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NEW THEOREMS BY MINIMAX INEQUALITIES ON H-SPACE

SETAREH GHEZELLOU, MAHDI AZHINI, MEHDI ASADI∗

Abstract. In this paper, we generalize some theorems by using minimax

inequalities from real valued mappings to vector valued mappings in a partial

ordering space by a pointed positive cone. An example is given to illustrate
our result.

1. Introduction

In the years 1983-1985 C. Horvath obtained minimax inequalities by replacing
convexity assumptions with merely topological properties: pseudo-convexity in [6]
and contractibility in [7, 8]. Then in 1989 R. Ceppitelli and C. Bardaro in [1]
generalized Horvath’s generalized minimax inequality in to vector valued in H-
spaces.

There are several methods to prove vector valued minimax theorems including
F. Ferro in [4] and C. Bardaro-R. Ceppitelli in [1] and some others.

The first two minimax theorem ware obtained by K. Fan [3] in generalizing Sian’s
minimax theorem [9].

At first, let E be a vector space.We shall denote by 2E the set of all subsets of E
and by co(A) the convex hull of A ∈ 2E . Let X be an arbitrary non-empty subset

of E. A map F : X → 2E is called a KKM map if co({x1, · · · , xn}) ⊆
n⋃

k=1

F (xi).

for each finite subset {x1, · · · , xn} of X, (See[10]).
Let E be a linear space, and C a subset of E, C is called a cone in E if it satisfies:

(i) C is closed, nonempty and C 6= {0},
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ C imply that ax+ by ∈ C,

(iii) x ∈ C and −x ∈ C imply that x = 0.

The space E can be partially ordered by the cone C ⊂ E; that is, x ≤ y if and
only if y−x ∈ C. Also we write x� y if y−x ∈ C◦, where C◦ denotes the interior
of C.
A cone C is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y
implies ‖x‖ ≤ K‖y‖. The smallest positive such number is called the normal
constant of C.
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In the following we always suppose that E is a partially ordered linear space, C is
a cone in E with C◦ 6= ∅ and ≤ is the partial ordering induced on E by C.

Definition 1.1. ([5]) A partially ordered linear space, is a quadruple (E,+, ·,≤)
where (E,+, ·) is a linear space over the field R of real numbers and ≤ is a partial
ordering on E such that

(i) If x ≤ y, then x+ z ≤ y + z for every z ∈ E;
(ii) If x ≥ 0 in E, then αx ≥ 0 whenever α ≥ 0 in R.

Definition 1.2. ([5])

(1) From Definition 1.1 (i), we see that x ≤ y ⇐⇒ 0 ≤ y − x. So ≤ is
determined entirely by E+ = {x : x ∈ E, x ≥ 0}, the positive cone of E.

(2) A lattice is a partially ordered set (A,≤) such that sup{a, b} and inf{a, b}
exist for all elements a and b of A.

(3) A Riesz space, or vector lattice, is a partially ordered linear space (E,+, ·,≤
) such that (E,≤) is a lattice.

Example 1.3. ([5])

(1) Let E be a partially ordered linear space such that sup{x, 0} exists for every
x ∈ E. Then E is a Riesz space.

(2) The set of real numbers is a Riesz space.
(3) Let K be an arbitrary set. Then C(K), the space of continuous functions

on K is Riesz space.

In this paper let X be a topological space and (E,C) be a topological Riesz
space, where C is the positive cone.

Definition 1.4. ([1]) By H-space we mean a pair
(
X, {ΓA}

)
, where X is a topo-

logical space and {ΓA} is a given family of nonempty contractible subsets of X, that
is, intuitively it is one that can be continuously shrunk to a point within that space
or it is null-homotopic or it is homotopic to some constant map, indexed by the
finite subsets of X.

Let
(
X, {ΓA}

)
be an H−space. A subset D ⊂ X is called H−convex if, for every

finite subset A ⊂ D, it follows that ΓA ⊂ D.
A subset D ⊂ X is called weakly H-convex if, for every finite subset A ⊂ D, it

results that ΓA ∩D is nonempty and contractible.
Finally, a subset K ⊂ X is called H-compact if, for every finite subset A ⊂ X,

there exists a compact, weakly H-convex set D ⊂ X such that K ∪A ⊂ D.
For every finite subset A = {x1, . . . , xn} ⊂ X, we can set ΓA = co{x1, . . . , xn};

moreover, any convex subset of X is H-convex and any nonempty compact convex
subset is H-compact.

We recall the following remark, since we shall use it in Theorems 1.6 and 1.7 in
our main results.

Remark. ([1]) Every Hausdorff topological vector space is H-space: For every
finite subset A = {x1, . . . , xn} ⊂ X, we can set ΓA = co{x1, . . . , xn}; moreover,
any convex subset of X is H-convex and any nonempty compact convex subset is
H-compact.

Every contractible space X is an H-space: at first we may put ΓA = X for every
finite subset A ⊂ X with this structure, the only H-convex subset of X is X itself.
For more detail see ([1]).
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Definition 1.5. ([1]) In a given H-space
(
X, {ΓA}

)
, a multifunction F : X −→ 2X

is called H −KKM if ΓA ⊂
⋃

x∈A
F (x), for each finite subset A ⊂ X.

We premise same notations: given a multifunction F : X −→ 2X , we put:
F−1(y) =

{
x ∈ X; y ∈ F (x)

}
and F ∗(y) = X − F−1(y).

The following theorems are Theorem 1, 2 of Bardaro-Ceppitelli [1].

Theorem 1.6. ([1]) Let
(
X, {ΓA}

)
be an H-space and F : X −→ 2X an H−KKM

multifunction such that:

a) For each x ∈ X, F (x) is compactly closed, that is, B ∩F (x) is closed in B,
for every compact B ⊂ X.

b) There is a compact set L ⊂ X and an H-compact K ⊂ X, such that, for
each weakly H-convex set D with K ⊂ D ⊂ X, we have

⋂
x∈D

(
F (x)∩D

)
⊂ L.

Then
⋂

x∈X
F (x) 6= ∅.

Theorem 1.7. ([1]) Let
(
X, {ΓA}

)
be an H-space, G,F : X −→ 2X two multi-

functions such that:

a) For every x ∈ X, G(x) is compactly closed and F (x) ⊂ G(x);
b) x ∈ F (x), for every x ∈ X;
c) for every x ∈ X, F ∗(x) is H-convex;
d) the multifunction G verifies property (b) of Theorem 1.6 then

⋂
x∈X G(x) 6=

∅.

2. Main Results

In this section we will generalize some minimax theorems in Tan [10] and Ding-
Tan [2] in to vector valued mappings by Theorem 1.6 and Theorem 1.7.

Remember that, the space E can be partially ordered by the cone C ⊂ E; that
is, x ≤ y if and only if y − x ∈ C.

Theorem 2.1. Let X be a non-empty convex set in Hausdorff topological vector
space. Let f, g : X ×X → (E,C) having the following properties:

a) f(x, y) ≤ g(x, y) for all (x, y) ∈ X ×X, and g(x, x) ≤ 0 for all x ∈ X.
b) for each fixed x ∈ X,

{
y ∈ X : f(x, y) ∈ −C

}
is compactly closed.

c) For each fixed y ∈ X, the set
{
x ∈ X : g(x, y) /∈ −C

}
is convex.

d) There exists a non-empty compact convex subset K of X such that for each
y ∈ X \K there exists a point x ∈ K with f(x, y) /∈ −C.

Then there exists a point ŷ ∈ K such that f(x, ŷ) ∈ −C for all x ∈ X.

Proof. For each x ∈ X, define: K(x) =
{
y ∈ X : f(x, y) ∈ −C

}
. By (b); K(x) is

compactly closed in K for every x ∈ X.
We first prove that the family

{
K(x); x ∈ X

}
has the finite intersection property.

Now choose x1, . . . , xm ∈ X. Let B ≡ co
(
K ∪ {x1, . . . , xm}

)
. Then B is a

compact convex subset of X for every x ∈ X define F (x) =
{
y ∈ B; f(x, y) ∈ −C

}
,

G(x) =
{
y ∈ B; g(x, y) ∈ −C

}
.

By (a), x ∈ F (x), then for each x ∈ B, F(x) is non-empty.
We shall show that

⋂
x∈B

F (x) 6= ∅. Our next goal is to show that, this theorem

satisfy in assumptions of Theorem 1.7. Then we have the following:
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Let y ∈ G(x), there for, g(x, y) ≤ 0 and by (a) f(x, y) ≤ 0, and y ∈ F (x), thus
G(x) ⊆ F (x) on the other side F (x) is compactly closed, because B is compact and
by (b),

{
y ∈ X : f(x, y) ∈ −C

}
is compactly closed.

By (a), for each x ∈ X, g(x, x) ≤ 0, thus x ∈ G(x).
We have, for each y ∈ X,

G∗(y) = X −G−1(y) =
{
x ∈ X; x /∈ G−1(y)

}
=

{
x ∈ X; y /∈ G(x)

}
=
{
x ∈ X; g(x, y) /∈ −C

}
,

by (c), G∗(y) is convex.
Suppose that D ⊆ X is weakly H-convex with L ⊆ D. We will prove

⋂
x∈D

(
F (x)∩

D) ⊆ L.
Let z ∈

⋂
x∈D

(
F (x) ∩D), we would have:

(z ∈ D, z ∈ F (x))⇒ (z ∈ D, f(x, z) ≤ 0)⇒ (z ∈ D, f(x, z) ∈ −C), (2.1)

for all x ∈ D. Suppose z is not in L, therefore by (d), there exists a x0 in L that
f(x0, z) /∈ −C. If x0 be in L by L ⊆ D we have x0 ∈ D and this contradicts (2.1)
then z ∈ L and

⋂
x∈D

(
F (x) ∩D) ⊆ L.

We recover condition (d) of Theorem 1.7.
Therefore,this theorem satisfies in conditions of Theorem 1.7, Hence it follows

that
⋂

x∈B
F (x) 6= ∅. In other words, there exists a point y ∈ B such that f(x, y) ≤ 0,

so f(x, y) ∈ −C for all x ∈ B.
It follows that y ∈ L by (d) and y ∈ K(x1)∩ · · · ∩K(xm) by definition of K(x).

Thus
{
K(x); x ∈ X

}
has the finite intersection property. By compactness of L,

we have
⋂

x∈X
K(x) 6= ∅.

Now, if we choose that ŷ ∈
⋂

x∈X
K(x), there for f(x, ŷ) ∈ −C for all x ∈ X, and

the proof is complete. �

Example 2.2. Let f, g be two vector-valued functions on R+×R+ and taking values
in (E,C) define f(x, y) = (−3x+ y,−4x+ y), g(x, y) = (−2x+ y,−3x+ y) and set
C = {(x, y) ∈ R2;x, y ≥ 0}. For every (a, b), (c, d) ∈ R2 we consider

(a, b) ≤ (c, d) ⇐⇒ a ≤ c and b ≤ d.

Obviously, f(x, y) ≤ g(x, y) for all (x, y) ∈ R+ × R+ and g(x, x) ≤ 0 for all
x ∈ R+.

We have, {y ∈ R+; f(x, y) ∈ −C} = {0} therefore, {y ∈ R+; f(x, y) ∈ −C} is
compactly closed for each fixed x ∈ R+.

For each y ∈ R+, {x ∈ R+; g(x, y) /∈ −C} is convex, because {x ∈ R+; g(x, y) /∈
−C} = ∅.

We put k = {0}, it is seen that f(x, y) > 0 for every y ∈ R+\{0} and x = 0.
Finally we take ŷ = 0, it is easy to check that f(x, ŷ) ≤ 0 for every x ∈ R+.

Theorem 2.3. Let X be a non-empty convex set in a Hausdorff topological vector
space. Assume that f1, f2 : X ×X → (E,C) f1 and with the following properties:

a) f1(x, y) ≤ f2(x, y) for all (x, y) ∈ X ×X.
b) For all x ∈ X,

{
y : f1(x, y) ≤ α

}
is compactly closed for all α ∈ E.

c) For all x ∈ X,
{
x : f2(x, y) > α

}
is convex for all α ∈ E.
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d) There exists a non-empty compact convex subset K of X such that for all
y ∈ X \K there exists a point x ∈ X with f1(x, y) ∈ Co + sup

z∈X
f2(z, z) if

sup
z∈X

f2(z, z) <∞.

Then the minimax inequality min sup
y∈K x∈X

f1(x, y) ≤ sup
x∈X

f2(x, y) holds.

Proof. Choose t = sup
x∈X

f2(x, x) it exists.

Define g(x, y) = f2(x, y)−t, f(x, y) = f1(x, y)−t. It suffices to show that g(x, y),
f(x, y) satisfy in Theorem 2.1.

For all t < +∞, we have f1(x, y) − t ≤ f2(x, y) − t. Therefore f(x, y) ≤ g(x, y)
and for every x ∈ X, g(x, x) = f2(x, x)− t ≤ sup

x∈X
f2(x, x)− t = 0.

For all x ∈ X and for all α ∈ E, the set
{
y : f1(x, y) ≤ α

}
is compactly closed

and for all t < +∞, the set
{
y : f(x, y) + t ≤ α

}
is compactly closed if we take

α = t = 0, we would have
{
y : f(x, y) ≤ 0

}
is compactly closed.

For all x ∈ X and for all α ∈ E, the set
{
x : f2(x, y) > α

}
is convex and for all

t < +∞, the set
{
x : g(x, y) + t > α

}
is convex.

If we take α = t = 0, we would have
{
x : g(x, y) > 0

}
is convex therefore{

x : g(x, y) /∈ −C
}

is convex.
By (d), f1(x, y) ∈ Co+ sup

z∈X
f2(z, z), therefore f1(x, y)−t ∈ Co then f(x, y) ∈ Co.

By Theorem 2.1, f(x, y) ≤ 0, for all (x, y) ∈ X × X, therefore f1(x, y) ≤ t,
so that f1(x, y) ≤ sup

x∈X
f2(x, x) then sup

x∈X
f1(x, y) ≤ sup

x∈X
f2(x, x) it follows that

min sup
y∈K x∈X

f1(x, y) ≤ sup
x∈X

f2(x, x). �

Theorem 2.4. Let X be a non-empty convex subset of a topological vector space and
(E,C) be an order complete topological Riesz space, and let f, g : X ×X → (E,C)
be such that:

a) f(x, y) ≤ g(x, y) for all x, y ∈ X and g(x, x) ∈ −C for all x ∈ X.
b) For each x ∈ X the set

{
y; f(x, y) ∈ −C

}
is compactly closed.

c) For each y ∈ X, the set
{
x ∈ X; g(x, y) ∈ Co

}
is convex.

d) There exists a non-empty compact convex subset X0 of X and non-empty
compact subset K of X such that for each y ∈ X \K, there is an x0 ∈ Co(
X0 ∪ {y}

)
with f(x, y) ∈ Co.

Then there exists ŷ ∈ K such that f(x, ŷ) ∈ −C for all x ∈ X.

Proof. For each x ∈ X define K(x) =
{
y ∈ K : f(x, y) ∈ −C

}
for every x ∈ X;

K(x) is closed in K by (b). Our claim is to prove the family
{
K(x) : x ∈ X

}
has

the finite intersection property.
Choose x1, . . . , xm ∈ X. Let B ≡ co

(
K ∪ {x1, . . . , xm}

)
then B is a compact

subset of X for every x ∈ X define:

F (x) =
{
y ∈ B; f(x, y) ∈ −C

}
, G(x) =

{
y ∈ B; g(x, y) ∈ −C

}
. (2.2)

It is clear that F (x) and G(x) is non-empty by (a). We show that
⋂

x∈B
F (x) 6= ∅.

Next, we show, this theorem satisfies in assumptions of Theorem 1.7. Then we
have the following:
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Let y ∈ G(x), therefore, g(x, y) ≤ 0 and by (a) f(x, y) ≤ 0, and y ∈ F (x), thus;
G(x) ⊆ F (x) on the other hand, F (x) is compactly closed, because B is compact
and by (b),

{
y ∈ X; f(x, y) ∈ −C

}
is compactly closed.

For each x ∈ X, g(x, x) ≤ 0, by (a), thus x ∈ G(x).
For each y ∈ X, we have

G∗(y) = X −G−1(y) =
{
x ∈ X; x /∈ G−1(y)

}
=
{
x ∈ X; g(x, y) /∈ −C

}
.

By (c), G∗(y) is convex.
Suppose that, D ⊆ X is weakly H-convex. Therefore, X0 ⊆ D ⊆ L. It suffices

to show that
⋂

x∈D

(
F (x) ∩D

)
⊆ L.

If y ∈
⋂

x∈D

(
F (x) ∩D

)
, we would have

(y ∈ D, y ∈ F (x))⇒ (y ∈ D, f(x, y) ∈ C.) (2.3)

for all x ∈ D. Suppose y is not in L, therefore by (d), there exists x ∈ co(X0 ∪{y})
that f(x, y) /∈ −C, since y ∈ D. Therefore, X0 ∪ {y} ⊆ D and because X0 ∪ {y} ⊆
co(X0 ∪ {y}). Then co(X0 ∪ {y}) ⊆ D and x ∈ D and this contradicts (2.3). Thus
y ∈ L,

⋂
x∈D

(
F (x) ∩D

)
⊆ L by Theorem 1.7, we have;

⋂
x∈D

F (x) 6= ∅. On the other

hand, there exists a point y ∈ B such that f(x, y) ∈ −C for all x ∈ B.
It follows that y ∈ L by (d) and y ∈ K(x1)∩ . . .∩K(xm) by definition of K(x).

Thus {K(x);x ∈ X} has the finite intersection property by compactness of L, we
have

⋂
x∈X

K(x) 6= ∅.

Now, if we choose that ŷ ∈
⋂

x∈X
K(x), therefore f(x, ŷ) ∈ −C for all x ∈ X, and

the proof is complete. �

The next Corollaries are [2, Corollary 1, 2] which we improved them here.

Corollary 2.5. Let X be a non-empty compact convex subset of topological vector
space and let f : X×X → (E,C) be such that for each x ∈ X,

{
y : f(x, y) ∈ −C

}
is compactly closed. Then for each t ∈ E, one of the following properties holds:

(1) There exists ŷ ∈ X such that f(x, ŷ) ∈ t+ C for all x ∈ X;
(2) There exists A ∈ F(X) (the family of all non-empty finite subset of X) and

y ∈ co(A) such that min
x∈A

f(x, y) ∈ t+ Co.

Proof. Define F (x, y) = f(x, y) − t for all x, y ∈ X; therefore for all x ∈ X,{
y : F (x, y) ∈ t−C

}
is compactly closed. FixX0 = K = X therefore condition (iii)

of Theorem 2.4 holds. If for every A ∈ F(X) and for each y ∈ co(A), min
x∈A

F (x, y) ∈
−C. Therefore,by Theorem 2.4 exists ŷ ∈ X such that for all x ∈ X, F (x, ŷ) ∈ −C.
It follows that f(x, ŷ) ∈ t− C for all x ∈ X and (1) holds.

On the other hand, if there existsA ∈ F(X) and y ∈ co(A) such that min
x∈A

F (x, y) ∈
Co, then min

x∈A
f(x, y) ∈ t+ Co and finally the condition (2) holds. �

Corollary 2.6. Let X be a non-empty compact convex subset of a topological vector
space and let f, g : X ×X → (E,C) be such that

(i) f(x, y) ≤ g(x, y) for all x, y ∈ X;
(ii) For each x ∈ X;

{
y : f(x, y) ∈ −C

}
is compactly closed.

(iii) For each y ∈ X and t ∈ E, the set
{
x ∈ X; g(x, y) ∈ t+ Co

}
is convex.
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Then the minimax inequality

min sup
y∈X x∈X

f(x, y) ≤ sup
x∈X

g(x, x)

holds.

Proof. It suffices to suppose that t = sup
x∈X

g(x, x) < ∞ we only need to show that

the condition (2) of Corollary 2.5 can’t occur.
If there exists A ∈ F (x) and y ∈ co(A). Such that min

x∈A
f(x, y) ∈ t + Co.

Therefore, by (i), we have, min
x∈A

g(x, y) ∈ t + Co and by (iii) g(y, y) ∈ t + Co

contracting t = sup
x∈x

g(x, x). Then condition(1) of Corollary 2.5 holds. Then there

exists y ∈ X such that for every x ∈ X, f(x, y) ∈ t−C and because (E,C) is order
complete space then is defined sup

x∈X
f(x, y) and we have sup

x∈X
f(x, y) ≤ t. Then

min sup
y∈X x∈X

f(x, y) ≤ sup
x∈X

g(x, x).

�

The next results are [10, Theorems 1, 2] and [2, Theorem 2], that we improved
them in this paper.

Corollary 2.7. Let X be a non-empty convex set in a Hausdorff topological vector
space E. Let φ and ψ be two real-valued functions on X ×X having the following
properties:

a) We have φ(x, y) ≤ ψ(x, y) for all (x, y) ∈ X ×X, and ψ(x, x) ≤ 0 for all
x ∈ X;

b) for each fixed x ∈ X, φ(x, y) is a lower semi-continuous function of y on
X;

c) for each fixed y ∈ X, the set {x ∈ X : ψ(x, y) > 0} is convex;
d) there exists a non-empty compact convex subset K of X such that for each

y ∈ X \K there exists a point x ∈ K with φ(x, y) > 0.

Then there exists a point ŷ ∈ K such that φ(x, ŷ) ≤ 0 for all x ∈ X.

Corollary 2.8. Let X be a non-empty convex set in a Hausdorff topological vector
space. Let φ1 and φ2 be two real-valued functions on X ×X having the following
properties:

a) We have φ1(x, y) ≤ φ2(x, y) for all (x, y) ∈ X ×X.
b) For each fixed x ∈ X, φ1(x, y) is a lower semi-continuous function of y on

X.
c) For each fixed y ∈ X, φ2(x, y) is a quasi-concave function of x on X.
d) There exists a non-empty compact convex subset K of X such that for

all y ∈ X \ K there exists a point x ∈ X with φ1(x, y) > sup
z∈X

φ2(z, z) if

sup
z∈X

φ2(z, z) <∞.

Then the minimax inequality min sup
y∈K x∈X

φ1(x, y) ≤ sup
x∈X

φ2(x, x) holds.

Corollary 2.9. Let X be a non-empty convex subset of a topological vector space
and let f, g : X ×X −→ R ∪ {−∞,∞} be such that

a) f(x, y) ≤ g(x, y) for all x, y ∈ X and g(x, x) ≤ 0 for all x ∈ X;
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b) for each fixed x ∈ X, f(x, y) is a lower semi-continuous function of y on
each non-empty compact subset C of X;

c) for each y ∈ X, the set {x ∈ X : g(x, y) > 0} is convex;
d) there exists a non-empty compact convex subset X0 of X and a non-empty

compact subset K of X such that for each y ∈ X \ K, there is an x ∈
co(X0 ∪ {y}) with f(x, y) > 0.

Then there exists ŷ ∈ K such that f(x, ŷ) ≤ 0 for all x ∈ X.
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