PARACOMPACTNESS IN A BISPACE

RAHUL MONDAL, AMAR KUMAR BANERJEE

Abstract

The idea of pairwise paracompactness was studied by many authors in a bitopological space. Here we study the same in the setting of more general structure of a bispace using the thoughts of the same given by Bose et al. 2].

1. Introduction

The idea of paracompactness given by Dieudonne ${ }^{\prime}$ in the year 1944 came out as a generalization of the notion of compactness. It has many implication in field of differential geometry and it plays important roll in metrization theory. The concept of the Alexandroff space [1] (i.e., a σ-space or simply a space) was introduced by A. D. Alexandroff in the year 1940 as a generalization of a topological space where the union of open sets were taken to be open for only countable collection of open sets instead of arbitrary collection. Another kind of generalization of a topological space is the idea of a bitopological space introduced by J.C. Kelly in [14. Using these ideas Lahiri and Das [17] introduced the idea of a bispace as a generalization of a σ-space. Many works on topological properties were carried out by many authors ([21], [22], [25] etc.) in the setting of a bitopological space. Datta [11] studied the idea of paracompactness in a bitopological space and tried to get analogous results of topological properties given by Michael 19 in respect of paracompactness. In 1986 Raghavan and Reilly [23] gave the idea of paracompactness in a bitopological space in another way. Later in 2008 M. K. Bose et al. [2] studied the same in a bitopological space as a generalization of pairwise compactness. Here we have studied pairwise paracompactness using the thoughts given by Bose et al. [2] in a bispace and discussed some its results in the setting of a bispace, which was firstly introduced by Lahiri and Das [17] as a generalization of the notion of bitopological spaces in 2001.

2. Preliminaries

Definition 2.1. [1] A set X is called an Alexandroff space or σ - space or simply space if it is chosen a system \mathcal{F} of subsets of X, satisfying the following axioms

[^0](i) The intersection of countable number sets in \mathcal{F} is a set belonging to \mathcal{F}.
(ii) The union of finite number of sets from \mathcal{F} is a set belonging to \mathcal{F}.
(iii) The empty set and X is a set belonging to \mathcal{F}.

Sets of \mathcal{F} are called closed sets. There complementary sets are called open.It is clear that instead of closed sets in the definition of a space, one may put open sets with subject to the conditions of countable summability, finite intersectability and the condition that X and the void set should be open.
The collection of such open will sometimes be denoted by \mathcal{P} and the space by (X, \mathcal{P}). It is noted that \mathcal{P} is not a topology in general as can be seen by taking $X=\mathbb{R}$, the set of real numbers and τ as the collection of all F_{σ} sets in \mathbb{R}.

Definition 2.2. [1] To every set M we correlate its closure $\bar{M}=$ the intersection of all closed sets containing M.

Generally the closure of a set in a σ-space is not a closed set. We denote the closure of a set M in a space (X, \mathcal{P}) by $\mathcal{P}-\mathrm{cl}(M)$ or simply \bar{M} when there is no confusion about \mathcal{P}. The idea of limit points, derived set, interior of a set etc. in a space are similar as in the case of a topological space which have been thoroughly discussed in [16].

Definition 2.3. 3] Let (X, \mathcal{P}) be a space. A family of open sets B is said to form a base (open) for \mathcal{P} if and only if every open set can be expressed as countable union of members of B.

Theorem 2.1. 3] A collection of subsets B of a set X forms an open base of a suitable space structure \mathcal{P} of X if and only if

1) the empty set \emptyset belongs to B
2) X is the countable union of some sets belonging to B.
3) intersection of any two sets belonging to B is expressible as countable union of some sets belonging to B.

Definition 2.4. [17] Let X be a non-empty set. If \mathcal{P} and \mathcal{Q} be two collection of subsets of X such that (X, \mathcal{P}) and (X, \mathcal{Q}) are two spaces, then X is called a bispace.

Definition 2.5. [17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise T_{1} if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \notin U$ and $y \in V$, $x \notin V$.

Definition 2.6. [17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is called pairwise Hausdorff if for any two distinct points x, y of X, there exist $U \in \mathcal{P}$ and $V \in \mathcal{Q}$ such that $x \in U, y \in V$, $U \cap V=\emptyset$.

Definition 2.7. [17] In a bispace $(X, \mathcal{P}, \mathcal{Q}), \mathcal{P}$ is said to be regular with respect to \mathcal{Q} if for any $x \in X$ and a \mathcal{P}-closed set F not containing x, there exist $U \in \mathcal{P}$, $V \in \mathcal{Q}$ such that $x \in U, F \subset V, U \cap V=\emptyset .(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise regular if \mathcal{P} and \mathcal{Q} are regular with respect to each other.

Definition 2.8. 17] A bispace $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise normal if for any \mathcal{P}-closed set F_{1} and \mathcal{Q}-closed set F_{2} satisfying $F_{1} \cap F_{2}=\emptyset$, there exist $G_{1} \in \mathcal{P}$, $G_{2} \in \mathcal{Q}$ such that $F_{1} \subset G_{2}, F_{2} \subset G_{1}, G_{1} \cap G_{2}=\emptyset$.

3. Pairwise paracompactness

We called a space (or a set) is bicompact [17] if every open cover of it has a finite subcover. Also similarly as [17] a cover B of $(X, \mathcal{P}, \mathcal{Q})$ is said to be pairwise open if $B \subset \mathcal{P} \cup \mathcal{Q}$ and B contains at least one nonempty member from each of \mathcal{P} and \mathcal{Q}. Bourbaki and many authors defined the term paracompactness in a topological space including the requirement that the space is Hausdorff. Also in a bitopological space some authors follow this idea. But in our discussion we shall follow the convention as adopted in Munkresh [20] to define the following terminologies as in the case of a topological space.

Definition 3.1. cf.[20] In a space X a collection of subsets \mathcal{A} is said to be locally finite in X if every point has a neighborhood that intersects only a finitely many elements of \mathcal{A}.

Similarly a collection of subsets \mathcal{B} in a space X is said to be countably locally finite in X if \mathcal{B} can be expressed as a countable union of locally finite collection.
Definition 3.2. cf. 20] Let \mathcal{A} and \mathcal{B} be two covers of a space X. Then \mathcal{B}, is said to be a refinement of \mathcal{A} if for $B \in \mathcal{B}$ there exists a $A \in \mathcal{A}$ containing B.

We call \mathcal{B} is an open refinement of \mathcal{A} if the elements of \mathcal{B} are open and similarly we call \mathcal{B} is an closed refinement if the elements of \mathcal{B} are closed.

Definition 3.3. cf.[20] A space X is said to be paracompact if every open covering \mathcal{A} of X has a locally finite open refinement \mathcal{B} that covers X.

As in the case of a topological space [11, 2] we define the following terminologies. Let \mathcal{A} and \mathcal{B} be two pairwise open covers of a bispace $(X, \mathcal{P}, \mathcal{Q})$. Then \mathcal{B} is said to be a parallel refinement [11] of \mathcal{A} if for any \mathcal{P}-open set(respectively \mathcal{Q}-open set) B in \mathcal{B} there exists a \mathcal{P}-open set(respectively \mathcal{Q}-open set) A in \mathcal{A} containing B. Let \mathcal{U} be a pairwise open cover in a bispace $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$. If x belongs to X and M be a subset of X, then by " M is $\mathcal{P}_{\mathcal{U}_{x}}$-open" we mean M is \mathcal{P}_{1}-open(respectively \mathcal{P}_{2}-open set) if x belongs to a \mathcal{P}_{1}-open set(respectively \mathcal{P}_{2}-open set) in \mathcal{U}.

Definition 3.4. cf. [2] Let \mathcal{A} and \mathcal{B} be two pairwise open covers of a bispace $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$. Then \mathcal{B} is said to be a locally finite refinement of \mathcal{A} if for each x belonging to X, there exists a $\mathcal{P}_{\mathcal{A} x}$-open open neighborhood of x intersecting only a finite number of sets of \mathcal{B}.
Definition 3.5. cf. [2] A bispace $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is said to be pairwise paracompact if every pairwise open cover of X has a locally finite parallel refinement.

To study the notion of paracompactness in a bispace the idea of pairwise regular and strongly pairwise regular spaces play significant roll as discussed below.

As in the case of a bitopological space a bispace $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is said to be strongly pairwise regular 2] if $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is pairwise regular and both the spaces $\left(X, \mathcal{P}_{1}\right)$ and $\left(X, \mathcal{P}_{2}\right)$ are regular.

Now we present two examples, the first one is of a strongly regular bispace and the second one is of a pairwise regular bispace without being a strongly pairwise regular bispace.

Example 3.1. Let $X=\mathbb{R}$ and (x, y) be an open interval in X. We consider the collection τ_{1} with sets A in \mathbb{R} such that either $(x, y) \subset \mathbb{R} \backslash A$ or $A \cap(x, y)$ can
be expressed as some union of open subintervals of (x, y) and τ_{2} be the collection of all countable subsets in (x, y). Also if τ be the collection of all countable union of members of $\tau_{1} \cup \tau_{2}$ then clearly (X, τ) is a σ-space but not a topological space. Also consider the bispace (X, τ, σ), where σ is the usual topology on X.

We first show that (X, τ) is regular. Let $p \in X$ and P be any τ-closed set not containing p. Then $A=\{p\}$ is a τ-open set containing p. Also $A=\{p\}$ is closed in (X, τ) because if $p \notin(x, y)$ then $A^{c} \cap(x, y)=(x, y)$ and if $p \in(x, y)$ then $A^{c} \cap(x, y)=(x, p) \cup(p, y)$ and hence A^{c} is a τ-open set containing P.

Now we show that the bispace (X, τ, σ) is pairwise regular. Let $p \in X$ and M be a τ-closed set not containing p. Then $A=\{p\}$ is a τ-open set containing p and also as every singleton set is closed in $(X, \sigma), A^{c}$ is a σ-open set containing M.

Now let $p \in X$ and P be a σ-closed set not containing p. Now consider the case when $P \cap(x, y)=\emptyset$ then P is a τ-open set containing P and P^{c} is a σ-open set containing p.

Now we consider the case when $P \cap(x, y) \neq \emptyset$. Since $p \notin P, P^{c}$ is a σ-open set containing p and hence there exists an open interval I containing p be such that $p \in I \subset P^{c}$ and $p \in \bar{I} \subset P^{c}$, where \bar{I} denotes the closer of I with respect to σ. If I intersects (x, y) then let $I_{1}=(x, y) \backslash \bar{I}$. Clearly I_{1} is non empty because $P \cap(x, y) \neq \emptyset$. Also $\bar{I} \subset P^{c}$ and hence $(x, y) \backslash P^{c} \subset(x, y) \backslash \bar{I}$ and its follows that $P \cap(x, y) \subset I_{1}$. So clearly $P \cup I_{1}$ is a τ-open set containing P and I is a σ-open set containing p and which are disjoint. Again if I does not intersect (x, y) then $P \cup(x, y)$ is a τ-open set containing P and I itself a σ-open set containing p and which are disjoint. Therefore the bispace (X, τ, σ) is strongly pairwise regular.

Example 3.2. Let $X=\mathbb{R}$ and $\left(X, \tau_{1}, \tau_{2}\right)$ be a bispace where $\left(X, \tau_{1}\right)$ is cocountable topological space and $\tau_{2}=\{X, \emptyset\} \cup\{$ countable subsets of real numbers $\}$. Clearly τ_{2} is not a topology and hence $\left(X, \tau_{1}, \tau_{2}\right)$ is not a bitopological space. We show that $\left(X, \tau_{1}, \tau_{2}\right)$ is a pairwise regular bispace but not a strongly pairwise regular bispace. Let $p \in X$ and A be a τ_{1}-closed set not containing p. Then clearly A itself a τ_{2}-open set containing A and A^{c} is a τ_{1}-open set containing p and clearly they are disjoint.

Similarly if B is a τ_{2}-closed set such that $p \notin B$, then B being a complement of a countable set is τ_{1}-open set containing B. Also B^{c} being countable is τ_{2}-open set containing p.

Now let $p \in X$ and P be a closed set in $\left(X, \tau_{2}\right)$ such that $p \notin P$. Then P must be a complement of a countable set in \mathbb{R} and hence it must be a uncountable set. So clearly the only open set containing P is \mathbb{R} itself. Therefore $\left(X, \tau_{2}\right)$ is not regular and hence $\left(X, \tau_{1}, \tau_{2}\right)$ can not be strongly pairwise regular.

Remark 3.1. In a bitopological space, pairwise Hausdorffness and pairwise paracompactness together imply pairwise normality but similar result holds in a bispace if an additional condition $C(1)$ holds.

Theorem 3.1. Let $(X, \mathcal{P}, \mathcal{Q})$ be a bispace, which is pairwise Hausdorff and pairwise paracompact and satisfies the condition $C(1)$ as stated below then it is pairwise normal.
$\mathrm{C}(1)$: If $A \subset X$ is expressible as an arbitrary union of \mathcal{P}-open sets and $A \subset B, B$ is an arbitrary intersection of \mathcal{Q}-closed sets, then there exists a \mathcal{P}-open set K, such that $A \subset K \subset B$, the role of \mathcal{P} and \mathcal{Q} can be interchangeable.

Proof. We first show that X is pairwise regular. So let us suppose F be a \mathcal{P}-closed set not containing $x \in X$. Since X is pairwise Hausdorff for $\xi \in F$, there exists a $U_{\xi} \in \mathcal{P}$ and $V_{\xi} \in \mathcal{Q}$, such that $x \in U_{\xi}$ and $\xi \in V_{\xi}$ and $U_{\xi} \cap V_{\xi}=\emptyset$. Then the collection $\left\{V_{\xi}: \xi \in F\right\} \cup(X \backslash F)$ forms a pairwise open cover of X. Therefore it has a locally finite parallel refinement \mathcal{W}. Let $H=\cup\{W \in \mathcal{W}: W \cap F \neq \emptyset\}$. Now $x \in X \backslash F$ and $X \backslash F$ is \mathcal{P}-open set and hence there exists a \mathcal{P}-open neighborhood D of x intersecting only a finite number of members $W_{1}, W_{2}, \ldots, W_{n}$ of \mathcal{W}. Now if $W_{i} \cap F=\emptyset$ for all $n=1,2, \ldots, n$, then $H \cap D=\emptyset$. Therefore by $\mathrm{C}(1)$ we must have a \mathcal{Q}-open set K such that $F \subset H \subset K \subset D^{c}$. Hence we have a \mathcal{Q}-open set K containing F and \mathcal{P}-open set D containing x with $D \cap K=\emptyset$. If there exists a finite number of elements $W_{p_{1}}, W_{p_{2}}, \ldots, W_{p_{k}}$ from the collection $\left\{W_{1}, W_{2}, \ldots, W_{n}\right\}$ such that $W_{p_{i}} \cap F \neq \emptyset$, then we consider $V_{\xi_{p_{i}}}$ such that $W_{p_{i}} \subset$ $V_{\xi_{p_{i}}}, \xi_{p_{i}} \in F$ and $i=1,2, \ldots, k$, since \mathcal{W} is a locally finite parallel refinement of $\left\{V_{\xi}: \xi \in F\right\} \cup(X \backslash F)$. Now, if $U_{\xi_{p_{i}}}$'s are the corresponding member of $V_{\xi_{p_{i}}}$, then $x \in D \cap\left(\bigcap_{i=1}^{n} U_{\xi_{p_{i}}}\right)=G($ say $) \in \mathcal{P}$. Since \mathcal{W} is a cover of X it covers also D and since D intersects only finite number of members $W_{1}, W_{2}, \ldots, W_{n}$, these n sets covers D. Now since the members $W_{p_{1}}, W_{p_{2}}, \ldots, W_{p_{k}}$ be such that $W_{p_{i}} \cap F \neq \emptyset$, we have $D \cap F \subset \bigcup_{i=1}^{k} W_{p_{i}}$. Now let $W_{p_{i}} \subset V_{\xi_{p_{i}}}$ for some $\xi_{p_{i}} \in F$ and consider $U_{\xi_{p_{i}}}$ corresponding to $V_{\xi_{p_{i}}}$ be such that $U_{\xi_{p_{i}}} \cap V_{\xi_{p_{i}}}=\emptyset$. Now we claim that $G \cap F=\emptyset$. If not let $y \in G \cap F=\left[D \cap\left(\bigcap_{i=1}^{n} U_{\xi_{p_{i}}}\right)\right] \cap F=[D \cap F] \cap\left(\bigcap_{i=1}^{n} U_{\xi_{p_{i}}}\right)$. Then $y \in D \cap F$ and hence there exists $W_{p_{i}}$ for some $i=1,2, \ldots, k$ such that $y \in W_{p_{i}} \subset V_{\xi_{p_{i}}}$. Also $y \in\left(\bigcap_{i=1}^{n} U_{\xi_{p_{i}}}\right) \subset U_{\xi_{p_{i}}}$ and hence $y \in U_{\xi_{p_{i}}} \cap V_{\xi_{p_{i}}}$, which is a contradiction. So $G \cap F=\emptyset$. Now we have a \mathcal{P}-open neighborhood G of x intersecting only a finite number of members $W_{r_{1}}, W_{r_{2}} \ldots W_{r_{k}}$ of \mathcal{W} where $W_{r_{i}} \cap F=\emptyset$. So by similar argument there exists a \mathcal{Q}-open set K such that $F \subset H \subset K \subset G^{c}$. Thus we have a \mathcal{Q}-open set K containing F and a \mathcal{P}-open set G containing x such that $G \cap K=\emptyset$.

Next let A be a \mathcal{Q}-closed set and B be a \mathcal{P}-closed set and $A \cap B=\emptyset$. Then for every $x \in B$ and \mathcal{Q}-closed set A there exists \mathcal{P}-open set U_{x} containing A and \mathcal{Q}-open set V_{x} containing x with $U_{x} \cap V_{x}=\emptyset$. Now the collection $\mathcal{U}=(X \backslash B) \cup\left\{V_{x}\right.$: $x \in B\}$ forms a pairwise open cover of X. Hence there exists a locally finite parallel refinement \mathcal{M} of \mathcal{U}. Clearly $B \subset Q$ where $Q=\cup\{M \in \mathcal{M}: M \cap B \neq \emptyset\}$. Now for $x \in X \backslash B$, a \mathcal{P}-open set there exists a \mathcal{P}-open neighborhood of x intersecting only a finite number of elements of \mathcal{M}. Since $A \subset X \backslash B$, so for $x \in A$ there exists a \mathcal{P}-open neighborhood D_{x} of x intersecting only a finite number of elements $M_{x_{1}}, M_{x_{2}}, \ldots, M_{x_{n}}$ of \mathcal{M} with $M_{x_{i}} \cap B \neq \emptyset$ for some $i=1,2, \ldots, n$. Suppose if $M_{x_{i}} \subset V_{x_{i}}, i=1,2, \ldots, n$ and let $P_{x}=D_{x} \cap\left(\bigcap_{i=1}^{n} U_{x_{i}}\right)$ where $U_{x_{i}} \cap V_{x_{i}}=\emptyset$. If $M_{x_{i}} \cap B=\emptyset$ for all $i=1,2, \ldots, n$, then we consider $P_{x}=D_{x}$. Now if $P=\bigcup\left\{P_{x}\right.$: $x \in A\}$ then $A \subset P$ and $P \subset Q^{c}$.

Now by the given condition $\mathrm{C}(1)$ there exists a \mathcal{P}-open set R be such that $A \subset P \subset R \subset Q^{c}$. Again by the same argument there exists a \mathcal{Q}-open set S be such that $B \subset Q \subset S \subset R^{c}$. Hence there exists a \mathcal{P}-open set R containing A and \mathcal{Q}-open set S containing B with $R \cap S=\emptyset$.

Theorem 3.2. If the bispace $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is strongly pairwise regular and satisfies the condition $C(2)$ given below, then the following statements are equivalent:
(i) X is pairwise paracompact.
(ii) Each pairwise open cover \mathcal{C} of X has a countably locally finite parallel refinement.
(iii) Each pairwise open cover \mathcal{C} of X has a locally finite refinement.
(iv) Each pairwise open cover \mathcal{C} of X has a locally finite refinement \mathcal{B} such that if $B \subset C$ where $B \in \mathcal{B}$ and $C \in \mathcal{C}$, then $\mathcal{P}_{1}-\operatorname{cl}(B) \cup \mathcal{P}_{2}-c l(B) \subset C$.
$\mathrm{C}(2):$ If $M \subset X$ and \mathcal{B} is a subfamily of $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ such that $\mathcal{P}_{i}-c l(B) \cap M=\emptyset$, for all $B \in \mathcal{B}$, then there exists a $\mathcal{P}_{i^{-}}$open set S such that $M \subset S \subset\left[\bigcup_{B \in \mathcal{B}} \mathcal{P}_{i^{-}} c l(B)\right]^{c}$.

Proof. $(i) \Rightarrow(i i)$
Let \mathcal{C} be a pairwise open cover of X. Let \mathcal{U} be a locally finite parallel refinement of \mathcal{C}. Then the collection $\mathcal{V}=\bigcup_{n=1}^{\infty} \mathcal{V}_{n}$, where $\mathcal{V}_{n}=\mathcal{U}$ for all $n \in \mathbb{N}$, becomes the countably locally finite parallel refinement of \mathcal{C}.
(ii) $\Rightarrow(i i i)$

We consider a pairwise open cover \mathcal{C} of X. Let \mathcal{V} be a parallel refinement of \mathcal{C}, such that $\mathcal{V}=\bigcup_{n=1}^{\infty} \mathcal{V}_{n}$, where for each n and for each x there exists a $\mathcal{P}_{\mathcal{C} x^{-}}$ open neighborhood of x intersecting only a finite number of members of \mathcal{V}_{n}. For each $n \in \mathbb{N}$, let us agree to write \mathcal{V}_{n} as $\mathcal{V}_{n}=\left\{\mathcal{V}_{n \alpha}: \alpha \in \wedge_{n}\right\}$ and we consider $M_{n}=\bigcup_{\alpha \in \wedge_{n}} \mathcal{V}_{n \alpha}, n \in \mathbb{N}$. Clearly the collection $\left\{M_{n}\right\}_{n \in \mathbb{N}}$ is a cover of X. Let $N_{n}=M_{n}-\bigcup_{k<n} M_{k}$. Clearly for $x \in X$ if $x \in M_{n}$, where n is the least positive integer then $x \in N_{n}$ and hence $\left\{N_{n}: n \in \mathbb{N}\right\}$ covers X. Also $N_{n} \subset M_{n}$ for every n, so $\left\{N_{n}: n \in \mathbb{N}\right\}$ is a refinement of $\left\{M_{n}: n \in \mathbb{N}\right\}$. The family $\left\{N_{n}: n \in \mathbb{N}\right\}$ is locally finite because for $x \in X$ there exists a $\mathcal{V}_{n \alpha} \in \mathcal{V}$ which can intersects only some or all of $N_{1}, N_{2}, \ldots, N_{n}$. Now the collection $\left\{\mathcal{V}_{n \alpha} \cap N_{n}: \alpha \in \wedge_{n}, n \in \mathbb{N}\right\}$ covers X as if $x \in \mathcal{V}_{p \alpha}$ for the least positive integer p then $x \in N_{p}$ and hence $x \in \mathcal{V}_{p \alpha} \cap N_{p}$. So clearly $\left\{\mathcal{V}_{n \alpha} \cap N_{n}: \alpha \in \wedge_{n}, n \in \mathbb{N}\right\}$ is a refinement of \mathcal{V} and hence of \mathcal{C}. Also for $x \in X$ there exists a $\mathcal{P}_{\mathcal{C} x}$-open neighborhood $\mathcal{V}_{k \alpha}$ intersecting only a finite number of members of $\left\{N_{n}: n \in \mathbb{N}\right\}$ and hence it intersects only a finite number of members of $\left\{\mathcal{V}_{n \alpha} \cap N_{n}: \alpha \in \wedge_{n}, n \in \mathbb{N}\right\}$.
(iii) $\Rightarrow(i v)$

Let \mathcal{C} be a pairwise open cover of X. Let $x \in X$ and suppose that $x \in C_{x}$ for some $C_{x} \in \mathcal{C}$. Without any loss of generality let $C_{x} \in \mathcal{P}_{1}$. Then $x \notin C_{x}^{c}$ and hence by using the condition of strongly pairwise regularity of X there exists a \mathcal{P}_{1}-open set D_{1} containing x and a \mathcal{P}_{1}-open set D_{1}^{\prime} containing C_{x}^{c} with $D_{1} \cap D_{1}^{\prime}=\emptyset$. Now $\left(D_{1}^{\prime}\right)^{c} \subset C_{x}$ and hence $\left(D_{1}^{\prime}\right)^{c}$ is a \mathcal{P}_{1}-closed set such that $x \in\left(D_{1}^{\prime}\right)^{c} \subset C_{x}$. Therefore $\mathcal{P}_{1}-\operatorname{cl}\left(D_{1}\right) \subset C_{x}$ as $D_{1} \subset\left(D_{1}^{\prime}\right)^{c} \subset C_{x}$. Again $x \notin D_{1}^{c}$, a \mathcal{P}_{1}-closed set and hence by pairwise regularity of X there exists a \mathcal{P}_{1}-open set D_{2} containing x and a \mathcal{P}_{2}-open set D_{2}^{\prime} containing D_{1}^{c} with $D_{2} \cap D_{2}^{\prime}=\emptyset$. Now $D_{2} \subset\left(D_{2}^{\prime}\right)^{c}$ and $D_{2} \subset\left(D_{2}^{\prime}\right)^{c} \subset D_{1} \subset$ C_{x}. Hence $\mathcal{P}_{2}-\mathrm{cl}\left(D_{2}\right) \subset C_{x}$ and also $D_{2} \subset D_{1}$. Therefore $\mathcal{P}_{1}-\operatorname{cl}\left(D_{2}\right) \subset \mathcal{P}_{1}-\operatorname{cl}\left(D_{1}\right)$ and hence $\mathcal{P}_{1}-\operatorname{cl}\left(D_{2}\right) \cup \mathcal{P}_{2}-\operatorname{cl}\left(D_{2}\right) \subset C_{x}$. Similarly if $C_{x} \in \mathcal{P}_{2}$ then there exists a $\mathcal{P}_{2^{-}}$ open set D_{2} containing x such that $\mathcal{P}_{1}-\operatorname{cl}\left(D_{2}\right) \cup \mathcal{P}_{2}-\operatorname{cl}\left(D_{2}\right) \subset C_{x}$. Let us denote D_{2} by a general notation G_{x} and then we can write $\mathcal{P}_{1}-\operatorname{cl}\left(G_{x}\right) \cup \mathcal{P}_{2}-\operatorname{cl}\left(G_{x}\right) \subset C_{x}$. Then, since \mathcal{C} be a pairwise open cover $\left\{G_{x}: x \in X, C_{x} \in \mathcal{C}\right\}$ is a pairwise open cover of X which refines of \mathcal{C}. Therefore by (iii) there exists a locally finite refinement \mathcal{B} of $\left\{G_{x}: x \in X\right\}$ and hence of \mathcal{C}. If $B \in \mathcal{B}$ then for some G_{x} we have $B \subset G_{x} \subset C_{x}$ and so $\mathcal{P}_{1}-\mathrm{cl}(B) \cup \mathcal{P}_{2}-\mathrm{cl}(B) \subset \mathcal{P}_{1}-\operatorname{cl}\left(G_{x}\right) \cup \mathcal{P}_{2}-\operatorname{cl}\left(G_{x}\right) \subset C_{x}$.
$(i v) \Rightarrow(i)$
Let \mathcal{C} be a pairwise open cover of X and without any loss of generality we assume that there does not exist any element of \mathcal{C} which is both \mathcal{P}_{1}-open and \mathcal{P}_{2}-open. So there exists a locally finite refinement \mathcal{A} of \mathcal{C}. For $x \in X$ we must have a $C \in \mathcal{C}$
containing x. Let us suppose C is \mathcal{P}_{i}-open. Let W_{x} be a \mathcal{P}_{i}-open neighborhood of x intersecting only a finite number of elements of \mathcal{A}. So the collection $\mathcal{W}=$ $\left\{W_{x}: x \in X\right\}$ is a pairwise open cover of X and let $E=\left\{E_{\lambda}: \lambda \in \wedge\right\}$ be a locally finite refinement of \mathcal{W} such that if $E_{\lambda} \subset W_{x}$ then $\mathcal{P}_{1}-\mathrm{cl}\left(E_{\lambda}\right) \cup \mathcal{P}_{2}-\mathrm{cl}\left(E_{\lambda}\right) \subset W_{x}$. Now for $A \in \mathcal{A}$ we consider $C_{A} \in \mathcal{C}$ such that $A \subset C_{A}$. Then if C_{A} is \mathcal{P}_{i}-open, then we consider the set $F_{A}=\cup\left\{\mathcal{P}_{i}-c l\left(E_{\lambda}\right): E_{\lambda} \in E, \mathcal{P}_{i}-c l\left(E_{\lambda}\right) \cap A=\emptyset\right\}$. Let $G_{A}=X \backslash F_{A}$, then by the given condition $\mathrm{C}(2)$ there exists a \mathcal{P}_{i}-open set S_{A} such that $A \subset S_{A} \subset G_{A}$. We write $H_{A}=S_{A} \cap C_{A}$ and since $A \subset H_{A}$, the collection $\left\{H_{A}: A \in \mathcal{A}\right\}$ covers X. Also $H_{A} \subset C_{A}$ and H_{A} is \mathcal{P}_{i}-open. Thus $\left\{H_{A}: A \in \mathcal{A}\right\}$ is a parallel refinement of \mathcal{C}. Now we show that $\left\{H_{A}: A \in \mathcal{A}\right\}$ is a locally finite refinement of \mathcal{C}.

We show that if M is a $\mathcal{P}_{\mathcal{W}} x^{\text {-open }}$ set containing x then it is also a $\mathcal{P}_{\mathcal{C} x}$-open set containing x. Let M be a $\mathcal{P}_{\mathcal{W} x}$-open set containing x and M is \mathcal{P}_{i}-open set then x must be contained in a \mathcal{P}_{i}-open set W_{x} in \mathcal{W}. So there exists a \mathcal{P}_{i}-open set C in \mathcal{C} containing x. This shows that M is also a $\mathcal{P}_{\mathcal{C} x}$-open set containing x.

Now let $x \in X$ and J_{x} be a $\mathcal{P}_{\mathcal{W}_{x}}$-open neighborhood of x intersecting only a finite numbers of members $E_{\lambda_{1}}, E_{\lambda_{2}}, \ldots, E_{\lambda_{n}}$ of E. Hence J_{x} is also a $\mathcal{P}_{\mathcal{C} x}$-open neighborhood of x intersecting only a finite numbers of members $E_{\lambda_{1}}, E_{\lambda_{2}}, \ldots, E_{\lambda_{n}}$ of E. Clearly J_{x} can be covered by these members of E. Now each $E_{\lambda_{i}}$ is contained in some W_{x} with $\mathcal{P}_{1}-\operatorname{cl}\left(E_{\lambda_{i}}\right) \cup \mathcal{P}_{2}-\operatorname{cl}\left(E_{\lambda_{i}}\right) \subset W_{x}$. Also W_{x} can intersects only a finite number of members of \mathcal{A}. Hence each $\mathcal{P}_{1}-\operatorname{cl}\left(E_{\lambda_{i}}\right)$ or $\mathcal{P}_{2}-\mathrm{cl}\left(E_{\lambda_{i}}\right)$ can intersect only a finite number of sets in \mathcal{A}. So each $\mathcal{P}_{1}-\mathrm{cl}\left(E_{\lambda_{i}}\right)$ or $\mathcal{P}_{2}-\mathrm{cl}\left(E_{\lambda_{i}}\right)$ can intersect only a finite number of sets in $\left\{G_{A}: A \in \mathcal{A}\right\}$. Therefore J_{x} can intersect only a finite number of sets of $\left\{G_{A}: A \in \mathcal{A}\right\}$. Now $\left\{H_{A}: A \in \mathcal{A}\right\}$ covers X and $H_{A} \subset G_{A}$, hence J_{x} can intersect only a finite number of sets in $\left\{H_{A}: A \in \mathcal{A}\right\}$. Also $H_{A} \subset C_{A}$ and hence clearly $\left\{H_{A}: A \in \mathcal{A}\right\}$ refines \mathcal{C}. Therefore $\left\{H_{A}: A \in \mathcal{A}\right\}$ is a locally finite parallel refinement of \mathcal{C}.
Theorem 3.3. Let \mathcal{A} be a locally finite collection in a σ-space X. Then the collection $\mathcal{B}=\{\bar{A}\}_{A \in \mathcal{A}}$ is also locally finite.
Proof. Let $x \in X$ and U be a neighborhood of x intersecting only a finite number of members of \mathcal{A}. Now if for $A \in \mathcal{A}, A \cap U=\emptyset$ then $A \subset U^{c}$ and hence $A \subset \bar{A} \subset U^{c}$. Therefore $\bar{A} \subset U^{c}$ so $\bar{A} \cap U=\emptyset$. Therefore U can intersect only a finite number of members of \mathcal{B}.

Theorem 3.4. In a space any sub collection of a locally finite collection of sets is locally finite.

Proof. Let \mathcal{A} be a locally finite collection of sets in a space X and $\mathcal{B}=\left\{B_{\alpha}\right.$: $\alpha \in \Lambda$, an indexing set $\}$ be a sub collection of \mathcal{A}. If $x \in X$ then there exists a neighborhood U of X intersecting only a finite number of sets in \mathcal{A}. Hence U can not intersect infinite number of sets in \mathcal{B}. If U does not intersect any member of \mathcal{B}, then consider $B_{p} \in \mathcal{B}$ such that $M=B_{p} \backslash \bigcup_{\alpha \in \mathcal{A}}^{\alpha \neq p} B_{\alpha} \neq \emptyset$. Then $M \cup U$ is a neighborhood of x intersecting only B_{p} of \mathcal{B}. Hence \mathcal{B} is locally finite.

It has been discussed in [10 that in a regular topological space X the following four conditions are equivalent:
(i) The space X is paracompact.
(ii) If \mathcal{U} is a open cover of X then it has an open refinement $\mathcal{V}=\bigcup_{n=1}^{\infty} V_{n}$, where V_{n} is a locally finite collection in X for each n.
(iii)For every open cover of the space X there exists its locally finite refinement. (iv)For every open cover of the space X there exists its closed locally finite refinement.

In a σ-space it is not true because closure of a set may not be closed. But a similar kind of result has been discussed below.

Theorem 3.5. In a regular space X for the following four conditions we have $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i v)$:
(i) The space X is paracompact.
(ii) If \mathcal{U} is a open cover of X then it has an open refinement $\mathcal{V}=\bigcup_{n=1}^{\infty} V_{n}$, where V_{n} is a locally finite collection in X for each n.
(iii)For every open cover of the space X there exists its locally finite refinement.
(iv)For every open cover \mathcal{A} of the space X there exists its locally finite refinement $S=\left\{S_{\alpha}: \alpha \in \Lambda\right\}$ such that $\left\{\overline{S_{\alpha}}: S_{\alpha} \in S\right\}$ is also its locally finite refinement, Λ being an indexing set.

Proof. (i) \Rightarrow (ii)
The proof is straightforward.
(ii) \Rightarrow (iii)

Let \mathcal{A} be an open cover of X. Then by (ii) there exists an open refinement $\mathcal{B}=\bigcup_{n=1}^{\infty} B_{n}$ where B_{n} is a locally finite collection in X for each n. Let $B_{n}=$ $\left\{B_{n \alpha}: \alpha \in \Lambda_{n}\right\}$ and $C_{n}=\bigcup_{\alpha \in \Lambda_{n}} B_{n \alpha}, \Lambda_{n}$ being an indexing set. Now clearly the collection $\left\{C_{n}\right\}$ covers X. Let us consider $D_{n}=C_{n} \backslash \bigcup_{k<n} C_{k}$. For $x \in X$, suppose that k be the least natural number for which $x \in B_{k \alpha}$, then $B_{k \alpha}$ can intersect at most k members $D_{1}, D_{2}, \ldots, D_{k}$ of $\left\{D_{n}: n \in \mathbb{N}\right\}$. Hence $\left\{D_{n}: n \in \mathbb{N}\right\}$ is a locally finite refinement of $\left\{C_{n}: n \in \mathbb{N}\right\}$. Now we show that $M=\left\{D_{n} \cap B_{n \alpha}: n \in \mathbb{N}, \alpha \in\right.$ $\left.\Lambda_{n}\right\}$ is a locally finite refinement of \mathcal{B}. For $n \in \mathbb{N}$ we have $\bigcup_{\alpha \in \Lambda_{n}}\left(D_{n} \cap B_{n \alpha}\right)=$ $D_{n} \cap\left(\bigcup_{\alpha \in \Lambda_{n}} B_{n \alpha}\right)=D_{n} \cap C_{n}=D_{n}$ as $D_{n} \subset C_{n}$. Also D_{n} covers X and hence $\bigcup_{n \in \mathbb{N}} \bigcup_{\alpha \in \Lambda_{n}}\left(D_{n} \cap B_{n \alpha}\right)=X$. Let $x \in X$ then there exists an neighborhood U of x intersecting only a finite number members $D_{i_{1}}, D_{i_{2}}, \ldots, D_{i_{n}}($ say $)$ of $\left\{D_{n}: n \in \mathbb{N}\right\}$. Also there exists an open set $U_{i_{n}}$ intersecting only a finite number of members of $B_{i_{n}}$. Now $U \cap\left(\bigcap_{k=1}^{n} U_{i_{k}}\right)$ is an neighborhood of x intersecting only a finite numbers of M as M covers X. Also $D_{n} \cap B_{n \alpha} \subset B_{n \alpha}$ and hence $M=\left\{D_{n} \cap B_{n \alpha}: n \in\right.$ $\left.\mathbb{N}, \alpha \in \Lambda_{n}\right\}$ is a locally finite refinement of \mathcal{B}. And also since $D_{n} \cap B_{n \alpha} \subset B_{n \alpha} \subset A$ for some $A \in \mathcal{A}, M=\left\{D_{n} \cap B_{n \alpha}: n \in \mathbb{N}, \alpha \in \Lambda_{n}\right\}$ is a locally finite refinement of \mathcal{A}.
(iii) $\Rightarrow(i v)$

Let \mathcal{U} be an open cover of X. Now for $x \in X$ we have a $U_{x} \in \mathcal{U}$ such that $x \in U_{x}$. So $x \notin\left(U_{x}\right)^{c}$ and hence by regularity of X, there exist disjoint open sets P_{x} and Q_{x} containing x and $\left(U_{x}\right)^{c}$ respectively. Hence $x \in P_{x} \subset\left(Q_{x}\right)^{c} \subset U_{x}$ and clearly $x \in \overline{P_{x}} \subset U_{x}$. Now $P=\left\{P_{x}: x \in X\right\}$ is an open cover of X and by (iii) it has a locally finite refinement $S=\left\{S_{\alpha}: \alpha \in \Lambda\right.$, an indexing set $\}$ (say). Also the collection $\left\{\overline{S_{\alpha}}: S_{\alpha} \in S\right\}$ is locally finite by previous lemma. Now for $\alpha \in \Lambda, S_{\alpha} \subset P_{x} \subset U_{x}$ for some $P_{x} \in P$ and hence $\overline{S_{\alpha}} \subset \overline{P_{x}} \subset U_{x}$ for some $U_{x} \in \mathcal{U}$. Therefore S is a locally finite refinement of \mathcal{U} such that $\left\{\overline{S_{\alpha}}: S_{\alpha} \in S\right\}$ is also a locally finite refinement of \mathcal{U}.

We have discussed some results associated with paracompactness in a σ-space because our motivation was to establish the statement "If $\left(X, \mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a pairwise paracompact bispace with $\left(X, \mathcal{P}_{2}\right)$ regular, then every $\mathcal{P}_{1}-F_{\sigma}$ proper subset is \mathcal{P}_{2} paracompact". This has been discussed in a bitopological space [2]. But we failed due to the fact that arbitrary union of open sets in a σ-space may not be open.

References

[1] A. D. Alexandroff, Additive set functions in abstract spaces, (a) Mat. Sb. (N.S), 8:50 1940 307348 (English, Russian Summary). (b) ibid, 9:51(1941) 563-628, (English,Russian Summary).
[2] M. K. Bose, Arup Roy Choudhury and Ajoy Mukharjee, On bitopological paracompactness, Mat. Vesnik, vol. 60(2008), 255-259.
[3] A. K. Banerjee and P.K. Saha, Bispace Group, Internat. J. Math. Sci. Engg. Appl. Vol. 5 No.V(2011) pp. 41-47.
[4] A. K. Banerjee and P.K. Saha, Semi Open sets in bispaces, Cubo, vol. 17, no. 1, pp. 99-106, Mar. 2015.
[5] A. K. Banerjee and P.K. Saha, Preopen sets in bispaces, arXiv:1607.07061(Submitted on 24 Jul 2016).
[6] A. K. Banerjee and J. Pal, Lamda*-Closed sets and new separation axioms in Alexandroff spaces, arXiv:1609.05150(Submitted on 16 Sep 2016).
[7] A. K. Banerjee, R. Mondal, A Note on connectedness in a bispace, Malaya J. Mat. 5(1)(2017) 104-108.
[8] A. K. Banerjee, R. Mondal, A Note on discontinuity of mappings in a bispace, J. Calcutta Math. Soc. (2)13, (2017), 105-112.
[9] F. Basar, Summability Theory and its Applications, 2nd ed., CRC Press \backslash Taylor \& Francis Group, Boca Raton London New York, 2022.
[10] J. Dugundji, Topology, Allyn and Bacon, Boston,1966.
[11] M. C. Datta, Paracompactness in bitopological spaces and an application to quasi-metric spaces, Indian J. Pure Appl. Math. (6) 8(1977), 685-690.
[12] J. Dugundji, Topology, Universal Book Stall, 1990.
[13] P. Fletcher, H. B. Hoyle, III and C. W. Patty, The comparison of topologies, Duke math. J. 36, 325-331(1969).
[14] J. C. Kelly, Bitopological spaces , Proc. London Math. Soc. 13 no. 3 (1963) pp.71-89.
[15] Yong Woon. Kim, Pairwise compactness, Publ. Math. 15 (1968),87-90.
[16] B. K. Lahiri and Pratulananda Das, Semi Open set in a space, Sains malaysiana, 24(4) 1-11(1995).
[17] B. K. Lahiri and Pratulananda Das, Certain Bitopological concepts in a Space, Soochow J. Math. 27(2) (2001), 175185.
[18] M. Mursaleen, F. Basar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press \backslash Taylor Francis \& Group, Series: Mathematics and Its Applications, Boca Raton London New York, 2020.
[19] E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc. 4(1953), 831838.
[20] Jems R. Munkres, Topology, Phi Learning Pvt. Limited, Delhi-110092(2015).
[21] W. J. Pervin, Connectedness in Bitopologicalspeces, Proccedings of Royl Nederlands academy of sciences'series A, vol-70(1967),pp.369-372.
[22] I. L. Reilly, On bitopological separation properties, Nanta Math. 5(1972), 14-25.
[23] T. G. Raghavan and I. L. Reilly, A new bitopological paracompactness, J. Aust. Math. Soc. (Series A) 41 (1986), 268274.
[24] H. Riberiro, Serless spaces a metrique faible, Port. Math. 4(1943) 21-40 and 65-08.
[25] J. Swart, Total disconnectedness in bitopological spaces and product bitopological spaces, Nederl. Akad. Wetenseh. Proe. Ser. A74. Indag. Math. 33(1971), 135-145.
[26] A. Srivastava and T. Bhatia, On pairwise R-compact bitopological spaces, Bull. Cal. Math. Soc. (2) 98 (2006), 93-96.
[27] S. Willard, General Topology, Dover Publications, INC. Mineola, New York, 2004.
[28] W. A. Wilson, On quasi-metric spaces, Amer. J. Math. 53(1931) 675-84.

RAHUL MONDAL

Vivekananda Satavarshiki Mahavidyalaya, Manikpara, Jhargram- 721513,
West Bengal, India.
E-mail address: imondalrahul@gmail.com
AMAR KUMAR BANERJEE
Department of Mathematics,
The University of Burdwan,
Golapbag, Burdwan-713104,
West Bengal, India.
E-mail address: akbanerjee1971@gmail.com

[^0]: 2010 Mathematics Subject Classification. 54A05, 54E55, 54E99.
 Key words and phrases. σ-space, bispace, refinement, parallel refinement, locally finiteness, pairwise paracompactness.
 (c)2023 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted January 7, 2023. Published February 2, 2023.
 Communicated by F. Basar.

