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COEFFICIENT INEQUALITIES FOR CERTAIN CLASSES OF
ANALYTIC FUNCTIONS ASSOCIATED WITH HANKEL
DETERMINANT

(DEDICATED IN OCCASION OF THE 65-YEARS OF
PROFESSOR R.K. RAINA)

GANGADHARAN. MURUGUSUNDARAMOORTHY AND NANJUNDAN. MAGESH

ABSTRACT. In this paper we obtain the functional |agas — a§| for the class
[ € R(c). Also we give sharp upper bound for |azas — a2|. Our result extends
corresponding previously known result.

1. INTRODUCTION AND PRELIMINARIES

Let A denote the class of functions of the form
o0
f(2) :z+Zanz" (1.1)
n=2

which are analytic and univalent in the unit disc U = {z: |z| < 1}. Let P be the
family of all functions p analytic in U for which Re{p(z)} > 0 and

o0
p(z) =1+ Z 2", zeU. (1.2)
n=1

In 1976, Noonan and Thomas [10] defined the ¢th Hankel determinant of f for
q=1by

G, an4+1 .- Qp4q—1
Ap+1 Ap+2 .. Up4q
Hy(n) =
an+4q—1 Onitq --- An+42q—2

Further, Fekete and Szegd [I] considered the Hankel determinant of f € A for
ay Qg

g=2andn=1, Ha(1) = P ‘ . They made an early study for the estimates
2 as
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of lag — pa3] when a; = 1 with p real. The well known result due to them states
that if f € A, then

4p—3 it pu>1,
lag — pad] < { 1+2 exp(%) it 0<p<l,
3—4u if <0

Furthermore, Hummel [3, 4] obtained sharp estimates for |a3 — pa3| when f
is convex functions and also Keogh and Merkes [6] obtained sharp estimates for
lag — pa3| when f is close-to-convex, starlike and convex in U.

Here we consider the Hankel determinant of f € A for ¢ =2 and n = 2,

az as

Hy(2) = a5 ay

In the present investigation we consider the following subclass R(«) of A :

R(a):{f(z)eA: Re{(l—a)fiz)—i—af'(z)} >0, a>0, zeU} (1.3)

and obtain sharp upper bound for the functional |asas — a3| of f € R(«).

Remark. The subclass R(1) = R was studied systematically by MacGregor [9]
who indeed referred to numerous earlier investigations involving functions whose
deriative has a positive real part.

To prove our main result, we need the following lemmas.
Lemma 1.1. [I1] If p € P, then |ck| < 2 for each k.

Lemma 1.2. [2] The power series for p(z) given in converges in U to a
function in P if and only if the Toeplitz determinants

2 c1 Co ‘e Cn
c—1 2 c1 e Cpoa
D, =| . . . ) .|, n=1,2,3,... (1.4)
C—n C-pt1 Copt2 - 2

and c_y = ¢, are all nonnegative. They are strictly positive except for

p(z) = E:Pkpo(eit’“z)7 pr > 0, ) real
k=1
and ty, #t; for k # j in this case D,, > 0 forn <m —1 and D,, =0 forn > m.

2. MAIN RESULT

Using the techniques of Libera and Zlotkiewicz [7, [§], we now prove the following
theorem.
Theorem 2.1. Let a > 0. If f € R(«), then

4

e (2.1)

|azay — a3| <

The result is sharp.
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Proof. Since f € R(«), it follows from (1.3)) that

-0 Lape) =) (22

for some p € P. Equating coefficients in ([2.2)), we have,
1+ a)az =c1, (1+2a)az =co, (1+3a)ay = cs. (2.3)
From ([2.3)), it can be established that

C1C3 _ ‘3
1+a)(1+3a) (1+2a)?

|asay —a§| = ‘(

2
_ C2

‘We make use of Lemmato obtain the proper bound on ‘ (1+a)(1+3a) (1+2a)2 .

We may assume without restriction that ¢; > 0. We begin by rewriting (1.4) for
the cases n = 2 and n = 3,

2 C1 C2
Dy = |c1 2 e | = 8+2Re {Fca} —2|co|> —4c2 >0, (2.4)
cs 1 2

which is equivalent to
200 = +x(d—c3) (2.5)
for some x, |z| < 1. Then D3 > 0 is equivalent to
| (403 —dercg )4 =) 412 — 1) | <204 — 3P —22c2 — 3 (2.6)
and from ) with @, we have,
dez = A +24— e —cer(4—cA)x? + 24— D) (1 — |2z, (2.7)

for some value of z, |z| < 1.
Suppose ¢; = ¢ and ¢ € [0, 2]. Using (2.5)) along with (2.7) we obtain

C1C3 _ 3
14+a)(1+30) (1+42)?

2t 42022 (4 — A)x — (122 + 16 + a?c? +4)(4 — Az c(4—A)(1 - |z]?)2
B 4(1+ a)(1+ 2a)%(1 + 3a) 2(1 4 a)(1 + 3a)
a?ct c(4—c2) a?ct(4—c2)p

S 0+ a)(012020430) T 20+ a)(i+3a) " 20+ )1+ 2002(1 + 3a)
(c—2)(4 - )]e?(c - 6) — 8a — 2]p?

41+ a)(1 4 2a)?(1 + 3a)
— F(p) (238)

with p = |z| <1 and « > 0. We assume that the upper bound for (2.8) is attained
at an interior point of the set {(p,c)| p € [0,1], ¢ € [0,2]}, then

a?c(4 — ?) (c—2)(4—cH)][a?(c—6) —8a—2p
21+ o)(1 4 20)?(1 + 3a) 21+ o)(1 4 2a)?(1 + 3a)

+

F'(p) = - (29)

We note that F'(p) > 0 and consequently F is increasing and max F(p) = F(1),
which contradicts our assumption of having the maximum value at the interior of
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p € 10,1]. Now let

Gle) — F(1) — a?ct c(4—c?) a?c?(4 — c?)
(c) = F(1) 0 ta)(I1202(143a) 20 +a)1+30) " 2(1+a)(1+2a)2(1 + 3a)
(c—2)(4—cH)][a?(c—6) — 8a — 2]
41+ a)(1 4 2a)?(1 4 3c)
then

—2c[a?c® + da + 1]
G'(c) = =0 2.10
()= AF o)A 12020 7 30) (2.10)
therefore (2.10) implies ¢ = 0, which is a contradiction. We note that
—6a%c? — 8ar — 2
G"(c) = < 0.
() = AT )1 120201 + 30)
Thus any maximum points of G must be on the boundary of ¢ € [0, 2]. However,
G(c) > G(2) and thus G has maximum value at ¢ = 0. The upper bound for (2.8)

corresponds to p =1 and ¢ = 0, in which case

cics c3 < 4 -0
- a> 0.
(14+a)1+3a) (A+2a)2]~ (14 2a)?’
This completes the proof of the Theorem O

Remark. If a = 1, then we get the corresponding functional |agas — a3| for the
class f € R(1) = R, studied in [5] as in the following corollary.

Corollary 2.2. If f € R, then

|lazay — a3| <

O i~

The result is sharp.
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