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ON A NONLOCAL FRACTIONAL SOBOLEV EQUATION WITH

RIEMANN-LIOUVILLE DERIVATIVE

HO THI KIM VAN

Abstract. Our paper considers a nonlocal terminal in time problem for frac-

tional diffusion equation. The derivative is taken as Riemann-Liouville. By
applying some properties of the Mittag-Leffler function, we set some of the

results about the existence, uniqueness and regularity of the mild solutions of
the proposed problem in some suitable space. We obtain the lower bound and

upper bound for the mild solution respecr to the given data. Finally, we obtain

the asymptotic behaviour of the solution when parameter tends to zero.

1. Introduction

Fractional calculus has been around for a long time and has made an important
contribution to modeling real-life phenomena. Although the amount of research
on this topic is numerous and enormous, there is still a large number of unre-
solved non-local phenomena and many other interesting problems that have not
been resolved. The selection of a suitable fraction operator depends on the phys-
ical system being studied and considered. In many types of fractional derivatives,
many mathematicians are interested to study fractional diffusion equations with the
Caputo derivative or the Riemann-Liouville derivative. There are many research
regarding to application of fractional calculus such as D. Baleanu [25, 26, 27] and
[6, 22, 21, 18]. Regarding these application of fractional calculus, we have the fol-
lowing references: [46, 47, 48, 49, 50] and and their references. In this paper, we
consider the fractional Sobolev equation{

Dα
0+u+Au+ νDα

0+Au = 0, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),
(1.1)

with the following integral condition

βu(x, T ) + γ

∫ T

0

ψ(t)u(x, t)dt = f(x), x ∈ ∂Ω, (1.2)

where Ω is the bounded domain with the sufficiently smooth boundary ∂Ω. The
symbol Dα

0+ is the Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1,
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which is defined by
Dα

0+v(t) =:
d

dt

(
I1−αt v(t)

)
, Iαt v(t) :=

1

Γ(1− α)

∫ t

0

(t− r)−αv(r)dr,

Dα
0+v(t) =:

d

dt
v(t), α = 1.

(1.3)

When α = 1, Problem (1.1) becomes the following problem{
Dtu+Au+ νDtAu = 0, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),
(1.4)

which is called the classical Sobolev equation, or pseudo-parabolic equation with
classical derivative. This category of equations has been studied in some nice
papers[40, 41] and references therein. They also have many important applications
in physics, for example, the permeability of a homogeneous liquid, aggregation of
populations [44].

According to common sense, we can divide the fractional diffusion problem into
three common forms

• Initial value problem: A similar form of the above model (1.1) with the
initial condition has been studied in [43] and references therein .
• Terminal value problem: In the condition (1.2), if γ = 0, β = 1 then it

becomes terminal condition. This problem is often called backward problem
for diffusion equation, see [21, 14]. The first result on this last problem
probably comes from the article [45].
• Nonlocal value problem: To the best of our knowledge, there are not any

works about the topic of nonlocal condition for fractional diffusion equations
(1.1).

Some of the main contributions in the paper are detailed as follows

• The first result is related to the existence of solutions to the problem (1.1)–
(1.2) in the space Lp(0, T ;Hs(Ω)) under the input data f ∈ Hs(Ω) and the
case β = 0, γ = 1. We also study the lower bound of ‖u(., T )‖Hs(Ω). This
is a novel result of this paper.

• The second result is about the existence of the mild solution in the problem
(1.1)–(1.2) on the space Lp(0, T ;Hs(Ω)) under the input data f ∈ Hs(Ω).
We also study the asymptotic form when one parameter γ approaches 0.

This article is organized as follows. Section 2 gives some preliminary and mild
solutions. In Section 3, we present our main results including two main theorems.
Finally, the proof of some theorems is completed in section 4.

2. Preliminaries

Definition 2.1. (see [44]) The Mittag-Leffler function Eα,β(·) is

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, α, β ∈ R, and <(α),<(β) > 0, z ∈ C. (2.1)

Lemma 2.1. (see [2]) Let 0 < β < 1. Then there exist positive constants M1,M2

such that for any z > 0

M1

1 + z
≤ Eβ,1(−z) ≤ M2

1 + z
, (2.2)
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Lemma 2.2. (see [2]) Let 0 < α < 1 and λ > 0. Then

i) ∂t(Eα(−λtα)) = −λtα−1Eα,α(−λtα), for t > 0;
ii) ∂t(t

α−1Eα,α(−λtα)) = tα−2Eα,α−1(−λtα), for t > 0.

Lemma 2.3. ([37])Let 0 < α < 1. Then the function z 7→ Eα,α(z) has no negative
root. Moreover, there exists a constant C+ such that

0 ≤ Eα,α(−z) ≤ C+

1 + z
, z > 0. (2.3)

Let us give some property of the eigenvalues of the operator A, see [44]. The
following identity hold

Aϕj(x) = −λjϕj(x), x ∈ Ω; ϕj = 0, x ∈ ∂Ω, n ∈ N, (2.4)

where
{
λj
}∞
j=1

are the eigenvalues of the operator A and 0 < λ1 ≤ λ2 ≤ · · ·λj ≤ ...,
and limj→∞ λj = ∞. For positive number r ≥ 0, we also define the Hilber scale
space

Hr(Ω) =

{
w ∈ L2(Ω) :

∞∑
j=1

λ2r
j 〈w,ϕj〉2 < +∞

}
, (2.5)

with the following norm
∥∥u∥∥

Hr(Ω)
=

(∑∞
j=1 λ

2r
j |〈u, ϕj〉|2

) 1
2

·

3. Main results

Theorem 3.1. Let β = 0, γ = 1. Let ψ ∈ L1(0, T ) and f ∈ Hs(Ω). Then problem
(1.1)-(1.2) has a unique solution u ∈ Lp(0, T ;Hs(Ω)). And we have that

‖u‖Lp(0,T ;Hs(Ω)) ≤M(α, T, ν, λ1)
T

1
p−1+α

1 + (α− 1)p
‖f‖Hs(Ω), (3.1)

‖u(., T )‖Hs(Ω) ≥ P (α, T, ν, λ1)‖f‖Hs(Ω). (3.2)

Remark. The study of lower bound of the norm of u(x, T ) is a difficult problem.
The above result is one of our novelties.

Theorem 3.2. Let β > 0, γ > 0. Let ψ ∈ L∞(0, T ) and f ∈ Hs(Ω). Then problem
(1.1)-(1.2) has a unique solution uβ,γ ∈ Lp(0, T ;Hs(Ω)) for any 1 < p < 1

α . And
we have that

‖uβ,γ‖Lp(0,T ;Hs(Ω)) ≤ β−1|C(T )| T
1
p−1+α

1 + (α− 1)p
‖f‖Hs(Ω), (3.3)

where C(T ) = |C+||C−|T 1−α. Furthermore, the mild solution of nonlocal prob-
lem (1.1)-(1.2) convereges to the mild solution of problem (1.1) with the following
Cauchy terminal condition

βu(x, T ) = f(x), x ∈ Ω. (3.4)
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4. Proofs of main results

4.1. Proof of Theorem (3.1). Let us assume that Problem (1.1) has a unique
solution u. Now we use the separation of variables to yield the solution of (1.1).

Suppose that the exact u is defined by Fourier series u(x, t) =
∞∑
j=1

uj(t)ϕj(x), where

uj(t) =
〈
u(t, ·), ϕj(·)

〉
. It becomes to the fractional ordinary differential equation

Dα
0+uj(t) + λj (1 + νλj)

−1
uj(t) = 0.

Let h = t1−αu|t=0. Then we get the following identity

uj(t) = Γ(α)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
) 〈
h, ϕj

〉
ϕj . (4.1)

The integral condition
∫ T

0
ψ(t)u(x, t)dt = f(x) gives that

∫ T

0

ψ(t)

 ∞∑
j=1

uj(t)ϕj(x)

 dt =

∞∑
j=1

〈
f, ϕj

〉
ϕj(x).

Hence

Γ(α)
〈
h, ϕj

〉 ∫ T

0

ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt =

〈
f, ϕj

〉
. (4.2)

Due to the uniqueness property of Fourier expansion, we find that

〈
h, ϕj

〉
=

〈
f, ϕj

〉
Γ(α)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt
. (4.3)

Combining (4.1) and (4.3), we arrive at

uj(t) =
tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

〈
f, ϕj

〉
, (4.4)

which allows us to obtain the explicit fomula

u(x, t) = tα−1
∞∑
j=1

Eα,α

(
−λj (1 + νλj)

−1
tα
)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

〈
f, ϕj

〉
ϕj(x). (4.5)

Let the function Hα(y) = yα−1Eα,α(−yα). The derivative of Hα is

∂yHα(y) = −
[
(−1)2∂(2)

y Eα,1(−yα)
]
≤ 0,

where we notice from [38] that the function Eα,1(−yα) satisfy (−1)n∂
(n)
y Eα,1(−yα) ≥

0 for all y > 0 and n ≥ 1. Hence, we can deduce that Hα(y) = yα−1Eα,α(−yα) is
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decreasing function on (0,+∞). We confirm that

Eα,α

(
−λj (1 + νλj)

−1
tα
)

=
(
λj (1 + νλj)

−1
) 1
α−1

t1−α

((λj (1 + νλj)
−1
) 1
α

t

)α−1

Eα,α

(
−

((
λj (1 + νλj)

−1
) 1
α

t

)α)
=
(
λj (1 + νλj)

−1
) 1
α−1

t1−αHα

((
λj (1 + ναj)

−1
) 1
α

t

)
. (4.6)

Notice that
(
λj (1 + νλj)

−1
) 1
α

t ≤ ν−
1
α t. Hence, since the fact that the function

Hα(y) is decreasing, we infer that

Hα

((
λj (1 + νλj)

−1
) 1
α

t

)
≥ Hα

(
ν−

1
α t
)

= ν
1−α
α tα−1Eα,α

(
−ν−1tα

)
. (4.7)

Therefore, we obtain

Eα,α

(
−λj (1 + νλj)

−1
tα
)
≥
(
λj (1 + νλj)

−1
) 1
α−1

ν
1−α
α Eα,α

(
−ν−1tα

)
(4.8)

Since the fact that (
λj (1 + νλj)

−1
) 1
α

t ≤ ν− 1
α t ≤ ν− 1

αT.

we also obtain that

Hα

((
λj (1 + νλj)

−1
) 1
α

T

)
≥ Hα

(
ν−

1
αT
)

= ν
1−α
α Tα−1Eα,α

(
−ν−1Tα

)
. (4.9)

which allow us to get that

Eα,α

(
−λj (1 + νλj)

−1
tα
)
≥
(
λj (1 + νλj)

−1
) 1
α−1

t1−αν
1−α
α Tα−1Eα,α

(
−ν−1Tα

)
(4.10)

Next, we need to estimate for integral quantity
∫ T

0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt.

Using (4.10), we obtain the following estimate∫ T

0

ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

≥
(
λj (1 + νλj)

−1
) 1
α−1

ν
1−α
α Tα−1Eα,α

(
−ν−1Tα

) ∫ T

0

ψ(t)dt

=
(
λj (1 + νλj)

−1
) 1
α−1

ν
1−α
α Tα−1Eα,α

(
−ν−1Tα

)
‖ψ‖L1(0,T ). (4.11)

From Lemma (2.3) and (4.11) and using Parseval’s equality, we find that
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‖u(., t)‖2Hs(Ω)

= t2α−2
∞∑
j=1

λ2s
j

 Eα,α

(
−λj (1 + νλj)

−1
tα
)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

2 〈
f, ϕj

〉2
≤ |C+|2t2α−2

(
ν

1−α
α Tα−1Eα,α

(
−ν−1Tα

)
‖ψ‖L1(0,T )

)2 ∞∑
j=1

λ2s
j (1 + λj)

2
α

λ
2
α
j

〈
f, ϕj

〉2
(4.12)

Using the fact that
λ2s
j (1+λj)

2
α

λ
2
α
j

≤ λ2s
j

(
1
λ1

+ 1
) 2
α

, we deduce that

‖u(., t)‖2Hs(Ω) ≤ |M(α, T, ν, λ1)|2t2α−2
∞∑
j=1

λ2s
j

〈
f, ϕj

〉2
= |M(α, T, ν, λ1)|2t2α−2‖f‖2Hs(Ω) (4.13)

where we denote

M(α, T, ν, λ1) = C+ν
1−α
α Tα−1Eα,α

(
−ν−1Tα

)
‖ψ‖L1(0,T )

(
1

λ1
+ 1

) 1
α

.

Hence, we arrive at

‖u‖Lp(0,T ;Hs(Ω)) =

(∫ T

0

‖u(., t)‖pHs(Ω)dt

)1/p

≤ |M(α, T, ν, λ1)|‖f‖Hs(Ω)

(∫ T

0

t(α−1)pdt

)1/p

= |M(α, T, ν, λ1)| T
1
p−1+α

1 + (α− 1)p
‖f‖Hs(Ω) (4.14)

where we note that 1 < p < 1
1−α . Let t = T into (4.15), we obtain that

u(x, T ) = Tα−1
∞∑
j=1

Eα,α

(
−λj (1 + νλj)

−1
Tα
)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

〈
f, ϕj

〉
ϕj(x). (4.15)

We recall from (4.8) that

Eα,α

(
−λj (1 + νλj)

−1
Tα
)
≥
(
λj (1 + νλj)

−1
) 1
α−1

ν
1−α
α Eα,α

(
−ν−1Tα

)
. (4.16)

It is not difficult to see that∫ T

0

ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

≤ sup
0≤t≤T

|ψ(t)|
∫ T

0

tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

= ‖ψ‖L∞(0,T )
1 + λj
λj

∫ T

0

∂

∂t

(
− Eα,1

(
−λj (1 + νλj)

−1
tα
))

dt

= ‖ψ‖L∞(0,T )
1 + λj
λj

(
1− Eα,1

(
−λj (1 + νλj)

−1
Tα
))
≤ ‖ψ‖L∞(0,T )

1 + λj
λj

.

(4.17)
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Combining (4.15), (4.16), (4.17) yields that

‖u(., T )‖2Hs(Ω) = T 2α−2
∞∑
j=1

λ2s
j

(
Eα,α

(
−λj (1 + νλj)

−1
Tα
)

∫ T
0
ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

)2〈
f, ϕj

〉2
≥ ‖ψ‖−2

L∞(0,T )ν
2−2α
α |Eα,α

(
−ν−1Tα

)
|2
∞∑
j=1

λ2s
j

(
λj (1 + νλj)

−1
) 2
α 〈
f, ϕj

〉2
.

(4.18)

It is obvious to see that
(
λj (1 + νλj)

−1
) 2
α ≥

(
λ1 (1 + νλ1)

−1
) 2
α

. Therefore, we

follows from... that

‖u(., T )‖2Hs(Ω) ≥ P (α, T, ν, λ1)2
∞∑
j=1

λ2s
j =

〈
f, ϕj

〉2
= P (α, T, ν, λ1)2‖f‖2Hs(Ω).

(4.19)

Here, we denote

P (α, T, ν, λ1) = ν
1−α
α Eα,α

(
−ν−1Tα

) (
λ1 (1 + νλ1)

−1
) 1
α ‖ψ‖−1

L∞(0,T ). (4.20)

4.2. Proof of Theorem (3.2). The integral condition βuβ,γ(x, T )+γ
∫ T

0
ψ(t)uβ,γ(x, t)dt =

f(x) gives that

βuβ,γj (T ) + γ

∫ T

0

ψ(t)

 ∞∑
j=1

uβ,γj (t)ϕj(x)

 dt =

∞∑
j=1

〈
f, ϕj

〉
ϕj(x).

Hence 〈
h, ϕj

〉
Γ(α)Tα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+Γ(α)
〈
h, ϕj

〉 ∫ T

0

ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt =

〈
f, ϕj

〉
. (4.21)

This implies that〈
h, ϕj

〉
=

〈
f, ϕj

〉
βΓ(α)Tα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+ γΓ(α)Qj(ψ, α, T )
, (4.22)

where

Qj(ψ, α, T ) =

∫ T

0

ψ(t)tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
dt

So, we obtain that

uβ,γ(x, t) =

∞∑
j=1

tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
) 〈
f, ϕj

〉
βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+Qj(ψ, α, T )
ϕj(x). (4.23)

It is obvious to see that

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+Qj(ψ, α, T )

≥ βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)
≥ βTα−1 C−

1 + λj (1 + νλj)
−1 (4.24)
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and

tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
≤ tα−1 C+

1 + λj (1 + νλj)
−1 . (4.25)

Combining (4.23), (4.24), (4.25), we infer that

‖uβ,γ(., t)‖2Hs(Ω)

=

∞∑
j=1

λ2s
j

(
tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+Qj(ψ, α, T )

)2〈
f, ϕj

〉2
≤ β−2|C+|2|C−|2T 2−2αt2α−2

∞∑
j=1

λ2s
j

〈
f, ϕj

〉2
= β−2|C(T )|2t2α−2‖f‖2Hs(Ω) (4.26)

where we recall that C(T ) = |C+||C−|T 1−α. Therefore, we can deduce that

‖uβ,γ(., t)‖Hs(Ω) ≤ β−1|C(T )|tα−1‖f‖Hs(Ω). (4.27)

Hence, we arrive at

‖uβ,γ‖Lp(0,T ;Hs(Ω)) =

(∫ T

0

‖uβ,γ(., t)‖pHs(Ω)dt

)1/p

≤ β−1|C(T )|‖f‖Hs(Ω)

(∫ T

0

t(α−1)pdt

)1/p

= β−1|C(T )| T
1
p−1+α

1 + (α− 1)p
‖f‖Hs(Ω) (4.28)

where we note that 1 < p < 1
1−α .

Let us review that

uβ,γ(x, t) =

∞∑
j=1

tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
) 〈
f, ϕj

〉
βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+ γQj(ψ, α, T )
ϕj(x). (4.29)

and

uβ,0(x, t) =

∞∑
j=1

tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
) 〈
f, ϕj

〉
βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
) ϕj(x). (4.30)

From two recent estimates, we find that

uβ,γ(x, t)− uβ,0(x, t) = γ

∞∑
j=1

Sj(t, α)
〈
f, ϕj

〉
ϕj(x), (4.31)

where

Sj(t, α)

=
tα−1Eα,α

(
−λj (1 + νλj)

−1
tα
)
Qj(ψ, α, T )

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)(

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+ γQj(ψ, α, T )

)



ON A NONLOCAL FRACTIONAL SOBOLEV EQUATION 21

First, we see that

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+ γQj(ψ, α, T )

)
≥ βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)
.

(4.32)

So, using the lower bound of the function Eα,α(−z), z > 0 we know that

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)(

βTα−1Eα,α

(
−λj (1 + νλj)

−1
Tα
)

+ γQj(ψ, α, T )

)

≥ β2T 2α−2
∣∣∣Eα,α (−λj (1 + νλj)

−1
Tα
) ∣∣∣2

≥ β2T 2α−2
∣∣∣ C+

1 + Tαλj (1 + νλj)
−1

∣∣∣2, (4.33)

and from the result (4.17), we find that

Eα,α

(
−λj (1 + νλj)

−1
tα
)
Qj(ψ, α, T )

≤ C+

1 + λjtα (1 + νλj)
−1 ‖ψ‖L∞(0,T )

1 + λj
λj

≤ C+‖ψ‖L∞(0,T )
1 + λj
λj

(4.34)

This leads to

Sj(t, α) ≤
tα−1C+‖ψ‖L∞(0,T )

1+λj
λj

β2T 2α−2
∣∣∣ C+

1+Tαλj(1+νλj)
−1

∣∣∣2 ≤
tα−1C+‖ψ‖L∞(0,T )

1+λ1

λ1

β2T 2α−2
∣∣∣C+Tα

ν

∣∣∣2 = G(ν, T, α)tα−1

(4.35)

where G(ν, T, α) =
C+‖ψ‖L∞(0,T )

1+λ1
λ1

β2T 2α−2

∣∣∣C+Tα

ν

∣∣∣2 . Combining (4.31) and (4.35), we find that

‖uβ,γ(., t)− uβ,0(., t)‖2Hs(Ω) = γ2
∞∑
j=1

λ2s
j |Sj(t, α)|2

〈
f, ϕj

〉2
≤ γ2t2α−2|G(ν, T, α)|2

∞∑
j=1

λ2s
j

〈
f, ϕj

〉2
(4.36)

which allows us to get that

‖uβ,γ(., t)− uβ,0(., t)‖Lp(0,T ;Hs(Ω)) =

(∫ T

0

‖uβ,γ(., t)− uβ,0(., t)‖pHs(Ω)dt

)1/p

≤ γG(ν, T, α)

(∫ T

0

t(α−1)pdt

)1/p

‖f‖Hs(Ω)

= γG(ν, T, α)
T

1
p−1+α

1 + (α− 1)p
‖f‖Hs(Ω). (4.37)
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4.3. Conclusion. In this paper, We set some of the results about the existence,
uniqueness, and regularity of the mild solutions of the proposed problem in some
suitable space. The lower bound and upper bound for the mild solution with respect
to the given data. Finally, we obtain the asymptotic behavior of the solution when
the parameter tends to zero.
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