ρ being a certain scalar function. If we put
\[

$$
\begin{equation*}
\phi X=\frac{1}{\alpha} \nabla_{X} \xi \tag{1.5}
\end{equation*}
$$

\]

then from (1.3) and (1.5) we have

$$
\begin{equation*}
\phi^{2} X=X+\eta(X) \xi \tag{1.6}
\end{equation*}
$$

from which if follows that ϕ is a symmetric $(1,1)$ tensor. Thus the Lorentzian manifold M together with the unit timelike concircular vector field ξ, its associated 1 -form η and $(1,1)$ tensor field ϕ is said to be a Lorentzian concircular structure manifold (briefly $(L C S)_{2 n+1}-$ manifold) 9 . Especially, if we take $\alpha=1$, then we can obtain the LP-Sasakian structure of Matsumoto [6].

A Riemannian manifold M is called locally symmetric if its curvature tensor R is parallel, that is, $\nabla R=0$, where ∇ denotes the Levi-Civita connection. As a proper generalization of locally symmetric manifold the notion of semi-symmetric manifold was defined by

$$
(R(X, Y) \cdot R)(U, V, W)=0, \quad X, \quad W \in \chi(M)
$$

and studied by many authors (e.g. [7], 11]). A complete intrinsic classification of these spaces was given by Z.I. Szabo [11. The notion of semi-symmetry was weakened by R. Deszcz and his coauthors ([4]- [5]) and introduced the notion of pseudosymmetric and Ricci-Pseudosymmetric manifolds.

We define endomorphisms $R(X, Y)$ and $X \wedge Y$ by

$$
\begin{align*}
R(X, Y) Z & =\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z \tag{1.7}\\
(X \wedge Y) Z & =g(Y, Z) X-g(X, Z) Y \tag{1.8}
\end{align*}
$$

respectively, where $X, Y, Z \in \chi(M), \chi(M)$ being the Lie algebra of vector fields on M.

The present paper deals with the study of $(L C S)_{2 n+1}$-manifold satisfying certian conditions. After preliminaries, in section 3 we show that $(L C S)_{2 n+1}$-manifold satisfying the condition $R(X, Y) \cdot \bar{P}=0$, where \bar{P} is the pseudo projective curvature tensor and $R(X, Y)$ is considred as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y is an pseudo projectively flat manifold. In section 4 we study pseudo projectively flat $(L C S)_{2 n+1}$-manifold and proved that it is an η-Einstein manifold. Section 5 is devoted to the study of pseudo projectively recurrent $(L C S)_{2 n+1}$-manifold. In the last section we study partially Ricci-pseudosymmetric $(L C S)_{2 n+1}$-manifolds.

2. Preliminaries

A differentiable manifold M of dimension $(2 n+1)$ is called $(L C S)_{2 n+1}$-manifold if it admits a $(1,1)$-tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and a Lorentzian metric g which satisfy

$$
\begin{align*}
& \eta(\xi)=-1 \tag{2.1}\\
& \phi^{2}=I+\eta \otimes \xi \tag{2.2}\\
& g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}\\
& g(X, \xi)=\eta(X) \tag{2.4}\\
& \phi \xi=0, \quad \eta(\phi X)=0 \tag{2.5}
\end{align*}
$$

for all $X, Y \in T M$.

Also in a $(L C S)_{2 n+1}$-manifold M the following relations are satisfied $([10)$:

$$
\begin{align*}
\eta(R(X, Y) Z) & =\left(\alpha^{2}-\rho\right)[g(Y, Z) \eta(X)-g(X, Z) \eta(Y)] \tag{2.6}\\
R(\xi, X) Y & =\left(\alpha^{2}-\rho\right)(g(X, Y) \xi-\eta(Y) X) \tag{2.7}\\
R(X, Y) \xi & =\left(\alpha^{2}-\rho\right)[\eta(Y) X-\eta(X) Y] \tag{2.8}\\
R(\xi, X) \xi & \left.=\left(\alpha^{2}-\rho\right)[\eta(X) \xi+X)\right] \tag{2.9}\\
\left(\nabla_{X} \phi\right)(Y) & =\alpha[g(X, Y) \xi+2 \eta(X) \eta(Y) \xi+\eta(Y) X] \tag{2.10}\\
S(X, \xi) & =2 n\left(\alpha^{2}-\rho\right) \eta(X) \tag{2.11}\\
S(\phi X, \phi Y) & =S(X, Y)+2 n\left(\alpha^{2}-\rho\right) \eta(X) \eta(Y) \tag{2.12}
\end{align*}
$$

where S is the Ricci curvature and Q is the Ricci operator given by $S(X, Y)=$ $g(Q X, Y)$.
3. $(L C S)_{2 n+1}$-ManifoldS SAtisfying $R(X, Y) \cdot \bar{P}=0$

The Pseudo projective curvature tensor \bar{P} is defined as [2]

$$
\begin{align*}
\bar{P}(X, Y) Z= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y] \tag{3.1}\\
& -\frac{r}{(2 n+1)}\left[\frac{a}{2 n}+b\right][g(Y, Z) X-g(X, Z) Y]
\end{align*}
$$

where a and b are constants such that $a, b \neq 0, R$ is the curvature tensor, S is the Ricci tensor and r is the scalar curvature.

In view of (2.4) and (2.8), we get

$$
\begin{align*}
\eta(\bar{P}(X, Y) Z)= & {\left[a\left(\alpha^{2}-\rho\right)-\frac{r}{(2 n+1)}\left(\frac{a}{2 n}+b\right)\right][g(Y, Z) X-g(X, Z) Y] } \\
& +b[S(Y, Z) X-S(X, Z) Y] \tag{3.2}
\end{align*}
$$

Putting $Z=\xi$ in (3.2), we get

$$
\eta(\bar{P}(X, Y) \xi)=0
$$

Again taking $X=\xi$ in (3.2), we have

$$
\begin{aligned}
\eta(\bar{P}(\xi, Y) Z)= & -\left[a\left(\alpha^{2}-\rho\right)-\frac{r}{(2 n+1)}\left(\frac{a}{2 n}+b\right)\right] g(Y, Z) \\
& -\left[(a+2 n b)\left(\alpha^{2}-\rho\right)-\frac{r}{(2 n+1)}\left(\frac{a}{2 n}+b\right)\right] \eta(Y) \eta(Z) \\
& -b S(Y, Z)
\end{aligned}
$$

where (2.4) and (2.11) are used.
Now,

$$
\begin{aligned}
(R(X, Y) \bar{P})(U, V) Z= & R(X, Y) \cdot \bar{P}(U, V) Z-\bar{P}(R(X, Y) U, V) Z \\
& -\bar{P}(U, R(X, Y) V) Z-\bar{P}(U, V) R(X, Y) Z
\end{aligned}
$$

Let $R(X, Y) \cdot \bar{P}=0$. Then we have
$R(X, Y) \cdot \bar{P}(U, V) Z-\bar{P}(R(X, Y) U, V) Z-\bar{P}(U, R(X, Y) V) Z-\bar{P}(U, V) R(X, Y) Z=0$.

Therefore,

$$
\begin{aligned}
g[R(\xi, Y) \cdot \bar{P}(U, V) Z, \xi] & -g[\bar{P}(R(\xi, Y) U, V) Z, \xi] \\
& -g[\bar{P}(U, R(\xi, Y) V) Z, \xi]-g[\bar{P}(U, V) R(\xi, Y) Z, \xi]=0
\end{aligned}
$$

From this, it follows that,

$$
\begin{align*}
\left(\alpha^{2}-\rho\right)[-\bar{P}(U, V, Z, Y) & -\eta(Y) \eta(\bar{P}(U, V) Z)+\eta(U) \eta(\bar{P}(Y, V) Z) \tag{3.4}\\
& -g(Y, U) \eta(\bar{P}(\xi, V) Z)+\eta(V) \eta(\bar{P}(U, Y) Z) \\
& -g(Y, V) \eta(\bar{P}(U, \xi) Z)+\eta(Z) \eta(\bar{P}(U, V) Y)]=0
\end{align*}
$$

where $\bar{P}(U, V, Z, Y)=g(\bar{P}(U, V) Z, Y)$.
Putting $Y=U$ in (3.4), we get

$$
\begin{align*}
\left(\alpha^{2}-\rho\right)[-\bar{P}(U, V, Z, U) & -g(U, U) \eta(\bar{P}(\xi, V) Z)+\eta(V) \eta(\bar{P}(U, U) Z) \tag{3.5}\\
& -g(U, V) \eta(\bar{P}(U, \xi) Z)+\eta(Z) \eta(\bar{P}(U, V) U)]=0
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots,(2 n+1)$ be an orthonormal basis of the tangent space at any point. Then the sum for $1 \leq i \leq 2 n+1$ of the relation (3.5) for $U=e_{i}$, yields

$$
\begin{align*}
\eta(\bar{P}(\xi, V) Z)= & -\left[\frac{a}{2 n+1}+b\right] S(V, Z) \tag{3.6}\\
& +\left[\frac{(a+2 n b) r}{2 n(2 n+1)}-\frac{a}{2 n+1}\left(\alpha^{2}-\rho\right)\right] g(V, Z) \\
& +\left[\frac{a r}{2 n(2 n+1)}-a\left(\alpha^{2}-\rho\right)\right] \eta(V) \eta(Z)
\end{align*}
$$

From (3.3) and (3.6) we have

$$
\begin{equation*}
S(V, Z)=2 n\left(\alpha^{2}-\rho\right) g(V, Z)+\frac{b}{a}[2 n(2 n+1)-r] \eta(V) \eta(Z) \tag{3.7}
\end{equation*}
$$

Taking $Z=\xi$ in (3.7) and using (2.11) we obtain

$$
\begin{equation*}
r=2 n(2 n+1)\left(\alpha^{2}-\rho\right) \tag{3.8}
\end{equation*}
$$

Now using (3.2), (3.3), (3.7) and (3.8) in (3.4), we get

$$
\begin{equation*}
-\bar{P}(U, V, Z, Y)=0 \tag{3.9}
\end{equation*}
$$

From (3.9) it follows that

$$
\bar{P}(U, V) Z=0
$$

Hence the $(L C S)_{2 n+1}$-manifold is pseudo projectively flat. Therefore, we can state
Theorem 3.1. If in a $(L C S)_{2 n+1}$-manifold M of dimension $2 n+1, n>0$, the relation $R(X, Y) . \bar{P}=0$ holds then the manifold is pseudo projectively flat.

4. Pseudo Projectively Flat $(L C S)_{2 n+1}$-Manifolds

In this section we assume that $\bar{P}=0$. Then form (3.1) we get

$$
\begin{equation*}
a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y]-\frac{r}{(2 n+1)}\left[\frac{a}{2 n}+b\right][g(Y, Z) X-g(X, Z) Y]=0 \tag{4.1}
\end{equation*}
$$

From (4.1), we get

$$
\begin{align*}
a ` R(X, Y, Z, W) & +b[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \tag{4.2}\\
& -\frac{r}{(2 n+1)}\left[\frac{a}{2 n}+b\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)]=0
\end{align*}
$$

where ${ }^{`} R(X, Y, Z, W)=g(R(X, Y, Z), W)$.
Putting $X=W=\xi$ in (4.2), we get

$$
\begin{align*}
S(Y, Z)= & \left\{\frac{r}{(2 n+1)}\left(\frac{a}{2 n b}+1\right)-\frac{a}{b}\left(\alpha^{2}-\rho\right)\right\} g(Y, Z) \tag{4.3}\\
& +\left\{\frac{r}{(2 n+1)}\left(\frac{a}{2 n b}+1\right)-\frac{a}{b}\left(\alpha^{2}-\rho\right)-2 n\left(\alpha^{2}-\rho\right)\right\} \eta(Y) \eta(Z)
\end{align*}
$$

Therefore, the manifold is η-Einstein. Hence we can state
Theorem 4.1. A pseudo projectively flat $(L C S)_{2 n+1}$-manifold is an η-Einstein manifold.

5. Pseudo projectively recurrent $(L C S)_{2 n+1}$-Manifolds

A non-flat Riemannian manifold M is said to be pseudo projectively recurrent if the pseudo-projective curvature tensor \bar{P} satisfies the condition $\nabla \bar{P}=A \otimes \bar{P}$, where A is an everywhere non-zero 1 -form. We now define a function f on M by $f^{2}=g(\bar{P}, \bar{P})$, where the metric g is extended to the inner product between the tensor fields in the standard fashion.

Then we know that $f(Y f)=f^{2} A(Y)$. From this we have

$$
\begin{equation*}
Y f=f A(Y) \quad(\text { because } f \neq 0) \tag{5.1}
\end{equation*}
$$

From (5.1) we have

$$
X(Y f)=\frac{1}{f}(X f)(Y f)+(X A(Y)) f
$$

Hence

$$
X(Y f)-Y(X f)=\{X A(Y)-Y A(X)\} f
$$

Therefore we get

$$
\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) f=\{X A(Y)-Y A(X)-A([X, Y])\} f
$$

Since the left hand side of the above equation is identically zero and $f \neq 0$ on M by our assumption, we obtain

$$
\begin{equation*}
d A(X, Y)=0 \tag{5.2}
\end{equation*}
$$

that is the 1-form A is closed.
Now, from $\left(\nabla_{X} \bar{P}\right)(U, V) Z=A(X) \bar{P}(U, V) Z$, we get

$$
\left(\nabla_{U} \nabla_{V} \bar{P}\right)(X, Y) Z=\{U A(V)+A(U) A(V)\} \bar{P}(X, Y) Z
$$

Hence from (5.2), we get

$$
\begin{equation*}
(R(X, Y) \cdot \bar{P})(U, V) Z=[2 d A(X, Y)] \bar{P}(U, V) Z=0 \tag{5.3}
\end{equation*}
$$

Therefore, for a pseudo projectively recurrent manifold, we have

$$
\begin{equation*}
R(X, Y) \bar{P}=0 \text { for all } X, Y \tag{5.4}
\end{equation*}
$$

Thus, we can state the following:

Theorem 5.1. A pseudo projectively recurrent $(L C S)_{2 n+1}$-manifold M is an η Einstein manifold.

6. Partially Ricci-Pseudosymmetric $(L C S)_{2 n+1}$-Manifolds

A $(L C S)_{2 n+1}$-manifold M is said to be a partially Ricci-pseudosymmetric if it satisfies.

$$
\begin{equation*}
(R(X, Y) \cdot S)(U, V)=L_{C}[((X \wedge Y) \cdot S(U, V)] \tag{6.1}
\end{equation*}
$$

where

$$
\begin{gathered}
L_{C} \in C^{\infty}(M) \\
(R(X, Y) \cdot S)(U, V)=-S(R(X, Y) U, V)-S(U, R(X, Y) V)
\end{gathered}
$$

and

$$
((X \wedge Y) \cdot S)(U, V)=-S((X \wedge Y) U, V)-S(U,(X \wedge Y) V)
$$

Thus 6.1 has the following more developed form

$$
\begin{align*}
& S(R(X, Y) U, V)+S(U, R(X, Y) V) \tag{6.2}\\
= & L_{C}[S((X \wedge Y) U, V)+S(U,(X \wedge Y) V)]
\end{align*}
$$

We want to investigate partially pseudo-Ricci-symmetric $(L C S)_{2 n+1}$-manifolds which satisfy (6.1) with the restriction $Y=V=\xi$. So we have

$$
\begin{align*}
& S(R(X, \xi) U, \xi)+S(U, R(X, \xi) \xi) \tag{6.3}\\
= & L_{C}[S((X \wedge \xi) U, \xi)+S(U,(X \wedge \xi) \xi)]
\end{align*}
$$

Applying (1.8, 2.7 and 2.11, we obtain

$$
\begin{aligned}
& 2 n\left(\alpha^{2}-\rho\right) \eta(R(X, \xi) U)-\left(\alpha^{2}-\rho\right) S(U, X)-\left(\alpha^{2}-\rho\right) S(U, \xi) \eta(X) \\
= & L_{C}[\eta(U) S(X, \xi)-g(X, U) S(\xi, \xi)-S(U, X)-\eta(X) S(U, \xi)]
\end{aligned}
$$

Using (2.1 and 2.11 in above relation, this becomes

$$
\begin{equation*}
-\left(\alpha^{2}-\rho\right)\left[S(X, U)-2 n\left(\alpha^{2}-\rho\right) g(X, U)\right]=-L_{C}\left[S(X, U)-2 n\left(\alpha^{2}-\rho\right) g(X, U)\right] \tag{6.4}
\end{equation*}
$$

This can be written as

$$
\begin{equation*}
\left[L_{C}-\left(\alpha^{2}-\rho\right)\right]\left[S(X, U)-2 n\left(\alpha^{2}-\rho\right) g(X, U)\right]=0 \tag{6.5}
\end{equation*}
$$

This can be hold only if either (a) $L_{C}=\left(\alpha^{2}-\rho\right)$ or (b) $S(X, U)=2 n\left(\alpha^{2}-\right.$ $\rho) g(X, U)$. However (b) means that M is an Einstein manifold. Hence the we can state

Theorem 6.1. A partially pseudo-Ricci symmetric $(L C S)_{2 n+1}-m a n i f o l d$ with never vanishing function $\left[L_{C}-\left(\alpha^{2}-\rho\right)\right]$ is an Einstein manifold.

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] C.S. Bagewadi and Venkatesha, Some curvature tensors on a Kenmotsu manifold, Tensor.N.S., 68(2007), 140- 147
[2] Bhagwat Prasad, A Pseudo Projective Curvature Tensor on a Riemannian Manifolds, Bull.Cal.Math.Soc., 94 (3) (2002), 163-166.
[3] U.C. De and D. Tarafdar, On a type of new tensor in a Riemannian manifold and its relativistic significance, Ranchi Univ. Math. J., 24 (1993), 17-19.
[4] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica., 15 (1987), 311-322.
[5] R. Deszcz, On pseudosymmetric Spaces, Bull. Soc. Math., Belg. Ser., A 44 (1992), 1-34.
[6] Matsumoto. K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., 12(1989), 151-156.
[7] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math J., 20 (1968), 46-69.
[8] Schouten. J.A., , Ricci Calculas(second Edition), Springer-Verlag., (1954), 322.
[9] Shaikh, A.A., Lorentzian almost paracontact manifolds with a structure of concircular type, Kyungpook Math. J., 43(2003), 305-314.
[10] A.A Shaikh, T. Basu and S. Eyasmin, On the existence of ϕ-Recurrent $(L C S)_{n}$-manifolds , Extracta Mathematicae, 23(1)(2008), 71-83.
[11] Z.I. Szabo, Structure theorem on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. 1. The local version, J. Diff. Geom., 17, (1982), 531-582.
G.T. Sreenivasa

Department of Mathematics,
Akshaya Institute of Technology,
Tumkur-572 106, Karnataka, INDIA.
E-mail address: sreenivasgt@gmail.com
Venkatesha
Department of Mathematics,
Kuvempu University,
Shimoga- 577 451, Karnataka, INDIA.
E-mail address: vensprem@gmail.com
C.S.Bagewadi

Department of Mathematics,
Kuvempu University,
Shimoga- 577 451, Karnataka, INDIA.
E-mail address: csbagewadi@gmail.com

[^0]: 2000 Mathematics Subject Classification. 53C10, 53C15, 53C20.
 Key words and phrases. $(L C S)_{2 n+1}$-manifold, pseudo projective curvature tensor, η-Einstein. (C)2009 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted November, 2008. Published November 2009.

