Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 15 Issue 1(2023), Pages 24-33 https://doi.org/10.54671/BMAA-2023-1-3

PARACOMPACTNESS IN A BISPACE

RAHUL MONDAL, AMAR KUMAR BANERJEE

ABSTRACT. The idea of pairwise paracompactness was studied by many authors in a bitopological space. Here we study the same in the setting of more general structure of a bispace using the thoughts of the same given by Bose et al. [2].

1. Introduction

The idea of paracompactness given by Dieudonne' in the year 1944 came out as a generalization of the notion of compactness. It has many implication in field of differential geometry and it plays important roll in metrization theory. The concept of the Alexandroff space [1] (i.e., a σ -space or simply a space) was introduced by A. D. Alexandroff in the year 1940 as a generalization of a topological space where the union of open sets were taken to be open for only countable collection of open sets instead of arbitrary collection. Another kind of generalization of a topological space is the idea of a bitopological space introduced by J.C. Kelly in [14]. Using these ideas Lahiri and Das [17] introduced the idea of a bispace as a generalization of a σ -space. Many works on topological properties were carried out by many authors ([21], [22], [25] etc.) in the setting of a bitopological space. Datta [11] studied the idea of paracompactness in a bitopological space and tried to get analogous results of topological properties given by Michael [19] in respect of paracompactness. In 1986 Raghavan and Reilly [23] gave the idea of paracompactness in a bitopological space in another way. Later in 2008 M. K. Bose et al. [2] studied the same in a bitopological space as a generalization of pairwise compactness. Here we have studied pairwise paracompactness using the thoughts given by Bose et al. [2] in a bispace and discussed some its results in the setting of a bispace, which was firstly introduced by Lahiri and Das [17] as a generalization of the notion of bitopological spaces in 2001.

2. Preliminaries

Definition 2.1. [1] A set X is called an Alexandroff space or σ - space or simply space if it is chosen a system \mathcal{F} of subsets of X, satisfying the following axioms

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54E55, 54E99.

Key words and phrases. $\sigma\text{-space,}$ bispace, refinement, parallel refinement, locally finiteness, pairwise paracompactness.

^{©2023} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted January 7, 2023. Published February 2, 2023.

Communicated by F. Basar.

(i) The intersection of countable number sets in \mathcal{F} is a set belonging to \mathcal{F} .

(ii) The union of finite number of sets from \mathcal{F} is a set belonging to \mathcal{F} .

(iii) The empty set and X is a set belonging to \mathcal{F} .

Sets of \mathcal{F} are called closed sets. There complementary sets are called open. It is clear that instead of closed sets in the definition of a space, one may put open sets with subject to the conditions of countable summability, finite intersectability and the condition that X and the void set should be open.

The collection of such open will sometimes be denoted by \mathcal{P} and the space by (X, \mathcal{P}) . It is noted that \mathcal{P} is not a topology in general as can be seen by taking $X = \mathbb{R}$, the set of real numbers and τ as the collection of all F_{σ} sets in \mathbb{R} .

Definition 2.2. [1] To every set M we correlate its closure \overline{M} = the intersection of all closed sets containing M.

Generally the closure of a set in a σ -space is not a closed set. We denote the closure of a set M in a space (X, \mathcal{P}) by $\mathcal{P}\text{-cl}(M)$ or simply \overline{M} when there is no confusion about \mathcal{P} . The idea of limit points, derived set, interior of a set etc. in a space are similar as in the case of a topological space which have been thoroughly discussed in [16].

Definition 2.3. [3] Let (X, \mathcal{P}) be a space. A family of open sets B is said to form a base (open) for \mathcal{P} if and only if every open set can be expressed as countable union of members of B.

Theorem 2.1. [3] A collection of subsets B of a set X forms an open base of a suitable space structure \mathcal{P} of X if and only if

1) the empty set \emptyset belongs to B

2) X is the countable union of some sets belonging to B.

3) intersection of any two sets belonging to B is expressible as countable union of some sets belonging to B.

Definition 2.4. [17] Let X be a non-empty set. If \mathcal{P} and \mathcal{Q} be two collection of subsets of X such that (X, \mathcal{P}) and (X, \mathcal{Q}) are two spaces, then X is called a bispace.

Definition 2.5. [17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise T_1 if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \notin U$ and $y \in V$, $x \notin V$.

Definition 2.6. [17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise Hausdorff if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \in V$, $U \cap V = \emptyset$.

Definition 2.7. [17] In a bispace $(X, \mathcal{P}, \mathcal{Q})$, \mathcal{P} is said to be regular with respect to \mathcal{Q} if for any $x \in X$ and a \mathcal{P} -closed set F not containing x, there exist $U \in \mathcal{P}$, $V \in \mathcal{Q}$ such that $x \in U, F \subset V, U \cap V = \emptyset$. $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise regular if \mathcal{P} and \mathcal{Q} are regular with respect to each other.

Definition 2.8. [17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise normal if for any \mathcal{P} -closed set F_1 and \mathcal{Q} -closed set F_2 satisfying $F_1 \cap F_2 = \emptyset$, there exist $G_1 \in \mathcal{P}$, $G_2 \in \mathcal{Q}$ such that $F_1 \subset G_2$, $F_2 \subset G_1$, $G_1 \cap G_2 = \emptyset$.

3. Pairwise paracompactness

We called a space (or a set) is bicompact [17] if every open cover of it has a finite subcover. Also similarly as [17] a cover B of $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise open if $B \subset \mathcal{P} \cup \mathcal{Q}$ and B contains at least one nonempty member from each of \mathcal{P} and \mathcal{Q} . Bourbaki and many authors defined the term paracompactness in a topological space including the requirement that the space is Hausdorff. Also in a bitopological space some authors follow this idea. But in our discussion we shall follow the convention as adopted in Munkresh[20] to define the following terminologies as in the case of a topological space.

Definition 3.1. cf.[20] In a space X a collection of subsets \mathcal{A} is said to be locally finite in X if every point has a neighborhood that intersects only a finitely many elements of \mathcal{A} .

Similarly a collection of subsets \mathcal{B} in a space X is said to be countably locally finite in X if \mathcal{B} can be expressed as a countable union of locally finite collection.

Definition 3.2. cf.[20] Let \mathcal{A} and \mathcal{B} be two covers of a space X. Then \mathcal{B} , is said to be a refinement of \mathcal{A} if for $B \in \mathcal{B}$ there exists a $A \in \mathcal{A}$ containing B.

We call \mathcal{B} is an open refinement of \mathcal{A} if the elements of \mathcal{B} are open and similarly we call \mathcal{B} is an closed refinement if the elements of \mathcal{B} are closed.

Definition 3.3. cf.[20] A space X is said to be paracompact if every open covering \mathcal{A} of X has a locally finite open refinement \mathcal{B} that covers X.

As in the case of a topological space [11, 2] we define the following terminologies. Let \mathcal{A} and \mathcal{B} be two pairwise open covers of a bispace $(X, \mathcal{P}, \mathcal{Q})$. Then \mathcal{B} is said to be a parallel refinement [11] of \mathcal{A} if for any \mathcal{P} -open set(respectively \mathcal{Q} -open set) \mathcal{B} in \mathcal{B} there exists a \mathcal{P} -open set(respectively \mathcal{Q} -open set) \mathcal{A} in \mathcal{A} containing \mathcal{B} . Let \mathcal{U} be a pairwise open cover in a bispace $(X, \mathcal{P}_1, \mathcal{P}_2)$. If x belongs to X and M be a subset of X, then by "M is $\mathcal{P}_{\mathcal{U}x}$ -open" we mean M is \mathcal{P}_1 -open(respectively \mathcal{P}_2 -open set) if x belongs to a \mathcal{P}_1 -open set(respectively \mathcal{P}_2 -open set) in \mathcal{U} .

Definition 3.4. cf. [2] Let \mathcal{A} and \mathcal{B} be two pairwise open covers of a bispace $(X, \mathcal{P}_1, \mathcal{P}_2)$. Then \mathcal{B} is said to be a locally finite refinement of \mathcal{A} if for each x belonging to X, there exists a $\mathcal{P}_{\mathcal{A}x}$ -open open neighborhood of x intersecting only a finite number of sets of \mathcal{B} .

Definition 3.5. cf. [2] A bispace $(X, \mathcal{P}_1, \mathcal{P}_2)$ is said to be pairwise paracompact if every pairwise open cover of X has a locally finite parallel refinement.

To study the notion of paracompactness in a bispace the idea of pairwise regular and strongly pairwise regular spaces play significant roll as discussed below.

As in the case of a bitopological space a bispace $(X, \mathcal{P}_1, \mathcal{P}_2)$ is said to be strongly pairwise regular[2] if $(X, \mathcal{P}_1, \mathcal{P}_2)$ is pairwise regular and both the spaces (X, \mathcal{P}_1) and (X, \mathcal{P}_2) are regular.

Now we present two examples, the first one is of a strongly regular bispace and the second one is of a pairwise regular bispace without being a strongly pairwise regular bispace.

Example 3.1. Let $X = \mathbb{R}$ and (x, y) be an open interval in X. We consider the collection τ_1 with sets A in \mathbb{R} such that either $(x, y) \subset \mathbb{R} \setminus A$ or $A \cap (x, y)$ can

be expressed as some union of open subintervals of (x, y) and τ_2 be the collection of all countable subsets in (x, y). Also if τ be the collection of all countable union of members of $\tau_1 \cup \tau_2$ then clearly (X, τ) is a σ -space but not a topological space. Also consider the bispace (X, τ, σ) , where σ is the usual topology on X.

We first show that (X, τ) is regular. Let $p \in X$ and P be any τ -closed set not containing p. Then $A = \{p\}$ is a τ -open set containing p. Also $A = \{p\}$ is closed in (X, τ) because if $p \notin (x, y)$ then $A^c \cap (x, y) = (x, y)$ and if $p \in (x, y)$ then $A^c \cap (x, y) = (x, p) \cup (p, y)$ and hence A^c is a τ -open set containing P.

Now we show that the bispace (X, τ, σ) is pairwise regular. Let $p \in X$ and M be a τ -closed set not containing p. Then $A = \{p\}$ is a τ -open set containing p and also as every singleton set is closed in (X, σ) , A^c is a σ -open set containing M.

Now let $p \in X$ and P be a σ -closed set not containing p. Now consider the case when $P \cap (x, y) = \emptyset$ then P is a τ -open set containing P and P^c is a σ -open set containing p.

Now we consider the case when $P \cap (x, y) \neq \emptyset$. Since $p \notin P$, P^c is a σ -open set containing p and hence there exists an open interval I containing p be such that $p \in I \subset P^c$ and $p \in \overline{I} \subset P^c$, where \overline{I} denotes the closer of I with respect to σ . If I intersects (x, y) then let $I_1 = (x, y) \setminus \overline{I}$. Clearly I_1 is non empty because $P \cap (x, y) \neq \emptyset$. Also $\overline{I} \subset P^c$ and hence $(x, y) \setminus P^c \subset (x, y) \setminus \overline{I}$ and its follows that $P \cap (x, y) \subset I_1$. So clearly $P \cup I_1$ is a τ -open set containing P and I is a σ -open set containing p and which are disjoint. Again if I does not intersect (x, y)then $P \cup (x, y)$ is a τ -open set containing P and I itself a σ -open set containing p and which are disjoint. Therefore the bispace (X, τ, σ) is strongly pairwise regular.

Example 3.2. Let $X = \mathbb{R}$ and (X, τ_1, τ_2) be a bispace where (X, τ_1) is cocountable topological space and $\tau_2 = \{X, \emptyset\} \cup \{\text{countable subsets of real numbers}\}$. Clearly τ_2 is not a topology and hence (X, τ_1, τ_2) is not a bitopological space. We show that (X, τ_1, τ_2) is a pairwise regular bispace but not a strongly pairwise regular bispace. Let $p \in X$ and A be a τ_1 -closed set not containing p. Then clearly A itself a τ_2 -open set containing A and A^c is a τ_1 -open set containing p and clearly they are disjoint.

Similarly if B is a τ_2 -closed set such that $p \notin B$, then B being a complement of a countable set is τ_1 -open set containing B. Also B^c being countable is τ_2 -open set containing p.

Now let $p \in X$ and P be a closed set in (X, τ_2) such that $p \notin P$. Then P must be a complement of a countable set in \mathbb{R} and hence it must be a uncountable set. So clearly the only open set containing P is \mathbb{R} itself. Therefore (X, τ_2) is not regular and hence (X, τ_1, τ_2) can not be strongly pairwise regular.

Remark 3.1. In a bitopological space, pairwise Hausdorffness and pairwise paracompactness together imply pairwise normality but similar result holds in a bispace if an additional condition C(1) holds.

Theorem 3.1. Let $(X, \mathcal{P}, \mathcal{Q})$ be a bispace, which is pairwise Hausdorff and pairwise paracompact and satisfies the condition C(1) as stated below then it is pairwise normal.

C(1): If $A \subset X$ is expressible as an arbitrary union of \mathcal{P} -open sets and $A \subset B$, B is an arbitrary intersection of \mathcal{Q} -closed sets, then there exists a \mathcal{P} -open set K, such that $A \subset K \subset B$, the role of \mathcal{P} and \mathcal{Q} can be interchangeable.

Proof. We first show that X is pairwise regular. So let us suppose F be a \mathcal{P} -closed set not containing $x \in X$. Since X is pairwise Hausdorff for $\xi \in F$, there exists a $U_{\xi} \in \mathcal{P}$ and $V_{\xi} \in \mathcal{Q}$, such that $x \in U_{\xi}$ and $\xi \in V_{\xi}$ and $U_{\xi} \cap V_{\xi} = \emptyset$. Then the collection $\{V_{\xi} : \xi \in F\} \cup (X \setminus F)$ forms a pairwise open cover of X. Therefore it has a locally finite parallel refinement \mathcal{W} . Let $H = \bigcup \{ W \in \mathcal{W} : W \cap F \neq \emptyset \}$. Now $x \in X \setminus F$ and $X \setminus F$ is \mathcal{P} -open set and hence there exists a \mathcal{P} -open neighborhood D of x intersecting only a finite number of members W_1, W_2, \ldots, W_n of \mathcal{W} . Now if $W_i \cap F = \emptyset$ for all n = 1, 2, ..., n, then $H \cap D = \emptyset$. Therefore by C(1) we must have a Q-open set K such that $F \subset H \subset K \subset D^c$. Hence we have a \mathcal{Q} -open set K containing F and \mathcal{P} -open set D containing x with $D \cap K = \emptyset$. If there exists a finite number of elements $W_{p_1}, W_{p_2}, \ldots, W_{p_k}$ from the collection $\{W_1, W_2, \ldots, W_n\}$ such that $W_{p_i} \cap F \neq \emptyset$, then we consider $V_{\xi_{p_i}}$ such that $W_{p_i} \subset W_{\xi_{p_i}}$ $V_{\xi_{p_i}}, \xi_{p_i} \in F$ and i = 1, 2, ..., k, since \mathcal{W} is a locally finite parallel refinement of $\{V_{\xi}: \xi \in F\} \cup (X \setminus F)$. Now, if $U_{\xi_{p_i}}$'s are the corresponding member of $V_{\xi_{p_i}}$, then $x \in D \cap (\bigcap_{i=1}^{n} U_{\xi_{p_i}}) = G(say) \in \mathcal{P}$. Since \mathcal{W} is a cover of X it covers also D and since D intersects only finite number of members W_1, W_2, \ldots, W_n , these n sets covers D. Now since the members $W_{p_1}, W_{p_2}, \ldots, W_{p_k}$ be such that $W_{p_i} \cap F \neq \emptyset$, we have $D \cap F \subset \bigcup_{i=1}^{k} W_{p_i}$. Now let $W_{p_i} \subset V_{\xi_{p_i}}$ for some $\xi_{p_i} \in F$ and consider $U_{\xi_{p_i}}$ corresponding to $V_{\xi_{p_i}}$ be such that $U_{\xi_{p_i}} \cap V_{\xi_{p_i}} = \emptyset$. Now we claim that $G \cap F = \emptyset$. If not let $y \in G \cap F = [D \cap (\bigcap_{i=1}^{n} U_{\xi_{p_i}})] \cap F = [D \cap F] \cap (\bigcap_{i=1}^{n} U_{\xi_{p_i}})$. Then $y \in D \cap F$ and hence there exists W_{p_i} for some $i = 1, 2, \ldots, k$ such that $y \in W_{p_i} \subset V_{\xi_{p_i}}$. Also $y \in (\bigcap_{i=1}^{n} U_{\xi_{p_i}}) \subset U_{\xi_{p_i}}$ and hence $y \in U_{\xi_{p_i}} \cap V_{\xi_{p_i}}$, which is a contradiction. So $G \cap F = \emptyset$. Now we have a \mathcal{P} -open neighborhood G of x intersecting only a finite number of members $W_{r_1}, W_{r_2} \dots W_{r_k}$ of \mathcal{W} where $W_{r_i} \cap F = \emptyset$. So by similar argument there exists a \mathcal{Q} -open set K such that $F \subset H \subset K \subset G^c$. Thus we have a \mathcal{Q} -open set K containing F and a \mathcal{P} -open set G containing x such that $G \cap K = \emptyset$.

Next let A be a Q-closed set and B be a \mathcal{P} -closed set and $A \cap B = \emptyset$. Then for every $x \in B$ and Q-closed set A there exists \mathcal{P} -open set U_x containing A and Q-open set V_x containing x with $U_x \cap V_x = \emptyset$. Now the collection $\mathcal{U} = (X \setminus B) \cup \{V_x : x \in B\}$ forms a pairwise open cover of X. Hence there exists a locally finite parallel refinement \mathcal{M} of \mathcal{U} . Clearly $B \subset Q$ where $Q = \bigcup \{M \in \mathcal{M} : M \cap B \neq \emptyset\}$. Now for $x \in X \setminus B$, a \mathcal{P} -open set there exists a \mathcal{P} -open neighborhood of x intersecting only a finite number of elements of \mathcal{M} . Since $A \subset X \setminus B$, so for $x \in A$ there exists a \mathcal{P} -open neighborhood D_x of x intersecting only a finite number of elements $M_{x_1}, M_{x_2}, \ldots, M_{x_n}$ of \mathcal{M} with $M_{x_i} \cap B \neq \emptyset$ for some $i = 1, 2, \ldots, n$. Suppose if $M_{x_i} \subset V_{x_i}, i = 1, 2, \ldots, n$ and let $P_x = D_x \cap (\bigcap_{i=1}^n U_{x_i})$ where $U_{x_i} \cap V_{x_i} = \emptyset$. If $M_{x_i} \cap B = \emptyset$ for all $i = 1, 2, \ldots, n$, then we consider $P_x = D_x$. Now if $P = \bigcup \{P_x : x \in A\}$ then $A \subset P$ and $P \subset Q^c$.

Now by the given condition C(1) there exists a \mathcal{P} -open set R be such that $A \subset P \subset R \subset Q^c$. Again by the same argument there exists a \mathcal{Q} -open set S be such that $B \subset Q \subset S \subset R^c$. Hence there exists a \mathcal{P} -open set R containing A and \mathcal{Q} -open set S containing B with $R \cap S = \emptyset$.

Theorem 3.2. If the bispace $(X, \mathcal{P}_1, \mathcal{P}_2)$ is strongly pairwise regular and satisfies the condition C(2) given below, then the following statements are equivalent:

(ii) Each pairwise open cover C of X has a countably locally finite parallel refinement.

⁽i) X is pairwise paracompact.

(iii) Each pairwise open cover C of X has a locally finite refinement.

(iv) Each pairwise open cover C of X has a locally finite refinement \mathcal{B} such that if $B \subset C$ where $B \in \mathcal{B}$ and $C \in C$, then \mathcal{P}_1 -cl $(B) \cup \mathcal{P}_2$ -cl $(B) \subset C$.

C(2): If $M \subset X$ and \mathcal{B} is a subfamily of $\mathcal{P}_1 \cup \mathcal{P}_2$ such that $\mathcal{P}_i - cl(B) \cap M = \emptyset$, for all $B \in \mathcal{B}$, then there exists a \mathcal{P}_i - open set S such that $M \subset S \subset [\bigcup_{B \in \mathcal{B}} \mathcal{P}_i - cl(B)]^c$.

Proof. $(i) \Rightarrow (ii)$

Let \mathcal{C} be a pairwise open cover of X. Let \mathcal{U} be a locally finite parallel refinement of \mathcal{C} . Then the collection $\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n$, where $\mathcal{V}_n = \mathcal{U}$ for all $n \in \mathbb{N}$, becomes the countably locally finite parallel refinement of \mathcal{C} . (*ii*) \Rightarrow (*iii*)

We consider a pairwise open cover C of X. Let \mathcal{V} be a parallel refinement of C, such that $\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n$, where for each n and for each x there exists a \mathcal{P}_{Cx} open neighborhood of x intersecting only a finite number of members of \mathcal{V}_n . For
each $n \in \mathbb{N}$, let us agree to write \mathcal{V}_n as $\mathcal{V}_n = \{\mathcal{V}_{n\alpha} : \alpha \in \wedge_n\}$ and we consider $M_n = \bigcup_{\alpha \in \wedge_n} \mathcal{V}_{n\alpha}, n \in \mathbb{N}$. Clearly the collection $\{M_n\}_{n \in \mathbb{N}}$ is a cover of X. Let $N_n = M_n - \bigcup_{k < n} M_k$. Clearly for $x \in X$ if $x \in M_n$, where n is the least positive
integer then $x \in N_n$ and hence $\{N_n : n \in \mathbb{N}\}$ covers X. Also $N_n \subset M_n$ for every n, so $\{N_n : n \in \mathbb{N}\}$ is a refinement of $\{M_n : n \in \mathbb{N}\}$. The family $\{N_n : n \in \mathbb{N}\}$ is
locally finite because for $x \in X$ there exists a $\mathcal{V}_{n\alpha} \in \mathcal{V}$ which can intersects only
some or all of N_1, N_2, \ldots, N_n . Now the collection $\{\mathcal{V}_{n\alpha} \cap N_n : \alpha \in \wedge_n, n \in \mathbb{N}\}$ covers X as if $x \in \mathcal{V}_{p\alpha}$ for the least positive integer p then $x \in N_p$ and hence $x \in \mathcal{V}_{p\alpha} \cap N_p$. So clearly $\{\mathcal{V}_{n\alpha} \cap N_n : \alpha \in \wedge_n, n \in \mathbb{N}\}$ is a refinement of $\{N_n : n \in \mathbb{N}\}$ is a refinement of \mathcal{V} and hence
if \mathcal{C} . Also for $x \in X$ there exists a \mathcal{P}_{Cx} -open neighborhood $\mathcal{V}_{k\alpha}$ intersecting only
a finite number of members of $\{N_n : n \in \mathbb{N}\}$ and hence it intersects only a finite
number of members of $\{\mathcal{V}_{n\alpha} \cap N_n : \alpha \in \wedge_n, n \in \mathbb{N}\}$.

Let \mathcal{C} be a pairwise open cover of X. Let $x \in X$ and suppose that $x \in C_x$ for some $C_x \in \mathcal{C}$. Without any loss of generality let $C_x \in \mathcal{P}_1$. Then $x \notin C_x^c$ and hence by using the condition of strongly pairwise regularity of X there exists a \mathcal{P}_1 -open set D_1 containing x and a \mathcal{P}_1 -open set D_1' containing C_x^c with $D_1 \cap D_1' = \emptyset$. Now $(D'_1)^c \subset C_x$ and hence $(D'_1)^c$ is a \mathcal{P}_1 -closed set such that $x \in (D'_1)^c \subset C_x$. Therefore \mathcal{P}_1 -cl $(D_1) \subset C_x$ as $D_1 \subset (D'_1)^c \subset C_x$. Again $x \notin D_1^c$, a \mathcal{P}_1 -closed set and hence by pairwise regularity of X there exists a \mathcal{P}_1 -open set D_2 containing x and a \mathcal{P}_2 -open set D'_2 containing D_1^c with $D_2 \cap D'_2 = \emptyset$. Now $D_2 \subset (D'_2)^c$ and $D_2 \subset (D'_2)^c \subset D_1 \subset D'_2$ C_x . Hence \mathcal{P}_2 -cl $(D_2) \subset C_x$ and also $D_2 \subset D_1$. Therefore \mathcal{P}_1 -cl $(D_2) \subset \mathcal{P}_1$ -cl (D_1) and hence \mathcal{P}_1 -cl $(D_2) \cup \mathcal{P}_2$ -cl $(D_2) \subset C_x$. Similarly if $C_x \in \mathcal{P}_2$ then there exists a \mathcal{P}_2 open set D_2 containing x such that \mathcal{P}_1 -cl $(D_2) \cup \mathcal{P}_2$ -cl $(D_2) \subset C_x$. Let us denote D_2 by a general notation G_x and then we can write \mathcal{P}_1 -cl $(G_x) \cup \mathcal{P}_2$ -cl $(G_x) \subset C_x$. Then, since \mathcal{C} be a pairwise open cover $\{G_x : x \in X, C_x \in \mathcal{C}\}$ is a pairwise open cover of X which refines of C. Therefore by (iii) there exists a locally finite refinement \mathcal{B} of $\{G_x : x \in X\}$ and hence of \mathcal{C} . If $B \in \mathcal{B}$ then for some G_x we have $B \subset G_x \subset C_x$ and so \mathcal{P}_1 -cl $(B) \cup \mathcal{P}_2$ -cl $(B) \subset \mathcal{P}_1$ -cl $(G_x) \cup \mathcal{P}_2$ -cl $(G_x) \subset C_x$. $(iv) \Rightarrow (i)$

Let \mathcal{C} be a pairwise open cover of X and without any loss of generality we assume that there does not exist any element of \mathcal{C} which is both \mathcal{P}_1 -open and \mathcal{P}_2 -open. So there exists a locally finite refinement \mathcal{A} of \mathcal{C} . For $x \in X$ we must have a $C \in \mathcal{C}$ containing x. Let us suppose C is \mathcal{P}_i -open. Let W_x be a \mathcal{P}_i -open neighborhood of x intersecting only a finite number of elements of \mathcal{A} . So the collection $\mathcal{W} = \{W_x : x \in X\}$ is a pairwise open cover of X and let $E = \{E_\lambda : \lambda \in \wedge\}$ be a locally finite refinement of \mathcal{W} such that if $E_\lambda \subset W_x$ then $\mathcal{P}_1\text{-cl}(E_\lambda) \cup \mathcal{P}_2\text{-cl}(E_\lambda) \subset W_x$. Now for $A \in \mathcal{A}$ we consider $C_A \in \mathcal{C}$ such that $A \subset C_A$. Then if C_A is \mathcal{P}_i -open, then we consider the set $F_A = \cup \{\mathcal{P}_i\text{-cl}(E_\lambda) : E_\lambda \in E, \mathcal{P}_i\text{-cl}(E_\lambda) \cap A = \emptyset\}$. Let $G_A = X \setminus F_A$, then by the given condition C(2) there exists a \mathcal{P}_i -open set S_A such that $A \subset S_A \subset G_A$. We write $H_A = S_A \cap C_A$ and since $A \subset H_A$, the collection $\{H_A : A \in \mathcal{A}\}$ covers X. Also $H_A \subset C_A$ and H_A is \mathcal{P}_i -open. Thus $\{H_A : A \in \mathcal{A}\}$ is a parallel refinement of \mathcal{C} . Now we show that $\{H_A : A \in \mathcal{A}\}$ is a locally finite refinement of \mathcal{C} .

We show that if M is a \mathcal{P}_{Wx} -open set containing x then it is also a $\mathcal{P}_{\mathcal{C}x}$ -open set containing x. Let M be a \mathcal{P}_{Wx} -open set containing x and M is \mathcal{P}_i -open set then x must be contained in a \mathcal{P}_i -open set W_x in \mathcal{W} . So there exists a \mathcal{P}_i -open set C in \mathcal{C} containing x. This shows that M is also a $\mathcal{P}_{\mathcal{C}x}$ -open set containing x.

Now let $x \in X$ and J_x be a \mathcal{P}_{Wx} -open neighborhood of x intersecting only a finite numbers of members $E_{\lambda_1}, E_{\lambda_2}, \ldots, E_{\lambda_n}$ of E. Hence J_x is also a \mathcal{P}_{Cx} -open neighborhood of x intersecting only a finite numbers of members $E_{\lambda_1}, E_{\lambda_2}, \ldots, E_{\lambda_n}$ of E. Clearly J_x can be covered by these members of E. Now each E_{λ_i} is contained in some W_x with $\mathcal{P}_1\text{-cl}(E_{\lambda_i}) \cup \mathcal{P}_2\text{-cl}(E_{\lambda_i}) \subset W_x$. Also W_x can intersect only a finite number of members of \mathcal{A} . Hence each $\mathcal{P}_1\text{-cl}(E_{\lambda_i})$ or $\mathcal{P}_2\text{-cl}(E_{\lambda_i})$ can intersect only a finite number of sets in \mathcal{A} . So each $\mathcal{P}_1\text{-cl}(E_{\lambda_i})$ or $\mathcal{P}_2\text{-cl}(E_{\lambda_i})$ can intersect only a finite number of sets in $\{G_A : A \in \mathcal{A}\}$. Therefore J_x can intersect only a finite number of sets of $\{G_A : A \in \mathcal{A}\}$. Now $\{H_A : A \in \mathcal{A}\}$ covers X and $H_A \subset G_A$, hence J_x can intersect only a finite number of sets of $\{G_A : A \in \mathcal{A}\}$. Now $\{H_A : A \in \mathcal{A}\}$. Also $H_A \subset C_A$ and hence clearly $\{H_A : A \in \mathcal{A}\}$ refines \mathcal{C} . Therefore $\{H_A : A \in \mathcal{A}\}$ is a locally finite parallel refinement of \mathcal{C} .

Theorem 3.3. Let \mathcal{A} be a locally finite collection in a σ -space X. Then the collection $\mathcal{B} = \{\overline{A}\}_{A \in \mathcal{A}}$ is also locally finite.

Proof. Let $x \in X$ and U be a neighborhood of x intersecting only a finite number of members of \mathcal{A} . Now if for $A \in \mathcal{A}$, $A \cap U = \emptyset$ then $A \subset U^c$ and hence $A \subset \overline{A} \subset U^c$. Therefore $\overline{A} \subset U^c$ so $\overline{A} \cap U = \emptyset$. Therefore U can intersect only a finite number of members of \mathcal{B} .

Theorem 3.4. In a space any sub collection of a locally finite collection of sets is locally finite.

Proof. Let \mathcal{A} be a locally finite collection of sets in a space X and $\mathcal{B} = \{B_{\alpha} : \alpha \in \Lambda, \text{ an indexing set}\}$ be a sub collection of \mathcal{A} . If $x \in X$ then there exists a neighborhood U of X intersecting only a finite number of sets in \mathcal{A} . Hence U can not intersect infinite number of sets in \mathcal{B} . If U does not intersect any member of \mathcal{B} , then consider $B_p \in \mathcal{B}$ such that $M = B_p \setminus \bigcup_{\alpha \in \Lambda}^{\alpha \neq p} B_{\alpha} \neq \emptyset$. Then $M \cup U$ is a neighborhood of x intersecting only B_p of \mathcal{B} . Hence \mathcal{B} is locally finite. \Box

It has been discussed in [10] that in a regular topological space X the following four conditions are equivalent:

(i) The space X is paracompact.

(*ii*) If \mathcal{U} is a open cover of X then it has an open refinement $\mathcal{V} = \bigcup_{n=1}^{\infty} V_n$, where V_n is a locally finite collection in X for each n.

(iii)For every open cover of the space X there exists its locally finite refinement. (iv)For every open cover of the space X there exists its closed locally finite refinement.

In a σ -space it is not true because closure of a set may not be closed. But a similar kind of result has been discussed below.

Theorem 3.5. In a regular space X for the following four conditions we have $(i) \Rightarrow (ii) \Rightarrow (iv)$:

(i) The space X is paracompact.

(ii) If \mathcal{U} is a open cover of X then it has an open refinement $\mathcal{V} = \bigcup_{n=1}^{\infty} V_n$, where V_n is a locally finite collection in X for each n.

(iii) For every open cover of the space X there exists its locally finite refinement.

(iv) For every open cover \mathcal{A} of the space X there exists its locally finite refinement $S = \{S_{\alpha} : \alpha \in \Lambda\}$ such that $\{\overline{S_{\alpha}} : S_{\alpha} \in S\}$ is also its locally finite refinement, Λ being an indexing set.

Proof. $(i) \Rightarrow (ii)$ The proof is straightforward. $(ii) \Rightarrow (iii)$

Let \mathcal{A} be an open cover of X. Then by (ii) there exists an open refinement $\mathcal{B} = \bigcup_{n=1}^{\infty} B_n$ where B_n is a locally finite collection in X for each n. Let $B_n =$ $\{B_{n\alpha}: \alpha \in \Lambda_n\}$ and $C_n = \bigcup_{\alpha \in \Lambda_n} B_{n\alpha}$, Λ_n being an indexing set. Now clearly the collection $\{C_n\}$ covers X. Let us consider $D_n = C_n \setminus \bigcup_{k < n} C_k$. For $x \in X$, suppose that k be the least natural number for which $x \in B_{k\alpha}$, then $B_{k\alpha}$ can intersect at most k members D_1, D_2, \ldots, D_k of $\{D_n : n \in \mathbb{N}\}$. Hence $\{D_n : n \in \mathbb{N}\}$ is a locally finite refinement of $\{C_n : n \in \mathbb{N}\}$. Now we show that $M = \{D_n \cap B_{n\alpha} : n \in \mathbb{N}, \alpha \in \mathbb{N}\}$ Λ_n is a locally finite refinement of \mathcal{B} . For $n \in \mathbb{N}$ we have $\bigcup_{\alpha \in \Lambda_n} (D_n \cap B_{n\alpha}) =$ $D_n \cap (\bigcup_{\alpha \in \Lambda_n} B_{n\alpha}) = D_n \cap C_n = D_n$ as $D_n \subset C_n$. Also D_n covers X and hence $\bigcup_{n\in\mathbb{N}}\bigcup_{\alpha\in\Lambda_n}(D_n\cap B_{n\alpha})=X.$ Let $x\in X$ then there exists an neighborhood U of x intersecting only a finite number members $D_{i_1}, D_{i_2}, \ldots, D_{i_n}(say)$ of $\{D_n : n \in \mathbb{N}\}$. Also there exists an open set U_{i_n} intersecting only a finite number of members of B_{i_n} . Now $U \cap (\bigcap_{k=1}^n U_{i_k})$ is an neighborhood of x intersecting only a finite numbers of M as M covers X. Also $D_n \cap B_{n\alpha} \subset B_{n\alpha}$ and hence $M = \{D_n \cap B_{n\alpha} : n \in M\}$ $\mathbb{N}, \alpha \in \Lambda_n$ is a locally finite refinement of \mathcal{B} . And also since $D_n \cap B_{n\alpha} \subset B_{n\alpha} \subset A$ for some $A \in \mathcal{A}$, $M = \{D_n \cap B_{n\alpha} : n \in \mathbb{N}, \alpha \in \Lambda_n\}$ is a locally finite refinement of \mathcal{A} .

 $(iii) \Rightarrow (iv)$

Let \mathcal{U} be an open cover of X. Now for $x \in X$ we have a $U_x \in \mathcal{U}$ such that $x \in U_x$. So $x \notin (U_x)^c$ and hence by regularity of X, there exist disjoint open sets P_x and Q_x containing x and $(U_x)^c$ respectively. Hence $x \in P_x \subset (Q_x)^c \subset U_x$ and clearly $x \in \overline{P_x} \subset U_x$. Now $P = \{P_x : x \in X\}$ is an open cover of X and by (*iii*) it has a locally finite refinement $S = \{S_\alpha : \alpha \in \Lambda, \text{ an indexing set}\}$ (say). Also the collection $\{\overline{S_\alpha} : S_\alpha \in S\}$ is locally finite by previous lemma. Now for $\alpha \in \Lambda$, $S_\alpha \subset P_x \subset U_x$ for some $P_x \in P$ and hence $\overline{S_\alpha} \subset \overline{P_x} \subset U_x$ for some $U_x \in \mathcal{U}$. Therefore S is a locally finite refinement of \mathcal{U} such that $\{\overline{S_\alpha} : S_\alpha \in S\}$ is also a locally finite refinement of \mathcal{U} . We have discussed some results associated with paracompactness in a σ -space because our motivation was to establish the statement "If $(X, \mathcal{P}_1, \mathcal{P}_2)$ is a pairwise paracompact bispace with (X, \mathcal{P}_2) regular, then every \mathcal{P}_1 - F_σ proper subset is \mathcal{P}_2 paracompact". This has been discussed in a bitopological space [2]. But we failed due to the fact that arbitrary union of open sets in a σ -space may not be open.

References

- A. D. Alexandroff, Additive set functions in abstract spaces, (a) Mat. Sb. (N.S), 8:50 1940 307-348 (English, Russian Summary). (b) ibid, 9:51(1941) 563-628, (English, Russian Summary).
- [2] M. K. Bose, Arup Roy Choudhury and Ajoy Mukharjee, On bitopological paracompactness, Mat. Vesnik, vol. 60(2008), 255-259.
- [3] A. K. Banerjee and P.K. Saha, *Bispace Group*, Internat. J. Math. Sci. Engg. Appl. Vol.5 No.V(2011) pp. 41-47.
- [4] A. K. Banerjee and P.K. Saha, Semi Open sets in bispaces, Cubo, vol. 17, no. 1, pp. 99-106, Mar. 2015.
- [5] A. K. Banerjee and P.K. Saha, Preopen sets in bispaces, arXiv:1607.07061(Submitted on 24 Jul 2016).
- [6] A. K. Banerjee and J. Pal, Lamda*-Closed sets and new separation axioms in Alexandroff spaces, arXiv:1609.05150(Submitted on 16 Sep 2016).
- [7] A. K. Banerjee, R. Mondal, A Note on connectedness in a bispace, Malaya J. Mat. 5(1)(2017) 104-108.
- [8] A. K. Banerjee, R. Mondal, A Note on discontinuity of mappings in a bispace, J. Calcutta Math. Soc. (2)13, (2017), 105-112.
- [9] F. Basar, Summability Theory and its Applications, 2nd ed., CRC Press\Taylor & Francis Group, Boca Raton London New York, 2022.
- [10] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [11] M. C. Datta, Paracompactness in bitopological spaces and an application to quasi-metric spaces, Indian J. Pure Appl. Math. (6) 8(1977), 685-690.
- [12] J. Dugundji, Topology, Universal Book Stall, 1990.
- [13] P. Fletcher, H. B. Hoyle, III and C. W. Patty, The comparison of topologies, Duke math. J. 36, 325-331(1969).
- [14] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 no.3 (1963) pp.71-89.
- [15] Yong Woon. Kim, Pairwise compactness, Publ. Math. 15 (1968),87 90.
- [16] B. K. Lahiri and Pratulananda Das, Semi Open set in a space, Sains malaysiana, 24(4) 1-11(1995).
- [17] B. K. Lahiri and Pratulananda Das, Certain Bitopological concepts in a Space, Soochow J. Math. 27(2) (2001), 175185.
- [18] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press\Taylor Francis & Group, Series: Mathematics and Its Applications, Boca Raton London New York, 2020.
- [19] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4(1953), 831838.
- [20] Jems R. Munkres, Topology, Phi Learning Pvt. Limited, Delhi-110092(2015).
- [21] W. J. Pervin, Connectedness in Bitopologicalspeces, Proceedings of Royl Nederlands academy of sciences'series A, vol-70(1967),pp.369-372.
- [22] I. L. Reilly, On bitopological separation properties, Nanta Math. 5(1972), 14-25.
- [23] T. G. Raghavan and I. L. Reilly, A new bitopological paracompactness, J. Aust. Math. Soc. (Series A) 41 (1986), 268274.
- [24] H. Riberiro, Serless spaces a metrique faible, Port. Math. 4(1943) 21-40 and 65-08.
- [25] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetenseh. Proc. Ser. A74. Indag. Math. 33(1971), 135-145.
- [26] A. Srivastava and T. Bhatia, On pairwise R-compact bitopological spaces, Bull. Cal. Math. Soc. (2) 98 (2006), 93-96.
- [27] S. Willard, General Topology, Dover Publications, INC. Mineola, New York, 2004.
- [28] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53(1931) 675-84.

RAHUL MONDAL

VIVEKANANDA SATAVARSHIKI MAHAVIDYALAYA, MANIKPARA, JHARGRAM- 721513, WEST BENGAL, INDIA. *E-mail address:* imondalrahul@gmail.com AMAR KUMAR BANERJEE DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF BURDWAN, GOLAPBAG, BURDWAN-713104, WEST BENGAL, INDIA. *E-mail address:* akbanerjee1971@gmail.com