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NEW THEOREMS BY MINIMAX INEQUALITIES ON H-SPACE

SETAREH GHEZELLOU, MAHDI AZHINI, MEHDI ASADI*

ABSTRACT. In this paper, we generalize some theorems by using minimax
inequalities from real valued mappings to vector valued mappings in a partial
ordering space by a pointed positive cone. An example is given to illustrate
our result.

1. INTRODUCTION

In the years 1983-1985 C. Horvath obtained minimax inequalities by replacing
convexity assumptions with merely topological properties: pseudo-convexity in [6]
and contractibility in [7, [8]. Then in 1989 R. Ceppitelli and C. Bardaro in [I]
generalized Horvath’s generalized minimax inequality in to vector valued in H-
spaces.

There are several methods to prove vector valued minimax theorems including
F. Ferro in [4] and C. Bardaro-R. Ceppitelli in [I] and some others.

The first two minimax theorem ware obtained by K. Fan [3] in generalizing Sian’s
minimax theorem [9].

At first, let E be a vector space.We shall denote by 2F the set of all subsets of F
and by co(A) the convex hull of A € 2€. Let X be an arbitrary non-empty subset

n

of E. Amap F: X — 2F is called a KKM map if co{z1, -+ ,z,}) € U F(zy).
k=

1
for each finite subset {z1,--- ,x,} of X, (See[10)]).
Let E be a linear space, and C' a subset of F/, C' is called a cone in F if it satisfies:

(i) C is closed, nonempty and C' # {0},
(ii) a,b € R, a,b >0 and x,y € C imply that az + by € C,

(iii) = € C and —x € C imply that x = 0.

The space E can be partially ordered by the cone C' C F; that is, x < y if and
only if y —x € C. Also we write z < y if y — 2 € C°, where C° denotes the interior
of C.

A cone C is called normal if there exists a constant K > 0 such that 0 < z < y
implies ||z|| < K]||ly||. The smallest positive such number is called the normal
constant of C.

2000 Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. H-space; H-convex; H-compact; Riesz space; Minimax Inequality;
Compactly closed.

(©2020 Universiteti i Prishtinés, Prishtiné, Kosové.

Submitted February 3, 2020. Published April 17, 2020.

*Corresponding Author.

Communicated by Erdal Karapinar.

27



28 S. GHEZELLOU, M. AZHINI, M. ASADI

In the following we always suppose that F is a partially ordered linear space, C' is
a cone in F with C° # () and < is the partial ordering induced on E by C.

Definition 1.1. ([B]) A partially ordered linear space, is a quadruple (E,+,-,<)
where (E,+,-) is a linear space over the field R of real numbers and < is a partial
ordering on E such that

(i) Ifx <y, then x4+ z < y + z for every z € E;

(ii) If x > 0 in E, then ax > 0 whenever a > 0 in R.

Definition 1.2. ([B])
(1) From Definition (i), we see that x < y < 0 < y—x. So < is
determined entirely by ET = {x : x € E,x > 0}, the positive cone of E.
(2) A lattice is a partially ordered set (A, <) such that sup{a,b} and inf{a,b}
exist for all elements a and b of A.

(3) A Riesz space, or vector lattice, is a partially ordered linear space (E,+,-, <
) such that (E, <) is a lattice.

Example 1.3. ([5])

(1) Let E be a partially ordered linear space such that sup{x,0} exists for every
x € E. Then E s a Riesz space.

(2) The set of real numbers is a Riesz space.

(3) Let K be an arbitrary set. Then C(K), the space of continuous functions
on K 1is Riesz space.

In this paper let X be a topological space and (E,C') be a topological Riesz
space, where C' is the positive cone.

Definition 1.4. ([I]) By H-space we mean a pair (X,{T'a}), where X is a topo-
logical space and {T" 4} is a given family of nonempty contractible subsets of X, that
18, intuitively it is one that can be continuously shrunk to a point within that space
or it 1s null-homotopic or it is homotopic to some constant map, indexed by the
finite subsets of X.

Let (X, {I‘A}) be an H—space. A subset D C X is called H—convex if, for every
finite subset A C D, it follows that 'y C D.

A subset D C X is called weakly H-convex if, for every finite subset A C D, it
results that I' 4 N D is nonempty and contractible.

Finally, a subset K C X is called H-compact if, for every finite subset A C X,
there exists a compact, weakly H-convex set D C X such that K UA C D.

For every finite subset A = {z1,...,2,} C X, we can set T'y = co{z1,...,2,};
moreover, any convex subset of X is H-convex and any nonempty compact convex
subset is H-compact.

We recall the following remark, since we shall use it in Theorems [I.6] and [I.7] in
our main results.

Remark. ([I]) Every Hausdorff topological vector space is H-space: For every
finite subset A = {x1,...,2,} C X, we can set I'y = co{z1,...,x,}; moreover,
any convex subset of X is H-conver and any nonempty compact convex subset is
H-compact.

Every contractible space X is an H-space: at first we may put I'y = X for every
finite subset A C X with this structure, the only H-convex subset of X is X itself.
For more detail see ([I]).
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Definition 1.5. ([1]) In a given H-space (X,{T'a}), a multifunction F : X —s 2%

is called H — KKM if T'y ¢ |J F(x), for each finite subset A C X.
z€A

We premise same notations: given a multifunction F : X — 2%, we put:
Fly)={zeX; ye F(z)} and F*(y) = X — F~!(y).
The following theorems are Theorem 1, 2 of Bardaro-Ceppitelli [IJ.

Theorem 1.6. ([1]) Let (X,{T a}) be an H-space and F : X — 2% an H—KKM
multifunction such that:

a) For each x € X, F(x) is compactly closed, that is, BN F(x) is closed in B,
for every compact B C X.
b) There is a compact set L C X and an H-compact K C X, such that, for
each weakly H-convex set D with K C D C X, we have (| (F(z)ND) C L.
xeD

Then () F(z) # 0.
zeX
Theorem 1.7. ([1]) Let (X,{T'a}) be an H-space, G,F : X — 2% two multi-
functions such that:
a) For every x € X, G(x) is compactly closed and F(z) C G(x);
b) z € F(x), for every x € X;
¢) for every x € X, F*(x) is H-convex;
d) the multifunction G verifies property (b) of Theorem- then (e x G(x) #
0.

2. MAIN RESULTS

In this section we will generalize some minimax theorems in Tan [I0] and Ding-
Tan [2] in to vector valued mappings by Theorem and Theorem

Remember that, the space F can be partially ordered by the cone C' C F; that
is, z <y ifand only if y —x € C.

Theorem 2.1. Let X be a non-empty convex set in Hausdorff topological vector

space. Let f,g: X x X — (E,C) having the following properties:

) f(z,y) < g(z,y) for all (z,y) € X x X, and g(z,z) <0 for allxz € X.

) for each fized x € X, {y €X: f(z,y) € C} is compactly closed.

) For each fized y € X, the set {x €X: glz,y) ¢ C} is convet.

) There exists a non-empty compact convex subset K of X such that for each
y € X \ K there exists a point x € K with f(z,y) ¢ —C.

Then there exists a point y € K such that f(x,y) € —C for all x € X.

Proof. For each z € X, define: K(z) = {ye€ X : f(z,y) € —C}. By (b); K(z) is
compactly closed in K for every = € X

We first prove that the family {K (2); € X } has the finite intersection property.

Now choose z1,...,2, € X. Let B = co(K U {:El,.. xm}) Then B is a
compact convex subset of X for every € X define F'(x {y € B; f(z,y) € -C }
G(z) ={y € B; g(z,y) € —C}.

By (a), z € F(z), then for each z € B, F(x) is non-empty.

We shall show that () F(z) # 0. Our next goal is to show that, this theorem
reB
satisfy in assumptions of Theorem Then we have the following;:

a
b
¢
d
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Let y € G(x), there for, g(x,y) < 0 and by (a) f(z,y) <0, and y € F(z), thus
G(z) C F(x) on the other side F'(x) is compactly closed, because B is compact and
by (b), {y €X: f(z,y) € —C} is compactly closed.

By (a), for each z € X, g(z,z) <0, thus z € G(z).

We have, for each y € X,

G'ly) = X-G'(y={zeX;2¢G ' (y)}
= {zeX; y¢G)} ={reX; g(z,y) ¢ -C},

by (c), G*(y) is convex.
Suppose that D C X is weakly H-convex with L C D. We will prove ) (F(m)ﬂ
zeD
D)C L.
Let z € () (F(z) N D), we would have:
xeD
(zeD, zeF(x)=(z€D, f(r,2)<0)=(z€D, flz,2)e—-C), (2.1)

for all z € D. Suppose z is not in L, therefore by (d), there exists a 2o in L that
f(zo,2) ¢ —C. If g be in L by L C D we have xy € D and this contradicts (2.1)
then z € L and (| (F(z)N D) C L.

zeD

We recover condition (d) of Theorem
Therefore,this theorem satisfies in conditions of Theorem Hence it follows

that (| F(z) # (. In other words, there exists a point ¥ € B such that f(x,7) <0,
reB
so f(z,y) € —=C for all z € B.

It follows that ¥ € L by (d) and 5 € K(x1) N---N K(x,,) by definition of K (z).
Thus {K (); z€ X } has the finite intersection property. By compactness of L,
we have (| K(z) # 0.

zeX
Now, if we choose that ¥ € (| K(z), there for f(z,y) € —C for all z € X, and
reX
the proof is complete. (I

Example 2.2. Let f, g be two vector-valued functions on RT xR™ and taking values
in (E,C) define f(x,y) = (=3z+y,—4x+vy), g(x,y) = (—2z+y, -3z +y) and set
C ={(x,y) € R*x,y > 0}. For every (a,b),(c,d) € R? we consider

(a,b) < (¢,d) <= a<candb<d.

Obviously, f(x,y) < g(x,y) for all (z,y) € RT x RT and g(z,x) < 0 for all
z € RT.

We have, {y € R*; f(x,y) € —C} = {0} therefore, {y € RT; f(z,y) € —C} is
compactly closed for each fived x € RY.

For each y € RY, {x € RY;g(x,y) ¢ —C} is convez, because {x € R"; g(z,y) ¢
-C}=0.

We put k = {0}, it is seen that f(z,y) > 0 for every y € R*\{0} and z = 0.
Finally we take § = 0, it is easy to check that f(z,5) <0 for every x € RT.

Theorem 2.3. Let X be a non-empty convex set in a Hausdorff topological vector
space. Assume that f1, fo: X x X — (E,C) f1 and with the following properties:
a) fi(z,y) < falz,y) for all (z,y) € X x X.
b) Forallz € X, {y s fi(z,y) < a} is compactly closed for all o € E.
c) Forallz € X, {x s fa(z,y) > a} is convez for all a € E.
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d) There exists a non-empty compact convex subset K of X such that for all
y € X\ K there exists a point © € X with fi(z,y) € C° + sup fa(z, 2) if
zeX
sup fa(z,2) < oo.
z€X
Then the minimaz inequality min sup f1(x,y) < sup fo(z,y) holds.
yeK zeX zeX

Proof. Choose t = sup fo(x,x) it exists.
zeX
Define g(z,y) = fa(z,y)—t, f(z,y) = fi1(z,y)—t. It suffices to show that g(z,y),

f(z,y) satisfy in Theorem
For all ¢t < 400, we have fi(z,y) —t < fa(x,y) — t. Therefore f(z,y) < g(z,y)
and for every x € X, g(x,x) = fo(x,2) —t < sup fo(z,z) —t = 0.
zeX

For all x € X and for all @ € E, the set {y s fi(zyy) < a} is compactly closed
and for all ¢ < 400, the set {y s flzy) +t < a} is compactly closed if we take
a =t =0, we would have {y flz,y) < 0} is compactly closed.

For all z € X and for all o € F, the set {x folz,y) > a} is convex and for all
t < +o00, the set {x g(z,y) +t> a} is convex.

If we take & = t = 0, we would have {z : g(z,y) > 0} is convex therefore
{x:g(z,y) ¢ —C} is convex.

By (d), fi(z,y) € C°+sup fa(z, 2), therefore f1(z,y)—t € C° then f(z,y) € C°.

zEX

By Theorem 2.1} f(z,y) < 0, for all (z,y) € X x X, therefore fi(z,y) < t,

so that fi(z,y) < Sup fa(x,x) then sup fi(z,y) < sup fo(z,z) it follows that
zeX zeX

min sup f1(z,y) < Sup fz(l” ). u
yeK zeX

Theorem 2.4. Let X be a non-empty convex subset of a topological vector space and
(E,C) be an order complete topological Riesz space, and let f,g: X x X — (E,C)
be such that:
a) f(z,y) < g(z,y) for all z,y € X and g(z,z) € —C for allx € X.
) For each x € X the set {y; flz,y) € —C} is compactly closed.
c) For eachy € X, the set {z € X; g(x,y) € C°} is convex.
) There exists a non-empty compact conver subset Xo of X and non-empty
compact subset K of X such that for each y € X \ K, there is an xo € C°

(Xo U {y}) with f(z,y) € C°.
Then there exists y € K such that f(x,j?) € —C forallz e X.

Proof. For each x € X define K(x) = {y e K: f(zy) € C} for every z € X
K(z) is closed in K by (b). Our clalm is to prove the family {K(z) : z € X} has
the finite intersection property.

Choose z1,...,z;m € X. Let B = CO(K U {xl,...,xm}) then B is a compact
subset of X for every z € X define:

= {y € B; f(x,y) € —C’}, G(z) = {y € B; g(z,y) € —C}. (2.2)

It is clear that F/(z) and G(z) is non-empty by (a). We show that () F(z) # 0.
r€EB
Next, we show, this theorem satisfies in assumptions of Theorem [I.7] Then we

have the following;:
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Let y € G(x), therefore, g(x,y) < 0 and by (a) f(z,y) <0, and y € F(x), thus;
G(z) C F(x) on the other hand, F(x) is compactly closed, because B is compact
and by (b), {y € X; f(z,y) € —C} is compactly closed.

For each z € X, g(z,z) <0, by (a), thus z € G(z).

For each y € X, we have

Gy =X -Gy ={zeX; ¢ Gy} ={ze€X; g(z,y) ¢ -C}.
By (¢), G*(y) is convex.

Suppose that, D C X is weakly H-convex. Therefore, Xqg C D C L. It suffices
to show that () (F(z)ND) C L.
zeD

Ifye N (F(z)ND), we would have
xeD

(yeD, yeF(x)=(yeD, f[f(zyel) (2.3)

for all z € D. Suppose y is not in L, therefore by (d), there exists x € co(XoU{y})
that f(z,y) ¢ —C, since y € D. Therefore, Xo U {y} C D and because Xy U {y} C
co(Xo U {y}). Then co(XoU{y}) € D and x € D and this contradicts (2.3). Thus
yeL, N (F(z)nD) C L by Theorem we have; (] F(z) # 0. On the other
xeD xeD

hand, there exists a point § € B such that f(z,3) € —C for all x € B.

It follows that § € L by (d) and § € K(x1) N...N K(x,,) by definition of K (z).
Thus {K(z);z € X} has the finite intersection property by compactness of L, we

have (| K(z) # 0.

reX
Now, if we choose that y € (| K(x), therefore f(z,y) € —C for all z € X, and
reX
the proof is complete. ([l

The next Corollaries are [2] Corollary 1, 2] which we improved them here.

Corollary 2.5. Let X be a non-empty compact convex subset of topological vector
space and let f : X x X — (E,C) be such that for eachx € X, {y: f(z,y) € —C}
is compactly closed. Then for each t € E, one of the following properties holds:
(1) There exists y € X such that f(x,y) €t+ C forallz € X;
(2) There exists A € F(X) (the family of all non-empty finite subset of X ) and
y € co(A) such that 2116121 flz,y) et+C°.

Proof. Define F(x,y) = f(x,y) — ¢ for all z,y € X; therefore for all x € X,
{y : F(x,y) € th} is compactly closed. Fix Xg = K = X therefore condition (%)
of Theorem [2.4 holds. If for every A € F(X) and for each y € co(A), glel,raxl F(z,y) €
—C. Therefore,by Theorem [2.4]exists § € X such that for all z € X, F(z,7) € —C.
It follows that f(x,y) € t — C for all z € X and (1) holds.

On the other hand, if there exists A € F(X) and y € co(A) such that géig F(z,y) €

C°, then Héiil f(z,y) € t + C° and finally the condition (2) holds. O

Corollary 2.6. Let X be a non-empty compact convex subset of a topological vector
space and let f,g: X x X — (E,C) be such that
(i) flz,y) < glz,y) for allz,y € X;
(ii) For each x € X; {y : flzy) € fC} is compactly closed.
(iii) For eachy € X andt € E, the set {x € X; g(z,y) et + CO} is convet.
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Then the minimax inequality

min sup f(x,y) < sup g(x,x)
yeX zeX zeX

holds.

Proof. Tt suffices to suppose that ¢ = sup g(z,z) < co we only need to show that
zeX
the condition (2) of Corollary [2.5| can’t occur.

If there exists A € F(z) and y € co(A). Such that miﬂ flx,y) € t+ C°.
€
Therefore, by (i), we have, miﬂg(x,y) € t+ C° and by (iii) g(y,y) € t + C°
zE
contracting ¢ = sup g(x, z). Then condition(1) of Corollary holds. Then there

rex

exists y € X such that for every x € X, f(x,y) € t — C and because (F,C) is order
complete space then is defined sup f(z,y) and we have sup f(x,y) < t. Then
zeX zeX

min sup f(, ) < sup g(z, ),
yeX zeX zeX

(]

The next results are [I0, Theorems 1, 2] and [2, Theorem 2|, that we improved
them in this paper.

Corollary 2.7. Let X be a non-empty convex set in a Hausdorff topological vector
space E. Let ¢ and v be two real-valued functions on X x X having the following
properties:
a) We have ¢(z,y) < ¥(z,y) for all (z,y) € X x X, and Y(z,z) <0 for all
reX;
b) for each fized x € X, ¢(x,y) is a lower semi-continuous function of y on
X;
¢) for each fized y € X, the set {x € X : ¢¥(x,y) > 0} is convex;
d) there exists a non-empty compact conver subset K of X such that for each
y € X\ K there exists a point x € K with ¢(z,y) > 0.

Then there exists a point § € K such that ¢(x,9) <0 for all x € X.

Corollary 2.8. Let X be a non-empty convex set in a Hausdorff topological vector
space. Let ¢1 and ¢o be two real-valued functions on X x X having the following
properties:
a) We have ¢1(z,y) < ¢do(x,y) for all (z,y) € X x X.
b) For each fized x € X, ¢p1(x,y) is a lower semi-continuous function of y on
X.
c) For each fized y € X, ¢2(x,y) is a quasi-concave function of x on X.
d) There exists a non-empty compact convex subset K of X such that for
all y € X \ K there exists a point v € X with ¢1(x,y) > sup ¢o(z,2) if
zeX
sup ¢a(z,2) < oco.
zeX
Then the minimax inequality min sup ¢1(x,y) < sup ¢a(x, x) holds.
yeK zeX zeX
Corollary 2.9. Let X be a non-empty convex subset of a topological vector space
and let f,g: X x X — RU{—00,00} be such that

a) f(z,y) < g(z,y) for all z,y € X and g(z,z) <0 for all z € X;
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b) for each fized x € X, f(x,y) is a lower semi-continuous function of y on
each non-empty compact subset C' of X;

c) for each y € X, the set {x € X : g(x,y) > 0} is convex;

d) there exists a non-empty compact convezr subset Xo of X and a non-empty
compact subset K of X such that for each y € X \ K, there is an © €
co(Xo U {y}) with f(z,y) > 0.

Then there exists § € K such that f(x,g) <0 for allz € X.
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