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STABILITY OF A LINEAR INTEGRO-DIFFERENTIAL

EQUATION OF FIRST ORDER WITH VARIABLE DELAYS

CEMİL TUNÇ, İREM AKBULUT

Abstract. We consider a linear integro-differential equation (IDE) of first

order with two variable delays. We construct new conditions guaranteeing the
trivial solution of this IDE is stable. The technique of the proof based on the

use of the fixed-point theory. Our findings generalize and improve some results

can be found in the literature.

1. Introduction

It is well known from the related literature that the IDEs are often used to
model some practical problems in mechanics, physics, biology, ecology and the
other scientific fields (see, e.g. Burton [5], Levin [10], Rahman [14], Wazwaz [24]
and their references). This paper deals with the following linear IDE of the first
order with two variable delays

dx

dt
= −b(t)x−

2∑
i=1

∫ t

t−ri(t)
a(t, s)x(s)ds, (1.1)

where t ≥ 0, t ∈ <, x ∈ <, < = (−∞,∞), ri = [0,∞) → [0,∞), (i = 1, 2),
are continuous differentiable functions such that t − ri(t) → ∞ as t → ∞ with
r0 = maxt≥0{t− r1(t), t− r2(t)}, a : [−r0,∞)× [−r0,∞)→ < and b : (0,∞)→ <
are continuous functions. In the past decades, a number of researches have dealt
with qualitative behaviors of linear and non-linear IDEs by means of the fixed
point theory, the perturbation methods, the variations of parameters formulas,
the Lyapunov’s function or functional method, etc., (see Ardjouni and Djoudi [1],
Becker and Burton [2], Burton ([3], [4]), Gabsi et al. [6], Gözen and Tunç [7], Graef
and Tunç [8], Jin and Luo [9], Levin [10], Pi ([11], [12]), Raffoul [13], Tunç ([15],
[16],[17],[18], [19]), Tunç and Mohammed [20], Tunç and Tunç ([21], [22],[23]) and
their references). Among these investigations, the stability analysis of solutions has
been an important topic for IDEs with constant or variable delay and without delay.
For various models and kinds of IDEs, many significant results have been presented,
see, for example, the references of this article and those registered therein. Here,
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we would not give the details of the works and their applications. However, we
would like to summarize here a few related results on the topic.

First, in 1963, Levin [10] considered the linear IDE

dx

dt
= −

∫ t

0

a(t− s)g(x(s))ds

and the author gave sufficient conditions guaranteeing that if any solution of the
above IDE exists on [0,∞), then the solution of this IDE, its first and second order
derivatives tends to zero when t→∞. The proof of the main result of [10] involves
the use of a suitably chosen Lyapunov function.

Later, in 2004, Burton [4] took into consideration the following non-linear IDE
with constant delay of the form

dx

dt
= −

∫ t

t−r
a(t, s)g(x(s))ds.

In [4], instead of using a Lyapunov functional, the author studied asymptotic stabil-
ity of the above IDE by using the concept of a contraction mapping in line with the
fixed point theory for a class of equations which has been comprehensively studied
in the last fifty years. The results of [4] look very interesting.

Finally, Jin and Luo [9] studied a scalar integro-differential equation (in both
the linear and nonlinear cases) establishing sufficient conditions for the existence,
stability and asymptotic stability for the null solutions. The IDEs examined by the
authors are given by

dx

dt
= −

∫ t

t−r(t)
a(t, s)x(s)ds

and

dx

dt
= −

∫ t

t−r(t)
a(t, s)g(x(s))ds.

In [9], in order to have the possibility of applying Banach’s fixed point theorem,
first IDE is written in an equivalent form and if x(t) = ψ(t) on [−r0, 0), it is shown
that the solution x(t) of first IDE is bounded on [−r0,∞) and the trivial solution
of the same IDE is also stable. Under an additional condition, it is proved for the
second IDE that x(t) → 0 as t → ∞. The nonlinear case (the second IDE) looks
somewhat more complicated but it admits a treatment similar to that of the former
one.

The motivation to consider IDE (1.1) and investigation its some qualitative prop-
erties come from the papers of Levin [10], Burton [4], Jin and Luo [9] and the sources
that found in the references of this article. Here, we give new results on the bound-
edness, stability, asymptotic stability and some other properties of solutions of IDE
(1.1). The considered IDE, the results and assumptions to be given here are differ-
ent from that can be found in the literature and complete that ones. These are the
contributions of this paper to the literature and its novelty and originality.

The following definition may be useful for readers.
Definition 1. The zero solution of IDE (1.1) is said to be stable at t = 0 if, for
every, ε > 0, there exists a δ > 0 such that ψ : [−r0, 0] → (−δ, δ) implies that
|x(t)| < ε for t ≥ −r0.
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We can write IDE (1.1) as

dx

dt
+ b(t)x =

2∑
i=1

G(t, t− ri(t))(1− r′i(t))x(t− ri(t))

+

2∑
i=1

d

dt

∫ t

t−ri(t)
G(t, s)x(s)ds, (1.2)

where

G(t, s) =

∫ s

t

a(u, s)du with G(t, t− ri(t)) =

∫ t−ri(t)

t

a(u, t− ri(t))du. (1.3)

Theorem 1. If x(t) is a solution of IDE (1.1) on an interval [0, T ) and satisfies the
initial condition x(t) = ψ(t) for t ∈ [−r0, 0], then x(t) is a solution of IE

x(t) =exp(−
∫ t

0

b(s)ds)ψ(0)− exp(−
∫ t

0

b(u)du)

2∑
i=1

∫ 0

−ri(0)

[b(u) +G(0, u)]ψ(u)du

+

2∑
i=1

∫ t

t−ri(t)
[b(u) +G(t, u)]x(u)du

−
∫ t

0

exp(−
∫ t

s

b(u)du)b(s)

2∑
i=1

∫ s

s−ri(s)
[b(u) +G(s, u)]x(u)duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)[b(s− ri(s) +G(s, s− ri(s))](1− r′i(s))x(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)x(s)ds (1.4)

on [0, T ), where b : [−r0,∞)→ < is an arbitrary continuous function. Conversely,
if a continuous function x(t) is equal to ψ(t) for t ∈ [−r0, 0] and is a solution of IE
(1.4) on an interval [0, τ), then x(t) is a solution of IDE (1.1) on [0, τ).

Proof. Multiplying both sides of IDE (1.2) by the factor exp(
∫ t

0
b(u)du) and inte-

grating from 0 to any t, t ∈ [0, τ), then we get

x′(t)exp(

∫ t

0

b(u)du) + exp(

∫ t

0

b(u)du)b(t)x(t)

= exp(

∫ t

0

b(u)du)

2∑
i=1

G(t, t− ri(t))(1− r′i(t))x(t− ri(t))

+ exp(

∫ t

0

b(u)du)

2∑
i=1

d

dt

∫ t

t−ri(t)
G(t, s)x(s)ds

so that

d

dt

∫ t

0

(
x(s)exp(

∫ s

0

b(u)du)

)
=

∫ t

0

[

2∑
i=1

G(s, s− ri(s))(1− r′i(s))x(s− ri(s))

+

2∑
i=1

d

ds

∫ s

s−ri(s)
G(s, u)x(u)du]exp(

∫ s

0

b(u)du).
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Hence

x(t)exp(

∫ t

0

b(u)du)− ψ(0)exp(

∫ t

0

b(u)du)

=

∫ t

0

[

2∑
i=1

G(s, s− ri(s))(1− r′i(s))x(s− ri(s))

+

2∑
i=1

d

ds

∫ s

s−ri(s)
G(s, u)x(u)du]exp(

∫ s

0

b(u)du)

so that

x(t) =exp(−
∫ t

0

b(u)du)ψ(0) +

∫ t

0

[

2∑
i=1

G(s, s− ri(s))(1− r′i(s))x(s− ri(s))

+

2∑
i=1

d

ds

∫ s

s−ri(s)
G(s, u)x(u)du]exp(

∫ s

0

b(u)du). (1.5)

Hence, we can write that

x(t) =exp(−
∫ t

0

b(s)ds)ψ(0)

+

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)
d

ds

∫ s

s−ri(s)
[b(u) +G(s, u)]x(u)duds

+

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)[b(s− ri(s)) +G(s, s− ri(s))](1− r′i(s))x(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)x(s)ds. (1.6)

We will now show that estimate (1.6) is equal to estimate (1.5).
In fact, it follows from (1.6) that

x(t) =exp(−
∫ t

0

b(s)ds)ψ(0) +

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)
d

ds

∫ s

s−ri(s)
b(u)x(u)duds

+

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)
d

ds

∫ s

s−ri(s)
G(s, u)x(u)duds

+

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)b(s− ri(s))(1− r′i(s))x(s− ri(s))ds

+

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)G(s− ri(s))(1− r′i(s))x(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)x(s)ds.
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Applying integration by part to the second and third terms of (1.6), we get

x(t) =exp(−
∫ t

0

b(s)ds)ψ(0)

−
2∑
i=1

exp(−
∫ t

s

b(s)ds)

∫ s

s−ri(s)
[b(u) +G(s, u)]x(u)du|t0

−
2∑
i=1

exp(−
∫ t

s

b(u)du)b(s)

∫ s

s−ri(s)
[b(u) +G(s, u)]x(u)duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)[b(s− ri(s)) +G(s, s− ri(s))](1− r′i(s))x(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)x(s)ds

=exp(−
∫ t

0

b(s)ds)ψ(0)

−
2∑
i=1

exp(−
∫ t

s

b(s)ds)

∫ 0

−ri(0)

[b(u) +G(0, u)]x(u)du

+

2∑
i=1

∫ t

t−ri(t)
[b(u) +G(t, u)]x(u)du

−
2∑
i=1

exp(−
∫ t

s

b(u)du)b(s)

∫ s

s−ri(s)
[b(u) +G(s, u)]x(u)duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)[b(s− ri(s)) +G(s, s− ri(s))](1− r′i(s))x(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)x(s)ds,

which leads to (1.4).
Conversely, suppose that there exists a continuous function x(t) which is equal

to ψ(t) on [−r0, 0] and satisfies IE (1.4) on an interval [0, τ). Then, the function
x(t) is differentiable on [0, τ) and if we calculate the time derivative of IE (1.4) with
the aid of Leibniz’s rule, then we obtain IDE (1.2).

Next, we will define a mapping directly from (1.4). By Theorem 1, a fixed point
of that map will be a solution of IE (1.4) and IDE (1.1). To obtain stability of
the zero solution of IDE (1.1), we need the mapping defined by IE (1.4) to map
bounded functions into bounded functions.

Let (C, ‖.‖) be the set of real-valued and bounded continuous functions on
[−r0,∞) with the supremum norm ‖.‖ that is, for φ ∈ C,

‖φ‖ = sup{|φ(t)| : t ∈ [−r0,∞)}.

In other words, we carry out our investigations in the complete metric space (C, ρ),
where ρ denotes the supremum (uniform) metric for φ1, φ2 ∈ C , and it is defined
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by

ρ(φ1, φ2) = ‖φ1 − φ2‖.

For a given continuous initial function ψ : [−r0, 0)→ < , define the set Cψ ⊂ C by

Cψ = {φ : [−r0,∞)→ <|φ ∈ C, φ(t) = ψ(t) for t ∈ [−r0, 0]}.

Let ‖.‖ denote the supremum on [−r0, 0] or on [−r0,∞). Finally, note that (Cψ, ‖.‖)
is itself a complete metric space since Cψ is a closed subset of C.
Theorem 2. Let b : [−r0,∞)→ < be a continuous function and T be a mapping
on Cψ defined for φ ∈ Cψ by

(Tφ)(t) = ψ(t) if t ∈ [−r0, 0]

and

(Tφ)(t) = exp(−
∫ t

0

b(s)ds)ψ(0)

− exp(−
∫ t

0

b(u)du)

2∑
i=1

∫ 0

−ri(0)

[b(u) +G(0, u)]ψ(u)du

+

2∑
i=1

∫ t

t−ri(t)
[b(u) +G(t, u)]φ(u)du

− exp(−
∫ t

s

b(u)du)b(s)

2∑
i=1

∫ s

s−ri(s)
[b(u) +G(s, u)]φ(u)duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)[b(s− ri(s)) +G(s, s− ri(s))](1− r′i(s))φ(s− ri(s))ds

− 2

∫ t

0

exp(−
∫ t

s

b(u)du)b(s)φ(s)ds. (1.7)

Assume that there exist constants k ≥ 0 and α > 0 such that

−
∫ t

0

b(s)ds ≤ k (1.8)

and

2∑
i=1

∫ t

t−ri(t)
|b(u) +G(t, u)|du

+

2∑
i=1

exp(−
∫ t

s

b(u)du)|b(s)|
∫ s

s−ri(s)
|b(u) +G(s, u)|duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)|b(s− ri(s)) +G(s, s− ri(s))||(1− r′i(s)|ds

+ 2

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|ds ≤ a (1.9)

for t ≥ 0, then T : Cψ → Cψ.
Proof. For φ ∈ Cψ, Tφ is continuous and agrees with ψ on [−r0, 0] by virtue of
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the definition of T . In view of (1.8) and (1.9), for t > 0, we have

|(Tφ)(t)| ≤ exp(k)|ψ(0)|+ exp(k)

2∑
i=1

∫ 0

−ri(0)

|b(u) +G(0, u)||φ(u)|du+ α‖φ‖.

Hence, subject to the hypotheses of Theorem 2, it is clear that

|(Tφ)(t)| ≤ exp(k)|ψ|(1 +

2∑
i=1

∫ 0

−ri(0)

|b(u) +G(0, u)|du) + α‖φ‖ <∞. (1.10)

Thus, we can conclude that Tφ ∈ Cψ.
Theorem 3. Let k ≥ 0, α ∈ (0, 1) and b : [−r0,∞) → < be a continuous
function such that (1.8) and (1.9) hold for t ≥ 0. Then for each continuous function
ψ : [−r0, 0] → <, there is an unique continuous function x : [−r0,∞) → < with
x(t) = ψ(t) on [−r0, 0). In addition, x(t) is bounded on [−r0,∞) and the zero
solution of IDE (1.1) is stable at t = 0. Finally, if∫ t

0

b(s)ds→∞ (1.11)

holds as t→∞, then x(t)→ 0 as t→∞.
Proof. We now take into consideration the space Cψ defined by the continuous
initial function ψ : [−r0, 0] → <. For φ, η ∈ Cψ in the light of the hypotheses of
Theorem 3, it can be seen that

|(Tφ)(t)− (Tη)(t)| ≤
2∑
i=1

∫ t

t−ri(t)
|b(u) +G(t, u)||φ(u)− η(u)|du

+

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|
2∑
i=1

∫ s

s−ri(s)
|b(u) +G(s, u)|||φ(u)− η(u)|duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)|b(s− ri(s) +G(s, s− ri(s)))|

× |1− r′i(s)||φ(s− ri(s))− η(s− ri(s))|ds

+ 2

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)||φ(s)− η(s)|ds

≤ (

2∑
i=1

∫ t

t−ri(t)
|b(u) +G(t, u)|du

+

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|
2∑
i=1

∫ s

s−ri(s)
|b(u) +G(s, u)|duds

+

2∑
i=1

exp(−
∫ t

s

b(u)du)|b(s− ri(s) +G(s, s− ri(s)))||1− r′i(s)|ds

+ 2

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|‖φ− η‖ds.

By the definition of T and (1.9), T is a contraction mapping with contraction
constant α. By Banach’s contraction mapping principle, T has a unique fixed point
x in Cψ which is a bounded and continuous function. By Theorem 3, it is a solution
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of IDE (1.1) on [0,∞). It follows that x is the only bounded and continuous function
satisfying IDE (1.1) on [0,∞) and the initial condition.

It is clear that the zero solution of IDE (1.1) is stable. If x(t) is a solution with
the initial function ψ on [−r0, 0], then, by (1.10), we have

(1− α)‖x‖ ≤ exp(k)‖ψ‖(1 +

2∑
i=1

∫ 0

−ri(0)

|b(u) +G(0, u)|du).

Then, for each ε > 0, there exists a δ > 0 such that |x(t)| < ε for all t ≥ −r0 if
‖ψ‖ < δ.

Next we prove that the solution of IDE (1.1) tends to zero when (1.11) holds.
First, we define a subset C0

ψ of Cψ by

C0
ψ = {φ : [−r0,∞)→ <|φ ∈ C, φ(t) = ψ(t) for t ∈ [−r0, 0], φ(t)→ 0 as t→∞}.

Since C0
ψ is a closed subset of Cψ and (C0

ψ, ρ) is complete, then the metric space

(C0
ψ, ρ) is also complete. Now we show that (Tφ)(t)→ 0 as t→∞ when φ ∈ C0

ψ.

By (1.7) and (1.9), we have

|(Tφ)(t)| ≤ exp(−
∫ t

0

b(s)ds)(|ψ(0)|+
2∑
i=1

∫ 0

−ri(0)

|b(u) +G(0, u)|)du

+ α‖φ‖[t−ri(t),t] + |I4|+ |I5|,
where t > 0, I4 and I5 denote fourth and fifth, sixth terms of (1.7), respectively.

We can prove that each of the above terms tend to zero as t→∞. In fact, it is
easy to see that the first term tends to 0 by (1.11) and the second term approaches
zero as t → ∞ since t − ri(t) → ∞, i = 1, 2. Hence, for each ε > 0, there exists a
M > 0 such that

‖φ‖[M−ri(M),∞) ≤
ε

2α
since t− ri(t)→∞ as t→∞. Then, for t ≥M we can see that

|I4| ≤
∫ M

0

∣∣∣∣b(s) exp(−
∫ M

s

b(u)du)

2∑
i=1

∫ s

s−ri(s)
|b(u) +G(s, u)|duds‖φ‖ exp(−

∫ t

T

b(u)du)

+

∫ t

T

|b(s) exp(−
∫ t

s

b(u)du)
2∑
i=1

∫ s

s−ri(s)
|b(u) +G(s, u)|duds‖φ‖[M−ri(M),∞).

By (1.11), there exists a τ ≥M such that ‖φ‖ exp(−
∫ t
T
b(u)du) < ε

2α for t > τ .
Thus, for every ε > 0 there exists a τ > 0 such that t > τ implies I4 < ε, that is,
I4 → 0 as t→∞.

Similarly, we can show that I5 tends to zero t → ∞. This yields (Tφ)(t) → 0
as t → ∞, and hence T : C0

ψ → Cψ. Therefore, T is a contraction on C0
ψ with a

unique fixed point x. By Theorem 1, x is a solution of IDE (1.1) on [0,∞). Hence,
x(t) is the only continuous solution of IDE (1.1) agreeing with the initial function
ψ. Since x ∈ C0

ψ, then x(t)→ 0 as t→∞.
We now give an example to show the applicability of Theorem 3.

Example. Let us consider the following integro -differential equation of first order
with two variable delays, which is a special case of IDE (1.1):

x′(t) = − 0.2t

t2 + 1
x(t)−

2∑
i=1

∫ t

t−ri(t)

0.2

s2 + 1
x(s)ds, (1.12)
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where r1(t) = 0.385t and r2(t) = 0.476t.
When we compare IDE (1.12) with IDE (1.1) and take into consideration the

hypotheses of Theorem 3, it can easily be seen that

b(t) =
0.2t

t2 + 1

and

a(t, s) =
0.2

s2 + 1
.

Hence, we have

G(t, s) =

∫ s

t

0.2

s2 + 1
du =

0.2(s− t)
s2 + 1

.

For the function b(t), we obtain∫ t

0

b(s)ds =
1

5

∫ t

0

s

s2 + 1
ds =

1

10
ln(t2 + 1).

Hence, clearly, it follows that

1

10
ln(t2 + 1)→∞ when t→∞.

Thus, the hypothesis (1.11) holds.
We also have

2∑
i=1

∫ t

t−ri(t)
|b(u) +G(t, u)|du =

2∑
i=1

∫ t

t−ri(t)

∣∣∣∣ 0.2u

u2 + 1
+

0.2(u− t)
u2 + 1

∣∣∣∣du
=

∫ t

0.615t

0.4u− 0.2t

u2 + 1
du+

∫ t

0.524t

0.4u− 0.2t

u2 + 1
du

= µ1(t) + µ2(t).

By an easy calculation, we can get

µ1(t) =

∫ t

0.615t

0.4u

u2 + 1
−
∫ t

0.615t

0.2u

u2 + 1

= 0.2ln(u2 + 1)|t0.615t − 0.2t arctanu|t0.615t

= 0.2ln(t2 + 1)− 0.2ln(0.6152t2 + 1)− 0.2t arctan t+ 0.2t arctan 0.615t

= 0.2t[arctan 0.615t− arctan t] + 0.2ln(t2 + 1)− 0.2ln(0.6152t2 + 1).

By the same way, we can calculate µ2 and obtain

µ2(t) = 0.2t[arctan 0.524t− arctan t] + 0.2ln(t2 + 1)− 0.2ln(0.5242t2 + 1).

It is obvious that both of these functions, that is, µ1 and µ2 are increasing in [0,∞).
We now need to find that

lim
t→∞

µ1(t) + lim
t→∞

µ2(t).
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If we do the necessary calculations, then

lim
t→∞

µ1(t) = lim
t→∞

[
0.2[(0.615/0.615t2 + 1)− (1 + 1/t2)]

−1/t2

+ 0.2 ln(
t2(1 + 1/t2)

t2(0.6152 + 1/t2)
)]

= lim
t→∞

0.2[
1

1 + 1/t2
− 0.615

0.6152 + 1
t2

+ ln(1/0.6152)]

=0.2[1− 1/0.615− 2 ln(0.615)]
∼=0.0692499524

and

lim
t→∞

µ2(t) = lim
t→∞

[
0.2[(0.524/0.524t2 + 1)− (1 + 1/t2)]

−1/t2

+ 0.2 ln(
t2(1 + 1/t2)

t2(0.5242 + 1/t2)
)]

= lim
t→∞

0.2[
1

1 + 1/t2
− 0.524

0.5242 + 1
t2

+ ln(1/0.5242)]

=0.2[1− 1/0.524− 2 ln(0.524)]
∼=0.0768260486.

Hence, we have

2∑
i=1

∫ t

t−ri(t)
|b(u) +G(t, u)| < 0.07 + 0.08 = 0.15,

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|
∫ s

s−ri(s)
|b(u) +G(s, u)|duds < 0.15,

2∑
i=1

∫ t

0

exp(−
∫ t

s

b(s)ds)|b(s− ri(s) +G(s, s− ri(s)))||1− r′i(s)|ds

= 0.2(2− 1/0.615)

∫ t

0

exp(−
∫ t

s

u

u2 + 1
)

s

s2 + 1/0.615t2
ds

+ 0.2(2− 1/0.524)

∫ t

0

exp(−
∫ t

s

u

u2 + 1
)

s

s2 + 1/0.524t2
ds

< 0.2[(2− 1/0.615)] + 0.2[(2− 1/0.524)]
∼= 0.09331173587 < 0.1

and

2

∫ t

0

exp(−
∫ t

s

b(u)du)|b(s)|ds < 0.3,

respectively.
Let α = 0.15+0.15+0.1+0.3 = 0.7 < 1. Hence, we can conclude that x(t) of IDE

(1.12) is bounded on [−r0,∞) and the zero solution of IDE (1.12) is asymptotically
stable.
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