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REMARKS ON A 1-D NONLOCAL IN TIME FRACTIONAL
DIFFUSION EQUATION WITH INHOMOGENEOUS SOURCE

NGUYEN HOANG LUC

ABSTRACT. In this paper, we deal with the fractional diffusion equation with
Riemann-Liouville in the form
Dg‘+u — Ugz = F(z,1).

Under some various assumptions of the input data v, F';, we study the well-
posedness of our problem. To achieve our purpose, we use the techniques
of Fourier series expansion in Hilbert scales. In particular, we apply Fourier
analysis method and combine with some estimates of Mittag-Lefler functions
to establish the existence and uniqueness of solutions to our problem on the
Sobolev spaces.

1. INTRODUCTION

In the process of studying a number of physical models and problems of practi-
cal significance, it was realized that it was necessary to study and consider diffu-
sion models with fraction derivatives rather than models with classical derivative.
Fractional calculation has many important applications in many different fields of
science and engineering, such as in biological population models, signal process-
ing, fluid mechanics, electrical networks, and electromagnetism. , electrochemical,
optical and viscosity [8, @ 12, [31]. As far as we know, there are currently several
definitions for fraction derivatives and fraction integrals, such as Riemann-Liouville,
Caputo, Hadamard, Riesz, Griinwald-Letnikov, Marchaud, etc. Some works are at-
tracting the attention of the community, like A. Debbouche and his group [4}, 5, [6], E.
Karapinar et al [13}, 14} [15], 16} 17 18], 19} 20], M. Benchohra [28] 29] [30]. Although
most of them have been extensively studied, most mathematicians are interested
and studied the two derivative Caputo derivative and Riemann-Liouville.

In this paper, we consider the fractional Sobolev equation

D u — uze = F(z,t), (2,t) € (0,m) x (0,T),
u=0, (z,t) € 002 x (0,T), (1)
ert' " uli—o + e2u(z,T) = ()
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where D, v denotes a RiemannLiouville fractional derivative of v with order «,
0 < a < 1. It is defined by

DS, o(t) = jt(r(l) /O - P~ (r)dr ) @)

11—«

and D, v(t) =: %v(t) if @ = 1. Diffusion equations derive from the many diffu-
sion phenomena that occur widely in nature. They are proposed as mathematical
models of physical problems in many fields, such as phase transition, biochemistry.
Equations of time fractional reactions occur in describing ”memory” in physics, for
example plasma turbulence [24], fractal geometry [26], and single-molecular pro-
tein dynamics [25]. When Dg+ is replaced by the Caputo derivative and e = 0,
the above equation has been studied quite in detail in the previous paper[27]. We
can refer the reader to some interesting papers on fractional diffusion equation, for
example [T}, 2].

In [22], the authors investigated the existence of solutions of fractional differential
equations with integral boundary conditions as follows

Dgiu = F(t,u(t)), (z,t) € (0,7) x (0,T),

-« T (3)
g =X\ [ wu(t)dt+h, heR
0

where A > 0. In [23], C. Zhai and R. Jiang studied the following non-local problem
D§iu+ F(t,v(t)) =a,t € (0,T),
D/ v+ F(t,u(t)) = bt € (0,T),

T
w(0) = 0, w(T) = /O s(ult)dt, (4)

T
o) =0 o) = [ sl

where 1 < «, 8 < 2. In recent paper [3], T.B. Ngoc and his coauthors considered
the backward problem for nonlinear model

D u — uze = F(x,t,u).

To the best of our knowledge, there are not any result concerning on Problem .
Motivated by this work [3], we first consider a nonlocal in time problem for the
equation

D u — uze = F(z,t).

Our main goal in this paper is to give the existence and uniqueness of the mild solu-
tion for Problem . The regularity estimates for the mild solution are established
in some various spaces.

This article is arranged as follows. Section 2 gives some preliminary and mild
solution. In Section 3, we present our main results including two main theorems.
Finally, the proof of some theorems is completed in section 4.



2. PRELIMINARIES

Consider the Mittag-Leffler function, which is defined by

oo Zn
Fes®) = 2 a5y

(z € C), for @ > 0 and § € R. When = 1, it is abbreviated as E,(z) = Eq,1(%).
We call to mind the following lemmas (see for example [7]. We have the following
lemma which useful for next proof.

Lemma 2.1. Let 0 < o < 1. Then the function z — Eq o(2) has no negative root.
Moreover, there exists a constant C,, such that

Ca
0< Epol—2) < —2 0. 5
< Baal-2) S T2, 2> (5)

For positive number r > 0, we also define the Hilber scale space

H"(0,7) = {w € L*(0,7) : Zp%(w, \/zsin(px»2 < —i—oo}7 (6)
p=1

2

with the following norm HUHHr(o o = (Z;il p?(w, \/gsin(px)>2>

3. MAIN RESULTS

Theorem 3.1. Let €1,e5 > 0 and F € L>(0,T; L*(0,7)). Then Problem has
a mild solution in L9(0,T; H*(0,m)) for any 1 < q < = and d < 3/2. Then we
have

lullLago,7;ma(0,7)) < Call¥llmrago, ) + CollFllLoe (0,7;12(0,m)) (7)

. - 1 T 1 1/q
where the hidden constant depends on o, €1,€2,5,T and C; = C €] F(a)(fo tle )th)
/g __ 1/q

and Cy = M(ey, €2, a)(fOT t(o‘fl)th) + M(«, s)(fOT t(a’l)th> .

Theorem 3.2. Let u* be the mild solution of the following problem
D u — ugye = F(z,t), (x,t) € (0,7) x (0,7,
u=0, (z,t) € 9Q x (0,T), (8)
%) —g = Y(z)
a) If F € L*(0,T; L*(0,7)) and ¢ € H¥(0,7) then u* € L1(0,T; H4(0,7)).
b) If » € H*(0,7) and F € L*(0,T; H*(0,7)) for p > 0. Assume that o > 1/2 and
0 < h< 221 Then we gett"u € L>(0,T; H*(0,7)) and u* € L*(0,T; H”(0, 7)) where
v<u+2handy>1+ah—«a. And we also get

lt7u* || Lo 0,77 (0,7)) S Trtesoh=l 1| e 0,7y + T7+a_1/2_ah||F||L2(0,T;Hu(o,7r))
9)

and

w22 0,787 (0,7)) S NN Ew0,m) + 1 F 20,1520 (0,7)) (10)

where the hiden constants depend on o, h,yv, u.
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Theorem 3.3. Let e >0 and F € L>(0,T; L*(0,7)) and ¢ € H*(0,7). Assume
that ub* be the solution of Problem with e = 1,e5 > 0. Let h € (0,1). Then
we have the following

[ut,es = || oo oo my S €lllmeom + el Fllo=rir20m)- (1)
where d < u+2h. The hiden constant in the above estimation depends on o, h,yv, .

3.1. Proof of Theorem (3.1). Let us first to give the explicit formula of the
mild solution of Problem (1). The separation of variables helps us to yield the

solution of (1)) which is defined by Fourier series u(z,t) \/> Z up(t) sin(pzx),

where u,(t) = (u(t,-), \/gsin(px)>. It becomes to the fractional ordinary differen-

tial equation
O up(t) + pPup(t) = Fy(t).
Let ¢ = t1=%ul4—p. Then we get the following identity

up(t) = F(a)ta_lEa,a (_p2ta) ¥p
+ / (t— €% Baa (—07(t - ©)°) Fy(€)de. (12)
0

The non-local in time condition allows us to confirm that
€19p + €2F(O‘)Ta_1Ea,a (_pQTa) Pp

T
ta [ (=" Baa (BT =) BOE = (13)
0
Due to the uniqueness property of Fourier expansion, one has

e [y (T =€) B (—p(T — )%) F,(€)dE
¥r = €1+ eI ()T E, o (—p?T) '

Combining and , we arrive at

() = D(a)t* By (—tha) Up
U T+ el (a)To B, o (—p2T°)

T (@)t Baa (~0%12) (g (T = % Baa (-0(T = ©)°) Fy(€)d¢)
€1+ eI ()T 1Ey o (—p?T)
+ [ =92 B (5P - ) File)de (15)
0

By the theory of Fourier series, the mild solution u is given by
o F(Oz)ta_lEa o (_p2ta) ,(/}p D)
t) = ’ Vi
u(@?) pz::l T D@ Eaa (=T ) 33 202)

o eaT(0) 1% E o (—p2t) (fo (T = €)% 1 B (—p2(T — €)°) F, (g)dg) |
,Z €1+ L ()T 1B, o (—p2T?) (\/7sm(p:z:))

p=1

+ Z (/ )" Eao (=P*(t = €)7) Fp(E)dE> (\/Zsin(pfc))

= ,zzfl(:c, t) + Az, t) + Az, t). (16)



The upper bound of the Mittag-Lefler implies that

2
o0 F(a)ta71p2dEa7a 7p2to¢ w
||m<.,t)||%d<m=2( ( )0y
p=1

€1 + 62F(O{)TO‘_1EQ7Q (—pQTo‘)

< |€o¢|2 2|F |2t2a 22 2d¢

= Caey *|D() P12 2H¢||Hd(o,7r)a
where we note that €; + e2I'(a)T* 1 E, o (—pzT‘”‘) > ¢1. Hence, we get
141 ()| oy < Caer T(@ [ gaca)- (18)
Take any 0 < s < 1 then we get that

C
Eoo (—p*(t — 6" <7Q<C
Hence, we arrive at the following bound

/0 (t— € B (—p2(t — %) Fy()de

t
< Cop2 / (t =€) 1=0%| F, (6) e

< Cap

PR (19)

t
_2s||FHL°°(O.,T;L2(O,7r))/O (t — &) 1mosqe

Ql

«a —2s

Flls oo ) . to—as
ool IFlr=riz20m)

Using this inequality, we find that
”%(’ t)”%{d(o,w)

—ipM(EQF(a)ta_lEa’a( p2te) (fo (T — &) 'Eq o (—p*(T — ) F, (g)dg)>

€1+ GQF(O[)Ta 1Ea,a (—pQTO‘)

2 T ?
< 6261_2|F t2o¢ 2 Zde’ —p ta) (/0 (T - E)ailEa,a (7 (T 5) ) (f)df)
CaTafas o 0 s

< e3¢ 7|0 (a)]? <H9> o2 <I;P2d 4 ) .

Notice that the infinite series Z;il p*=2d i convergent for 4s > 14 2d. It is
obvious to see that if d < 3/2, we can choose s such that 14+2d < 4sand 0 < s < 1

Using the fact that E, o (—p2ta) < C, and together with , we know that
(| (-

(21)

7t)HHd(0,7r) < M(€17 6270‘)ta7

NFN Lo (0,7:£2(0,7))5 (22)
where

M(el,ez,a) =
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Thanks to the inequality (20]), we confirm that

oo 2

It Dlam =3 ( / (t = €)% 1B (—p?(t — 5)“)Fp(£)d£>
< Ca

Fll o . ta—as
< o aslFlle=.rir20,m)

< M(a, S)t(kl||F||L°o(0,T;L2(0,7r)) (23)
where

M(a,s) = 700‘ Tl-as
o —as

Combining , and , we find that
[uC, )l zago,my < N9 O rao.m + 192 ( ) | ma,x + 1950 )| mago,x)
< Caey 'T(a)t* Y[ ooy +M(617627 )t | F| oo (0,7:22 (0.m))
+ M(a, s)t* Y| F| oo, T-LZ(o,n))~ (24)

o0
§ p2d74s'
p=1

Therefore, since the condition 1 < ¢ < we obtain that

1—a a’
T Va __ L 1/
lullLao, 74 (0,7)) = (/0 ||U(-at)||§{d(o,ﬂ)dt) < Cag 1F(04)|\7/)||Hd(0,7r)(/0 (e 1)th)
T 1 1/q
+ Mer,e2,0)( / HODat) e 0.1322(0,m)
0

AT T (a—1) 1/q
+M(0475)(/ t th> [ F[[ Lo 0,7:22(0,7))
0
S 1Yl aa@) + 1 F Lo 0,7;22(0,7)) (25)
where the hidden constant depends on «;, €1, €9,s,T.

3.2. Proof of Theorem (3.2). Proof a.
Let us recall the mild solution

ZI‘ WO E, o (—tho‘) wp(\/Zsin(px))
+ Z/ a 1Eoz,oc (*pQ(t - 6) ) (f)df([sm(pz))

= L@l(ajat) +%2(xat)' (26)
The upper bound of the Mittag-Lefler implies that

%1 (., ||Hd(Q Z a)t* 'p*E,, o (—p%t%) wp)z

p=1

< [Ca* D (@)t~ 22p2d¢2 |CaPIT ()P 219130 (0,
p=1

(27)



By a similar way as above, we also obtain that
1B2(, )| 110,y < M(e, )t F | oo (0,7:22 (0,m)) (28)

where

Combining and , we find that

[ (s Ol rao,m) < 1B Dl agm + 15205 D) ago,m)

< ColD(@) [t )l gago,my + M1(a, d)t* | F || Lo 0,7502(0,m))-
(29)

Proof b.
From , we get

Tt (x,t) = Z L(a)t" By o (—p°t) wp(\/zsin(px))
p=1

+§_O:1 (t” /Ot(t—ﬁ)("lEa,a (—p°(t = &)%) Fp(ﬁ)d§> (\/Esin(px))

= @1(1’715)4‘@2(1'715). (30)
Therefore, we obtain that

Ht’yu*("t)HHV(O,Tr) = ||91('vt)||Hv(o,n) + H92("t)HHV(O,ﬂ') (31)
The condition of h as above implies that 0 < A < 1, so we get immediately that

Eoo (—p*t*) < Ca Ca

< < C,p 2ht—ah, 32
STy = (14 prayh = op (32)

Hence
F(oz)tﬂ'a_lE%a (—p2t“) < F(a)@ap_th'y+"‘_1_“h. (33)

which leads to

e 2
12005 ) g0y = 4| D272 (D@00 B (—22) ) iy 2

3
p=1
= Cal ()" 7190 g2 0,1 (34)

For the term 2;(x,t), we notice that

| /0 (t =€) Faa (-%( = €)) Fy(&)dg| < Cap™ /O (t = "M Fy(©)de.
(35)
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which allows us to deduce that

oo + 2
122 o = S0 (7 [ 0= B (420 - %) Fy(E1a¢)

o0 ¢ .
< |C’a\2 ZPQUAth’Y (/ (t— {)2&22o¢hd£> (/ |Fp(£)|2d£)
p=1 0 0
Cal? 1 9a
< o T RN F 0 o 0, (36)

where we have used Holder inequality. Combining , and , we find that

€6 Do gy < CaT (@O
C
4+ _prte-l/2mahp Hv—2h(0.1))- 37
51 oo, IE Nl L2 0,780 -200,my)- (37)
Since v — 2h < p, we find that
¥l zre-20(0,7) < Crpwnl| ¥l s0,m) (38)

and

I F || 20,7550 -200,7)) < C2,wnl | Fl L2 (0,710 (0,7)) (39)

From some previous observations, we can deduce that

[ O A [ P o A 1 PRTR AT R

(40)
Proof c.
In the following, we need to give the estimation of fOT ||u(.,t)||2u(0’ﬂ)dt. Let us
denote
Dy =T(a)t* "Eqa (—p°t*) ¥y
and

t
Dz = [ (4= 9" B (-17(t ) )
0
Using again the result , we arrive at

T - 9 T o) 9
[ Bl gt [ (S (Rt B ()Yl
p=1

T
< ‘60['2‘F(a)|2||w||§{y—2h(0,ﬂ.)/ f20—20h=2 1y
0
T2a72ah71 — , ,
- m|co“ ‘F(O&)| ||1/}||Hu—2h(07ﬂ,). (41)

By using the result (36, we obtain

/T HE ( t)||2 gt < |Co|? Mk /Tt2a12ahdt
0 29N EY (0™ = 90— 1 — 2ah L2(0,T;Hv=2h(0,m)) 0

T2a72o¢h|c |2 9
- F v_2h . (42
(2a — 1 — 2ah)(2a — 2ceh) I ”LQ(O’T;H 2 (0,m)) (42)




From two above observations, we deduce that

T
14" 20 210 000y = / 0] 0y

r 2 T 2
<2 [ DO @+ [P0l ot

T2a—2ah—1 — ) )
<25 [CulIT (@) P9l an 0 m
T2a 2(xh|c |2
2 F .
* (2a — 1 — 2ah) (2 2ah)” 2202020
2
Tocfahfl/2 o Tozfahcoé
) R— N, VP v (o) + F oy |
- < 2% — 2ah — 1 (@)%l 21 (0,m) \/(2&_1_20(}1)(2&_2&}1) I Fl£2(0,7; 1720 (0,7))

(43)

Using and and (43), we get the desired result (L0)).

3.3. Proof of Theorem (3.3). Let us recall that

At Eq o (—p%t) ¥y 2
ter (1) = Zuqr JTo1 By o (— 2Ta)( *Sm(m"))

()t Ba o (7°1) (Jo (T =€) oo (-72(T = §)*) Fp(€)dé
- pz:; 1+ 62<F(()04)T0‘ 1Bq o (—p2T) ) (\/>sm(px))
+ i (/Ot(t — ) By q (_pQ(t — &)%) Fp(f)dﬁ) (\/zsin(px)), (44)
and

t) = irm)tha,a (%) zz;p(\/f sin(pr) )
+ Z (/ )* " Ega (-0t —€)*) Fp(f)d§> (\/Zsin(pw))- (45)

By subtracting by , the following result is immediately obtained
U,e, (2, t) —u”(x,t)
> _ el ()T LB, o (prTO‘) 2 .
_ T to 1Ea o (— 2to¢ > ( = )
Z (Oé) ) ( p ) 1+ EQF(Q)Ta_lEa,a (_pQTa) ’(/JP P Sln(px)

e (@)t B (p2%) (I (T = 7 B (43T = %) Fo(O)E) | 5
Z 14 el ()T 1E, o (—p2T?) <\/>Sln(px))

= %(x,t) +g2(x,t). (46)
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For estimating the term ¥, using the upper bound of the Mittag-Lefler, we have

the following inequality

el ()T By o (—pQT‘)‘)
14 eI ()T 1Ey o (—p?T)
< 62|F(Oé)|26ap_2hTa_1_ahta_l.

F(a)to‘flE%a (—pZtO‘)

This implies that

(47)

()T Eq o (—p*T?)

00 2
ot _ 2d T taflEoéa . 2toc 2
H%(’ )HHd(O,w) 2. ( (@) al-p )1+62F(a)Ta—1Ea7a 1) | 1Vl

00

< 6%‘F(Oé)|4T2a_2_2aht2a_2|€a|2 szd_4h‘wp|2
p=1

= &[T ()[' T2 72720 Co P22 [0 Fram2n (g -

So, we get immediately that

[4G 0] a0, S D@PT = Cat™ [l 200,y

By the same justification as in , we find that
1920, )] a0,y < €2M ot | F[| oo (0,752.2(0,m))

where we denote

a =

M F(Q)Tozfas|€a|2

o — Qs

Combining and , we arrive at
1,6, () = w5 D)l ago,m) < 190Dl a0, + 11920 D)l mag0,m)

< (@) PT 1 Cat® [ | pra2no,m)

+ 62Mata_1||FHL°°(O,T;L2(O,7T))

Therefore, notice that the integral fOT t(@=1ad¢ is convergent, we obtain that

||U1,e2 —u || La(0,T;H*(0,m))

T 1/q
< e|D(a)PT* " Cy||¢|| gra-2n0,m) ( / t<a—1>th>
0

T 1/q
+ oM, </ tm_l)th) [ F[l o 0,7;22(0,7))
0

It follows from d — 2h < p that

||u17€2 - u*HL‘I(O,T;Hd(O,Tr)) 5 62”1:[}”}1"'(0,71’) + €2||FHLOO(O,T;L2(O,7T))'

(48)

(49)

(51)

(52)

(53)

Acknowledgments. The authors would like to thank the anonymous referee for

his/her comments that helped us improve this article.



(1]

2]
(3]

(4]

(10]

(11]

(12]

(13]

(14]

[15]
(16]

(17)

(18]
(19]

20]

(21]
(22]
23]

24]

11

REFERENCES

N.H. Tuan, Y. Zhou, T.N. Thach, N.H. Can, Initial inverse problem for the nonlinear frac-
tional Rayleigh-Stokes equation with random discrete data Commun. Nonlinear Sci. Numer.
Simul. 78 (2019), 104873, 18 pp.

N.H. Tuan, L.N. Huynh, T.B. Ngoc, Y. Zhou, On a backward problem for nonlinear fractional
diffusion equations Appl. Math. Lett. 92 (2019), 76-84.

T.B. Ngoc, Y. Zhou, D. O’Regan, N.H. Tuan, On a terminal value problem for pseu-
doparabolic equations involving Riemann-Liouville fractional derivatives, Appl. Math. Lett.
106 (2020), 106373, 9 pp.

J. Manimaran, L. Shangerganesh, A. Debbouche, Finite element error analysis of a time-
fractional nonlocal diffusion equation with the Dirichlet energy J. Comput. Appl. Math. 382
(2021), 113066, 11 pp

J. Manimaran, L. Shangerganesh, A. Debbouche, A time-fractional competition ecological
model with cross-diffusion Math. Methods Appl. Sci. 43 (2020), no. 8, 5197-5211

N.H. Tuan, A. Debbouche, T.B. Ngoc, Existence and regularity of final value problems for
time fractional wave equations Comput. Math. Appl. 78 (2019), no. 5, 1396-1414.

I. Podlubny, Fractional differential equations, Academic Press, London, 1999.

B. D. Coleman, W. Noll, Foundations of linear viscoelasticity, Rev. Mod. Phys., 33(2) 239
(1961).

P. Clément, J. A. Nohel, Asymptotic behavior of solutions of nonlinear volterra equations
with completely positive kernels, STAM J. Math. Anal., 12(4) (1981), pp. 514-535.

X.L. Ding, J.J. Nieto, Analytical solutions for multi-term time-space fractional partial dif-
ferential equations with nonlocal damping terms, Frac. Calc. Appl. Anal. 21 (2018), pp.
312-335.

L.C.F. Ferreira, E.J. Villamizar-Roa, Self-similar solutions, uniqueness and long-time as-
ymptotic behavior for semilinear heat equations, Differ. Integral Equ., 19(12) (2006), pp.
1349-1370.

B. de Andrade, A. Viana, Abstract Volterra integrodifferential equations with applications
to parabolic models with memory, Math. Ann., 369 (2017), pp. 1131-1175.

R. S. Adiguzel, U. Aksoy, E. Karapinar, .M. Erhan, On the solution of a boundary value prob-
lem associated with a fractional differential equation Mathematical Methods in the Applied
Sciences https://doi.org/10.1002/mma.665

H. Afshari, E, Karapinar, A discussion on the existence of positive solutions of the boundary
value problems via-Hilfer fractional derivative on b-metric spaces, Advances in Difference
Equations volume 2020, Article number: 616 (2020)

H.Afshari, S. Kalantari, E. Karapinar; Solution of fractional differential equations via coupled
fized point, Electronic Journal of Differential Equations,Vol. 2015 (2015), No. 286, pp. 1-12
B.Algahtani, H. Aydi, E. Karapmnar, V. Rakocevic, A Solution for Volterra Fractional Integral
Equations by Hybrid Contractions Mathematics 2019, 7, 694.

E. Karapinar, A.Fulga,M. Rashid, L.Shahid, H. Aydi, Large Contractions on Quasi-Metric
Spaces with an Application to Nonlinear Fractional Differential-Equations Mathematics
2019, 7, 444.

A.Salim, B. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability for impulsive
generalized Hilfer-type fractional differential equations Adv Differ Equ 2020, 601 (2020)

E. Karapinar; T.Abdeljawad; F. Jarad, Applying new fized point theorems on fractional and
ordinary differential equations, Advances in Difference Equations, 2019, 2019:421
A.Abdeljawad, R.P. Agarwal, E. Karapinar, P.S.Kumari, Solutions of he Nonlinear Integral
Equation and Fractional Differential Equation Using the Technique of a Fized Point with a
Numerical Experiment in Extended b-Metric Space Symmetry 2019, 11, 686.

T. Jankowski, Fractional equations of Volterra type involving a Riemann-Liouville derivative
Appl. Math. Lett. 26 (2013), no. 3, 344-350.

X. Wanga, L. Wanga, Q. Zeng, Fractional differential equations with integral boundary con-
ditions, J. Nonlinear Sci. Appl. 8 (2015), 309-314

C. Zhai, R. Jiang, Unique solutions for a new coupled system of fractional differential
equations Adv. Difference Equ. 2018, Paper No. 1, 12 pp.

D. del-Castillo-Negrete, B. A. Carreras, V. E. Lynch; Nondiffusive transport in plasma tur-
bulene: A fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003.



12

[25]
[26]

27)

(28]

29]

(30]

(31]

NGUYEN HOANG LUC

S. Kou; Stochastic modeling in nanoscale biophysics: Subdiffusion within proteins, Ann.
Appl. Stat., 2 (2008), 501-535.

R.R. Nigmatullin; The realization of the generalized transfer equation in a medium with
fractal geometry, Phys. Star. Sol. B, 133 (1986), 425-430.

K. Sakamoto, M. Yamamoto; Initial value/boudary value problems for fractional diffusion-
wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011),
426-447.

F.S. Bachir, S. Abbas, M. Benbachir, M. Benchohra, Hilfer-Hadamard Fractional Differential
Equations, Existence and Attractivity, Advances in the Theory of Nonlinear Analysis and its
Application, 2021, Vol 5 , Issue 1, Pages 49-57.

A. Salim, M. Benchohra, J. Lazreg, J. Henderson, Nonlinear Implicit Generalized Hilfer-
Type Fractional Differential Equations with Non-Instantaneous Impulses in Banach Spaces
, Advances in the Theory of Nonlinear Analysis and its Application, Vol 4 | Issue 4, Pages
332-348, 2020.

Z. Baitichea, C. Derbazia, M. Benchohrab, 1 Caputo Fractional Differential Equations with
Multi-point Boundary Conditions by Topological Degree Theory, Results in Nonlinear Anal-
ysis 3 (2020) No. 4, 167-178

A. Ardjouni, A. Djoudi, Ezistence and uniqueness of solutions for nonlinear hybrid implicit
Caputo-Hadamard fractional differential equations Results in Nonlinear Analysis, 2 (3), 136—
142.

(Nguyen Hoang Luc) DIVISION OF APPLIED MATHEMATICS, THU DAU MoOT UNIVERSITY, BINH

DuoNG PROVINCE, VIETNAM

E-mail address: nguyenhoangluc@tdmu.edu.vn



