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COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF
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(DEDICATED IN OCCASION OF THE 65-YEARS OF

PROFESSOR R.K. RAINA)

GANGADHARAN. MURUGUSUNDARAMOORTHY AND NANJUNDAN. MAGESH

Abstract. In this paper we obtain the functional ∣a2a4 − a23∣ for the class

f ∈ R(�). Also we give sharp upper bound for ∣a2a4− a23∣. Our result extends

corresponding previously known result.

1. Introduction and Preliminaries

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the unit disc U = {z : ∣z∣ < 1}. Let P be the
family of all functions p analytic in U for which Re{p(z)} > 0 and

p(z) = 1 +

∞∑
n=1

cnz
n, z ∈ U. (1.2)

In 1976, Noonan and Thomas [10] defined the qth Hankel determinant of f for
q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
Further, Fekete and Szegö [1] considered the Hankel determinant of f ∈ A for

q = 2 and n = 1, H2(1) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ . They made an early study for the estimates
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of ∣a3 − �a22∣ when a1 = 1 with � real. The well known result due to them states
that if f ∈ A, then

∣a3 − �a22∣ ≤

⎧⎨⎩
4�− 3 if � ≥ 1,

1 + 2 exp(−2�1−� ) if 0 ≤ � ≤ 1,

3− 4� if � ≤ 0.

Furthermore, Hummel [3, 4] obtained sharp estimates for ∣a3 − �a22∣ when f
is convex functions and also Keogh and Merkes [6] obtained sharp estimates for
∣a3 − �a22∣ when f is close-to-convex, starlike and convex in U.

Here we consider the Hankel determinant of f ∈ A for q = 2 and n = 2,

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ .
In the present investigation we consider the following subclass R(�) of A :

R(�) =

{
f(z) ∈ A : Re

{
(1− �)

f(z)

z
+ �f ′(z)

}
> 0, � > 0, z ∈ U

}
(1.3)

and obtain sharp upper bound for the functional ∣a2a4 − a23∣ of f ∈ R(�).

Remark. The subclass R(1) = R was studied systematically by MacGregor [9]
who indeed referred to numerous earlier investigations involving functions whose
derivative has a positive real part.

To prove our main result, we need the following lemmas.

Lemma 1.1. [11] If p ∈ P, then ∣ck∣ ≤ 2 for each k.

Lemma 1.2. [2] The power series for p(z) given in (1.2) converges in U to a
function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣
2 c1 c2 ⋅ ⋅ ⋅ cn
c−1 2 c1 ⋅ ⋅ ⋅ cn−1
...

...
...

...
...

c−n c−n+1 c−n+2 ⋅ ⋅ ⋅ 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, . . . (1.4)

and c−k = ck, are all nonnegative. They are strictly positive except for

p(z) =

m∑
k=1

�kp0(eitkz), �k > 0, tk real

and tk ∕= tj for k ∕= j in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m.

2. Main Result

Using the techniques of Libera and Zlotkiewicz [7, 8], we now prove the following
theorem.

Theorem 2.1. Let � > 0. If f ∈ R(�), then

∣a2a4 − a23∣ ≤
4

(1 + 2�)2
. (2.1)

The result is sharp.
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Proof. Since f ∈ R(�), it follows from (1.3) that

(1− �)
f(z)

z
+ �f ′(z) = p(z) (2.2)

for some p ∈ P. Equating coefficients in (2.2), we have,

(1 + �)a2 = c1, (1 + 2�)a3 = c2, (1 + 3�)a4 = c3. (2.3)

From (2.3), it can be established that

∣a2a4 − a23∣ =
∣∣∣∣ c1c3
(1 + �)(1 + 3�)

− c22
(1 + 2�)2

∣∣∣∣ .
We make use of Lemma 1.2 to obtain the proper bound on

∣∣∣ c1c3
(1+�)(1+3�) −

c22
(1+2�)2

∣∣∣ .
We may assume without restriction that c1 > 0. We begin by rewriting (1.4) for
the cases n = 2 and n = 3,

D2 =

∣∣∣∣∣∣
2 c1 c2
c1 2 c1
c2 c1 2

∣∣∣∣∣∣ = 8 + 2Re {c21c2} − 2∣c2∣2 − 4c21 ≥ 0, (2.4)

which is equivalent to

2c2 = c21 + x(4− c21) (2.5)

for some x, ∣x∣ ≤ 1. Then D3 ≥ 0 is equivalent to

∣ (4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2 ∣ ≤ 2(4− c21)2 − 2∣2c2 − c21∣2 (2.6)

and from (2.6) with (2.5), we have,

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− ∣x∣2)z, (2.7)

for some value of z, ∣z∣ ≤ 1.
Suppose c1 = c and c ∈ [0, 2]. Using (2.5) along with (2.7) we obtain∣∣∣∣ c1c3

(1 + �)(1 + 3�)
− c22

(1 + 2�)2

∣∣∣∣
=

∣∣∣∣�2c4 + 2�2c2(4− c2)x− (12�2 + 16�+ �2c2 + 4)(4− c2)x2

4(1 + �)(1 + 2�)2(1 + 3�)
+
c(4− c2)(1− ∣x∣2)z

2(1 + �)(1 + 3�)

∣∣∣∣
≤ �2c4

4(1 + �)(1 + 2�)2(1 + 3�)
+

c(4− c2)

2(1 + �)(1 + 3�)
+

�2c2(4− c2)�

2(1 + �)(1 + 2�)2(1 + 3�)

+
(c− 2)(4− c2)[�2(c− 6)− 8�− 2]�2

4(1 + �)(1 + 2�)2(1 + 3�)

≡ F (�) (2.8)

with � = ∣x∣ ≤ 1 and � > 0. We assume that the upper bound for (2.8) is attained
at an interior point of the set {(�, c)∣ � ∈ [0, 1], c ∈ [0, 2]}, then

F ′(�) =
�2c2(4− c2)

2(1 + �)(1 + 2�)2(1 + 3�)
+

(c− 2)(4− c2)[�2(c− 6)− 8�− 2]�

2(1 + �)(1 + 2�)2(1 + 3�)
. (2.9)

We note that F ′(�) > 0 and consequently F is increasing and maxF (�) = F (1),
which contradicts our assumption of having the maximum value at the interior of
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� ∈ [0, 1]. Now let

G(c) = F (1) =
�2c4

4(1 + �)(1 + 2�)2(1 + 3�)
+

c(4− c2)

2(1 + �)(1 + 3�)
+

�2c2(4− c2)

2(1 + �)(1 + 2�)2(1 + 3�)

+
(c− 2)(4− c2)[�2(c− 6)− 8�− 2]

4(1 + �)(1 + 2�)2(1 + 3�)

then

G′(c) =
−2c[�2c2 + 4�+ 1]

(1 + �)(1 + 2�)2(1 + 3�)
= 0 (2.10)

therefore (2.10) implies c = 0, which is a contradiction. We note that

G′′(c) =
−6�2c2 − 8�− 2

(1 + �)(1 + 2�)2(1 + 3�)
< 0.

Thus any maximum points of G must be on the boundary of c ∈ [0, 2]. However,
G(c) ≥ G(2) and thus G has maximum value at c = 0. The upper bound for (2.8)
corresponds to � = 1 and c = 0, in which case∣∣∣∣ c1c3

(1 + �)(1 + 3�)
− c22

(1 + 2�)2

∣∣∣∣ ≤ 4

(1 + 2�)2
, � > 0.

This completes the proof of the Theorem 2.1. □

Remark. If � = 1, then we get the corresponding functional ∣a2a4 − a23∣ for the
class f ∈ R(1) = R, studied in [5] as in the following corollary.

Corollary 2.2. If f ∈ R, then

∣a2a4 − a23∣ ≤
4

9
.

The result is sharp.

Acknowledgments. The authors would like to thank the referee for his valuable
comments and suggestions.

References
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