m-QUASI-(n, \mathbf{A})-PARANORMAL OPERATORS IN SEMI-HILBERTIAN SPACES

SID AHMED OULD AHMED MAHMOUD, RWABI MOBARAK ALSHARAR AND AYDAH MOHAMMED AYED AL-AHMADII

Abstract

The study of semi-Hilbert spaces operators is motivated by what are called pseudo-Hermitian quantum mechanics. In this paper, we introduce the concept of m-quasi- n-paranormal of a bounded linear operators on a complex Hilbert space with a semi-inner product induced by a positive operator \mathbf{A}. This generalizes the classical m-quasi- n-paranormality of operators on Hilbert spaces to semi-Hilbert space. We investigate some basic properties of this new class. Product and tensor product results were also investigated.

1. Introduction

Assume that $(\mathcal{Z},\|\|$.$) is a complex Hilbert space with associated norm \|$.$\| . Let$ $\mathcal{B}[\mathcal{Z}]$ denotes the C^{*}-algebra of all bounded linear operators acting on \mathcal{Z}. The identity operator on \mathcal{Z} is denoted simply by \mathbf{I}. For every $\mathbf{N} \in \mathcal{B}[\mathcal{Z}]$, $\operatorname{Null}(\mathbf{N})$, $\operatorname{Ran}(\mathbf{N}), \overline{\operatorname{Ran}(\mathbf{N})}$ and $\mathbf{P}_{\overline{\operatorname{Ran}(\mathbf{N})}}$ (or \mathbf{P}) denote, the null space, the range, the closure of the range of \mathbf{N} and the orthogonal projection onto $\overline{\operatorname{Ran}(\mathbf{N})}$ respectively Let $A \in \mathcal{B}[\mathcal{Z}]$ be a positive operator. Set $\langle\varphi \mid \psi\rangle_{\mathbf{A}}=\langle\mathbf{A} \varphi \mid \psi\rangle$. It was observed that $\langle. \mid .\rangle_{A}: \mathcal{Z} \times \mathcal{Z} \longrightarrow \mathbb{C}$, is a positive semidefinite sesquilinear form which yield a seminorm $\|\cdot\|_{\mathbf{A}}$ as $\|\varphi\|_{\mathbf{A}}=\langle\varphi \mid \varphi\rangle_{\mathbf{A}}^{\frac{1}{\mathbf{A}}}$ for any $\varphi \in \mathcal{Z}$. Moreover $\|\varphi\|_{\mathbf{A}}=0$ if and only if $\varphi \in \operatorname{Null}(\mathbf{A})$. The study of these concepts goes back to the papers [1, 2, 3,
From [1, we recall that for $\mathbf{N} \in \mathcal{B}[\mathcal{Z}]$, an element $\mathbf{T} \in \mathcal{B}[\mathcal{Z}]$ is said to be an \mathbf{A} adjoint operator of \mathbf{N} if $\langle\mathbf{N} \varphi \mid \psi\rangle_{\mathbf{A}}=\langle\varphi \mid \mathbf{T} \psi\rangle_{\mathbf{A}}$ for every $\varphi, \psi \in \mathcal{Z}$, which can be view as $\mathbf{N}^{*} \mathbf{A}=\mathbf{A T}$ where \mathbf{N}^{*} is the adjoint of \mathbf{N}. According to [8, Theorem 1], it follows that \mathbf{N} admits an \mathbf{A}-adjoint operator if and only if $\boldsymbol{\operatorname { R a n }}\left(\mathbf{N}^{*} \mathbf{A}\right) \subseteq \operatorname{Ran}(\mathbf{A})$. The unique solution of the operator equation $\mathbf{A X}=\mathbf{N}^{*} \mathbf{A}$ for $\mathbf{X} \in \mathcal{B}[\mathcal{Z}]$ such that $\boldsymbol{\operatorname { R a n }}(\mathbf{X}) \subseteq \overline{\operatorname{Ran}(\mathbf{A})}$ is denoted by \mathbf{N}^{\sharp} and is called the distinguished \mathbf{A}-adjoint operator of \mathbf{N}. The set of all operators in $\mathcal{B}[\mathbf{Z}]$ which admitting A-adjoint is

[^0]denoted by $\mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$. An operator $\mathbf{N} \in \mathcal{B}[\mathbf{Z}]$ is called \mathbf{A}-positive if $\mathbf{A N}$ is positive and it symbols by $\mathbf{N} \geq_{\mathbf{A}} 0$. Notice that for $\mathbf{N}, \mathbf{T} \in \mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]$ we have $\mathbf{N} \geq \mathbf{A} \mathbf{T}$ if $\mathbf{N}-\mathbf{T} \geq{ }_{A} 0$.

We mention here some properties of the members of $\mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ that we use in this work and which are extracted from [1, 2, 3].
For $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$, the following properties are met.
(1) $\mathbf{A} \mathbf{N}^{\sharp}=\mathbf{N}^{*} \mathbf{A}, \quad \operatorname{Ran}\left(\mathbf{N}^{\sharp}\right) \subset \overline{\operatorname{Ran}(\mathbf{A})}, \quad \operatorname{Null}\left(\mathbf{N}^{\sharp}\right)=\operatorname{Null}\left(\mathbf{N}^{*} \mathbf{A}\right)$,
(2) $\mathbf{N}^{\sharp} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}], \quad\left(\mathbf{N}^{\sharp}\right)^{\sharp}=\mathbf{P}_{\overline{\operatorname{Ran}(\mathbf{A})}} \mathbf{N} \mathbf{P}_{\overline{\operatorname{Ran}(\mathbf{A})}}$,
(3) $\mathbf{N}^{\sharp} \mathbf{N}$ and $\mathbf{N} \mathbf{N}^{\sharp}$ are $\mathbf{A}-$ selfadjoint and \mathbf{A} - positive.
(4) If $\mathbf{S} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}], \quad$ then $\mathbf{N S} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ and $(\mathbf{N S})^{\sharp}=\mathbf{S}^{\sharp} \mathbf{N}^{\sharp}$,
(5) $\|\mathbf{N}\|_{\mathbf{A}}^{2}=\left\|\mathbf{N}^{\sharp}\right\|_{\mathbf{A}}^{2}=\left\|\mathbf{N}^{\sharp} \mathbf{N}\right\|_{\mathbf{A}}=\left\|\mathbf{N N}^{\sharp}\right\|_{\mathrm{A}}$.

An operator $N \in \mathcal{B}[\mathcal{Z}]$ is said to be A-bounded if there exists $k>0$ such that $\|\mathbf{N} \varphi\|_{\mathbf{A}} \leq k\|\varphi\|_{\mathbf{A}}$ for all $\varphi \in \mathcal{Z}$. The set of all operators in $\mathcal{B}[\mathcal{Z}]$ admitting $\mathbf{A}^{\frac{1}{2}-}$ adjoint is denoted by $\mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]$. We note from

$$
\mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]=\left\{\mathbf{N} \in \mathcal{B}[\mathcal{Z}]: \exists k>0 ;\|\mathbf{N} \varphi\|_{\mathbf{A}} \leq k\|\varphi\|_{\mathbf{A}}, \forall \varphi \in \mathcal{Z}\right\} .
$$

The A-norm of $\mathbf{N} \in \mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]$ is given by

$$
\|\mathbf{N}\|_{\mathbf{A}}:=\sup _{\varphi \notin \operatorname{Null}(\mathbf{A}) \frac{\|\mathbf{N} \varphi\|_{\mathbf{A}}}{\|\varphi\|_{\mathbf{A}}}=\sup _{\|\varphi\|_{\mathbf{A}}=1}\|\mathbf{N} \varphi\|_{\mathbf{A}}=\sup _{\|\varphi\|_{\mathbf{A}} \leq 1}\|\mathbf{N} \varphi\|_{\mathbf{A}}}
$$

(see [3]). Observe that if \mathbf{N} is \mathbf{A}-bounded, then

$$
\|\mathbf{N} \varphi\|_{\mathbf{A}} \leq\|\mathbf{N}\|_{\mathbf{A}}\|\varphi\|_{\mathbf{A}}, \forall \varphi \in \mathcal{Z}
$$

This implies that, for $\mathbf{N}, \mathbf{T} \in \mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]$ we have $\|\mathbf{N T}\|_{\mathbf{A}} \leq\|\mathbf{N}\|_{A}\|\mathbf{T}\|_{\mathbf{A}}$ and $\mathbf{N}(\mathbf{N u l l}(\mathbf{A})) \subseteq$ $\operatorname{Null}(\mathbf{A})$. Note that $\mathcal{B}_{\mathbf{A}}[\mathcal{Z}] \subset \mathcal{B}_{\mathbf{A}^{\frac{1}{2}}}[\mathcal{Z}]$.
An operator $\mathbf{N} \in \mathbf{B}_{\mathbf{A}}[\mathcal{Z}]$ is called ([1])
(1) A-isometry if $\mathbf{N}^{\sharp} \mathbf{N}=\mathbf{P} \quad\left(\|\mathbf{N} \varphi\|_{\mathbf{A}}=\|\varphi\|_{\mathbf{A}} \forall \varphi \in \mathcal{Z}\right)$,
(2) A-unitary if $\mathbf{N}^{\sharp} \mathbf{N}=\left(\mathbf{N}^{\sharp}\right)^{\sharp} \mathbf{N}^{\sharp}=\mathbf{P} \quad\left(\|\mathbf{N} \varphi\|_{\mathbf{A}}=\left\|\mathbf{N}^{\sharp} \varphi\right\|_{\mathbf{A}}=\|\varphi\|_{\mathbf{A}} \quad \forall \varphi \in \mathcal{Z}\right)$.

For more details on semi-Hilbertian space operators can be found in [1, 2, 3, 4, [5, 9, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, and references therein.
The concepts of paranormal, n-paranormal, k-quasi-paranormal and m-quasi- k paranormal for Hilbert space operators where introduced and investigated in 6, 7, 12, 13, 19, 26]. An operator $\mathbf{N} \in \mathcal{B}[\mathcal{Z}]$ is said to be
(i) hyponormal if $\|\mathbf{N} \varphi\| \geq\left\|\mathbf{N}^{*} \varphi\right\| \quad \forall \varphi \in \mathcal{Z}$,
(ii) paranormal if $\left\|\mathbf{N}^{2} \varphi\right\|\|\varphi\| \geq\|\mathbf{N} \varphi\|^{2} \quad \forall \varphi \in \mathcal{Z}$ ([11]),
(iii) n-paranormal if $\left\|\mathbf{N}^{n+1} \varphi\right\|\|\varphi\|^{n} \geq\|\mathbf{N} \varphi\|^{n+1} \quad \forall \varphi \in \mathcal{Z}([7])$,
(iv) k-quasi-paranormal if $\left\|\mathbf{N}^{k+2} \varphi\right\|\left\|\mathbf{N}^{k} \varphi\right\| \geq\left\|\mathbf{N}^{k+1} \varphi\right\|^{2}$, for all $\varphi \in \mathcal{Z}$ and for some positive integer k ([13])
(v) m-quasi- n-paranormal if $\left\|\mathbf{N}^{m+n+1} \varphi\right\|\left\|\mathbf{N}^{m} \varphi\right\|^{n} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|^{n+1} \quad \forall \varphi \in \mathcal{Z}$ for some positive integers n and m (26).
Here and henceforth, suppose that m is a nonnegative integer, and n is a positive integer.

Many authors has extended some of these concepts to the semi-Hilbertian operators. An operator $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ is said to be
(i) A-hyponormal if $\|\mathbf{N} \varphi\|_{\mathbf{A}} \geq\left\|\mathbf{N}^{\#} \varphi\right\|_{\mathbf{A}}$ ([24],
(ii) k-quasi-A-hyponormal if $\left\|N^{k+1} \varphi\right\|_{\mathbf{A}} \geq\left\|\mathbf{N}^{\#} \mathbf{N}^{k} \varphi\right\|_{\mathbf{A}}$ ([24]),
(iii) A-paranormal if $\left\|\mathbf{N}^{2} \varphi\right\|_{A}\|\varphi\|_{\mathbf{A}} \geq\|\mathbf{N} \varphi\|_{\mathbf{A}}^{2}$, for all $\varphi \in \mathcal{Z}$ ([15]),
(iv) (n, A)-paranormal if $\left\|\mathbf{N}^{n+1} \varphi\right\|_{\mathbf{A}}\left\|_{\varphi}\right\|_{\mathbf{A}}^{n} \geq\|\mathbf{N} \varphi\|_{\mathbf{A}}^{n+1} \quad \forall \varphi \in \mathcal{Z},([22])$
(v) k-quasi-A-paranormal if $\left\|\mathbf{N}^{k+2} \varphi\right\|_{\mathbf{A}}\|\mathbf{N} \varphi\|_{\mathbf{A}} \geq\left\|\mathbf{N}^{k+1} \varphi\right\|_{\mathbf{A}}^{2} \quad \forall \varphi \in \mathcal{Z}$ ([14).

Following our work in [21], in the present paper we introduce and study a class of operators on the semi-Hilbertian space $\left(\mathcal{Z},\langle.\rangle_{\mathbf{A}}\right)$ which is a common generalization of (n, \mathbf{A})-paranormal and k-quasi-A-paranormal operators. More precisely, which is called the class of m-quasi- (n, \mathbf{A})-paranormal operator. It is proved in Example 2.1 that there is an operator which is m-quasi- (n, \mathbf{A}) - paranormal but not (n, \mathbf{A})-paranormal for some positive integers m and n, and thus, the proposed new class of operators contains the class of (n, \mathbf{A})-paranormal operators as a proper subclass. This paper consists of two parts as follows. In Section 2, we show some properties of m-quasi- (n, A)-paranormal operators via an equivalent condition for an operator $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ to be m-quasi- (n, \mathbf{A})-paranormal (Theorem 2.2. Several properties are proved by exploiting this characterization (Proposition 2.3 Proposition 2.4. Proposition 2.5. Theorem 2.7. Lemma 3.1. In particular, we prove that if $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{H}]$ is an m-quasi- (n, \mathbf{A})-paranormal and $\mathbf{T} \in \mathcal{B}_{\mathbf{A}}[\mathcal{H}]$ is an \mathbf{A}-isometry or an A-unitary operator then N.T is an m-quasi- (m, \mathbf{A})-paranormal under suitable conditions (Theorem 2.8. Theorem 2.9). The product of two members of m-quasi(n, \mathbf{A})-paranormal operators is also studied(Theorem 2.10. Theorem 2.11). Section 3 , is devoted to describe some properties of tensor product of some members related to m-quasi- (n, \mathbf{A})-paranormal operators. We show that the class of m-quasi- (n, \mathbf{A}) paranormal operators is closed under tensor product (Theorem 3.4).

2. Properties of m-Quasi- (n, \mathbf{A})-paranormal operators

In this section, we define the class of m-quasi- (n, \mathbf{A})-paranormal operators in semi-Hilbertian spaces and we investigate some properties of such operators.

Firstly, we start with the definition of this class.
Definition 2.1. Let m and n be positive integers, an operator $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ is called an m-quasi- (n, \mathbf{A})-paranormal if

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{n} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}
$$

for all $\varphi \in \mathcal{Z}$.
Let $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ be the sets of all m-quasi- (n, \mathbf{A})-paranormal operators.

72 SID AHMED O. A. MAHMOUD, RWABI M. ALSHARAR AND AYDAH M. A.AL-AHMADII

Remark. (1) if $m=0$ we get the class of (n, \mathbf{A})-paranormal operators introduced in [15].
(2) If $m=1, \mathbf{N}$ is a quasi-($n, A)$-paranormal operator.
(3) If $\mathbf{A}=\mathbf{I}$, then every m-quasi-($n, \mathbf{A})$-paranormal is m-quasi-n-paranormal operators ([26]).
(5) The following inclusions hold:

$$
\mathcal{P}_{\mathbf{A}}[1] \subseteq \mathcal{P}_{\mathbf{A}}[n] \subseteq \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n] \subset \mathcal{Q}[m+1] \cap \mathcal{P}_{A}[n]
$$

From the above inclusion we can see that $\mathcal{P}_{\mathbf{A}}[n]$ form a subclass of $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ for all positive integers m and n. The following example shows that the converse is not true in general.

Example 2.1. Let $\mathcal{Z}=\mathbb{C}^{3}, \mathbf{N}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $\mathbf{A}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$. A direct calculation shows that $\mathbf{A} \geq 0$ and $\operatorname{Ran}\left(\mathbf{N}^{*} \mathbf{A}\right) \subset \boldsymbol{\operatorname { R a n }}(\mathbf{A})$ Thus $\mathbf{N} \in \mathcal{B}_{A}[\mathcal{Z}]$. Moreover N satisfies

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{n} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}
$$

for all $\varphi \in \mathcal{Z}, m \geq 2, n \geq 2$. But

$$
\left\|\mathbf{N}^{n+1} \varphi\right\|_{A}\|\varphi\|_{A}^{n} \geq\|\mathbf{N} \varphi\|_{\mathbf{A}}^{n+1}
$$

not satisfied for $n \geq 2$ and $\varphi_{0}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Hence \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ for $m \geq 2$ and $n \geq 2$ but \mathbf{N} is not in $\mathcal{P}_{\mathbf{A}}[n]$ for $n \geq 2$.

Lemma 2.1. (10) Let a and b two positive number, then $a^{\alpha} b^{\mu} \leq \alpha a+\mu b$ holds for $\alpha, \mu>0$ such that $\alpha+\mu=1$.

In [15] it has been shown that $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ is an (n, \mathbf{A})-paranormal if and only if

$$
\begin{equation*}
\mathbf{N}^{\sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P} \geq_{\mathbf{A}} 0, \quad \forall \beta>0 . \tag{2.1}
\end{equation*}
$$

Similarly, we have the following characterization for the members of the class of m-quasi-(n, \mathbf{A})-paranormal operators. It is similar to [13, Theorem 2.1] for Hilbert space operators.

Theorem 2.2. Let $\mathbf{N} \in \mathcal{B}_{A}[\mathcal{Z}]$. Then \mathbf{N} is an m-quasi-(n, \mathbf{A})-paranormal if and only if

$$
\begin{equation*}
\left(\mathbf{N}^{\#}\right)^{m}\left(\mathbf{N}^{\#^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \geq_{\mathbf{A}} 0 \tag{2.2}
\end{equation*}
$$

for all $\beta>0$. Equivalently, \mathbf{N} is an m-quasi-($n, \mathbf{A})$-paranormal if and only if

$$
\frac{1}{n+1}\left(\beta^{-n} \mathbf{N}^{\sharp(m+n+1)} \mathbf{N}^{m+n+1}+n \beta \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m}\right) \geq_{\mathbf{A}}\left(\mathbf{N}^{\sharp}\right)^{m+1} \mathbf{N}^{m+1}, \quad \forall \beta>0 .
$$

Proof. First we show the direct implication. Assume that

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{n} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}
$$

for all $\varphi \in \mathcal{H}$ or equivalently

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}^{\frac{1}{n+1}}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{\frac{n}{n+1}} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}
$$

for all $\varphi \in \mathcal{H}$. Then by taking into account Lemma 2.1 , we my write

$$
\begin{aligned}
& \frac{1}{n+1}\left\langle\beta^{-n}\left(\mathbf{N} \mathbf{N}^{\sharp}\right)^{m+n+1} \mathbf{N}^{m+n+1} \varphi \mid \varphi\right\rangle_{A}+\frac{n}{n+1}\left\langle\beta \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m} \varphi \mid \varphi\right\rangle_{A} \\
\geq & \left\langle\beta^{-n}\left(\mathbf{N}^{\sharp}\right)^{m+n+1} \mathbf{N}^{m+n+1} \varphi \mid \varphi\right\rangle_{A}^{\frac{1}{n+1}}\left\langle\beta \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m} \varphi \mid \varphi\right\rangle_{A}^{\frac{n}{n+1}} \\
\geq & \left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}^{\frac{2}{n+1}}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{\frac{2 n}{n+1}} \\
\geq & \left\|\mathbf{N}^{m+1} \varphi\right\|_{A}^{2} .
\end{aligned}
$$

This implies that
$\frac{1}{n+1}\left\langle\beta^{-n}\left(\mathbf{N}^{\sharp}\right)^{m+n+1} \mathbf{N}^{m+n+1} \varphi \mid \varphi\right\rangle_{A}+\frac{n}{n+1}\left\langle\beta \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m} \varphi \mid \varphi\right\rangle_{A}-\left\langle\mathbf{N}^{\sharp(m+1)} \mathbf{N}^{(m+1)} \varphi \mid \varphi\right\rangle \geq_{A} 0$, the above inequality forces

$$
\left\langle\left(\mathbf{N}^{\#}\right)^{m}\left(\mathbf{N}^{\#^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \varphi \mid \varphi\right\rangle_{A} \geq 0
$$

This leads to,

$$
\left(\mathbf{N}^{\#}\right)^{m}\left(\mathbf{N}^{\#^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \geq_{\mathbf{A}} 0
$$

for all $\beta>0$.
For the other direction, assume that $\left(2.2\right.$ holds. If $\varphi_{0} \in \mathcal{Z}$ such that $\left\|\mathbf{N}^{m+n+1} \varphi_{0}\right\|_{\mathbf{A}}=$ 0 or equivalently, $\mathbf{N}^{m+n+1} \varphi_{0} \in \mathbf{N u l l}(\mathbf{A})$ we have by equation 2.2 that

$$
\left.-(n+1)\left\|\mathbf{N}^{m+1} \varphi_{0}\right\|_{\mathbf{A}}^{2}+n \beta\left\|\mathbf{N}^{m} \varphi_{0}\right\|_{\mathbf{A}}^{2} \geq 0\right)
$$

If $\beta \longrightarrow 0$ we obtain $\left\|\mathbf{N}^{m+1} \varphi_{0}\right\|_{\mathbf{A}}=0$. Therefore,

$$
\left\|\mathbf{N}^{m+n+1} \varphi_{0}\right\|_{A}\left\|\mathbf{N}^{m} \varphi_{0}\right\|_{A}^{n} \geq\left\|\mathbf{N}^{m+1} \varphi_{0}\right\|_{\mathbf{A}}^{n+1}
$$

Suppose that $\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}} \neq 0$ for all $\varphi \in \mathcal{Z}$. From 2.2 we have for all $\beta>0$

$$
\frac{1}{n+1}\left(\beta^{-n}\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{2}+\beta n\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{2}\right) \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{2} \quad \forall \varphi \in \mathcal{Z}
$$

Choosing $\beta=\left(\frac{\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}}{\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}}\right)^{\frac{2}{n+1}}$ we get
$\frac{1}{n+1}\left(\frac{\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{2}}{\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{2}}\right)^{\frac{-n}{n+1}}\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{2}+\frac{n}{n+1}\left(\frac{\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}}{\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}}\right)^{\frac{2}{n+1}}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{2} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{2} \quad \varphi \in \mathcal{Z}$.
This leads to
$\frac{1}{n+1}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{\frac{2 n}{n+1}}\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{\frac{2}{n+1}}+\frac{n}{n+1}\left\|\mathbf{N}^{m} \varphi\right\|_{A}^{\frac{2 n}{n+1}}\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{A}^{\frac{2}{n+1}} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{A}^{2} \quad \forall \varphi \in \mathcal{Z}$.
This yields,

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{\frac{2}{n+1}}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{\frac{2 n}{n+1}} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{2}, \quad \varphi \in \mathcal{Z}
$$

Therefore,

$$
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{n} \geq\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}, \quad \varphi \in \mathcal{Z}
$$

Hence \mathbf{N} is an m-quasi (n, \mathbf{A})-paranormal.

Remark. It should be noted that (2.2) is equivalent to

$$
\begin{equation*}
\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{2}-(n+1) \beta^{n}\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{2}+n \beta^{n+1}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{2} \geq 0 \tag{2.3}
\end{equation*}
$$

for all $\varphi \in \mathcal{Z}$ and $\beta>0$.

Proposition 2.3. If $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$, then $\lambda \mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ for all $\lambda \in \mathbb{C}$.
Proof. For $\lambda \neq 0$, we have for all $\beta>0$

$$
\begin{array}{rl}
& (\lambda \mathbf{N})^{\sharp(m+n+1)}(\lambda \mathbf{N})^{m+n+1}-(n+1) \beta^{n}(\lambda \mathbf{N})^{\sharp m+1}(\lambda \mathbf{N})^{m+1}+n \beta^{n+1}(\lambda \mathbf{N})^{\sharp m} \mathbf{P}(\lambda \mathbf{N})^{m} \\
= & |\lambda|^{2(m+n+1)} \mathbf{N}^{\sharp(m+n+1)} \mathbf{N}^{m+n+1}-(n+1)|\lambda|^{2(m+1)} \beta^{n} \mathbf{N}^{\sharp(m+1} \mathbf{N}^{m+1}+n \beta^{n+1}|\lambda|^{2 m} \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m} \\
= & |\lambda|^{2(m+n+1)}\left(\mathbf{N}^{\sharp(m+n+1)} \mathbf{N}^{m+n+1}-(n+1)\left(\frac{\beta}{|\lambda|^{2}}\right)^{n} \mathbf{N}^{\sharp(m+1)} \mathbf{N}^{m+1}+n\left(\frac{\beta}{|\lambda|^{2}}\right)^{n+1} \mathbf{N}^{\sharp m} \mathbf{P} \mathbf{N}^{m}\right) \\
\geq_{A} & 0 \quad\left(\text { since } \mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]\right) .
\end{array}
$$

Henceforth, $\lambda \mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ by Theorem 2.2 .
Proposition 2.4. Let $\mathbf{N} \in \mathcal{B}_{A}[\mathcal{Z}]$ be an m-quasi-($\left.n, \mathbf{A}\right)$-paranormal. If $\overline{\operatorname{Ran}\left(\mathbf{N}^{m}\right)}=$ \mathcal{Z}, then \mathbf{N} is an (n, \mathbf{A})-paranormal.
Proof. Since $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ it follows by Theorem 2.2

$$
\mathbf{N}^{\# m}\left(\mathbf{N}^{\#(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \geq_{A} 0
$$

for all $\varphi \in \mathcal{Z}$ and for all $\beta>0$. It results that

$$
\left\langle\left(\mathbf{N}^{\#(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \varphi \mid \mathbf{N}^{m} \varphi\right\rangle_{A} \geq 0
$$

for all $\varphi \in \mathcal{Z}$ and for all $\beta>0$. The last inequality is equivalent to

$$
\mathbf{N}^{\#(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P} \geq_{A} 0 \text { on } \overline{\operatorname{ran}\left(\mathbf{N}^{m}\right)}=\mathcal{Z}
$$

This implies that \mathbf{N} is an (n, \mathbf{A})-paranormal by [22, Theorem 2.4].
Proposition 2.5. Let $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ is such that $\boldsymbol{\operatorname { R a n }}\left(\mathbf{N}^{m}\right)=\boldsymbol{\operatorname { R a n }}\left(\mathbf{N}^{j}\right)$ for some integer $j \in\{1, \cdots, m-1\}$, then $\mathbf{N} \in \mathcal{Q}[j] \cap \mathcal{P}_{\mathbf{A}}[n]$.
Proof. Since $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$, we have in view of Theorem 2.2 that

$$
\begin{equation*}
\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not{ }^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \geq_{\mathbf{A}} 0, \tag{2.4}
\end{equation*}
$$

for all $\beta>0$. Therefore

$$
\left\langle\left(\mathbf{N}^{\not \sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \varphi \mid \mathbf{N}^{m} \varphi\right\rangle_{\mathbf{A}} \geq 0 \quad \forall \varphi \in \mathcal{Z} .
$$

From the range condition $\operatorname{Ran}\left(\mathbf{N}^{j}\right)=\operatorname{Ran}\left(\mathbf{N}^{m}\right)$ it is enough to see that

$$
\left\langle\left(\mathbf{N}^{\not \sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{j} \psi \mid \mathbf{N}^{j} \psi\right\rangle_{\mathbf{A}} \geq 0 \quad \forall \psi \in \mathcal{Z} .
$$

This yields to

$$
\left\langle N^{\sharp j}\left(\mathbf{N}^{\#^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{j} \psi \mid \psi\right\rangle_{\mathbf{A}} \geq 0 \quad \forall \psi \in \mathcal{Z} .
$$

So we have,

$$
\mathbf{N}^{\sharp j}\left(\mathbf{N}^{\not \sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{j} \geq_{A} 0 .
$$

This shows that \mathbf{N} is a j-quasi- (n, \mathbf{A})-paranormal.

Lemma 2.6. [5 Lemma 3.1] Let $\left(\mathbf{N}_{k}\right)_{1 \leq k \leq 4}$ where $\mathbf{N}_{k} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ for all $k=$ $1,2,3,4$. Then $\mathbf{N}=\left(\begin{array}{ll}\mathbf{N}_{1} & \mathbf{N}_{2} \\ \mathbf{N}_{3} & \mathbf{N}_{4}\end{array}\right) \in \mathcal{B}_{A_{0}}(\mathcal{H} \oplus \mathcal{H})$ where $\mathbf{A}_{0}=\left(\begin{array}{cc}\mathbf{A} & 0 \\ 0 & \mathbf{A}\end{array}\right)$. Furthermore, $\mathbf{N}^{\sharp \mathbf{A}_{0}}=\left(\begin{array}{cc}\mathbf{N}_{1}^{\sharp} & \mathbf{N}_{3}^{\sharp} \\ \mathbf{N}_{2}^{\sharp} & \mathbf{N}_{4}^{\sharp}\end{array}\right)$.

Theorem 2.7. Let $\mathbf{N}_{1}, \mathbf{N}_{2} \in \mathcal{B}[\mathcal{Z}]$ and let \mathbf{N} be the operator on $\mathcal{B}_{A_{0}}[\mathcal{H} \oplus \mathcal{H}]$ defined as

$$
\mathbf{N}=\left(\begin{array}{cc}
\mathbf{N}_{1} & \mathbf{N}_{2} \\
0 & 0
\end{array}\right)
$$

If \mathbf{N}_{1} is an ($m-1$)-quasi-(n, \mathbf{A})-paranormal, then \mathbf{N} is an m-quasi-(n, \mathbf{A}_{0})-paranormal for $m \geq 2$..
Proof. From Lemma 2.6 , we have $\mathbf{N}^{\sharp \mathbf{A}_{0}}=\left(\begin{array}{cc}\mathbf{N}_{1}^{\sharp} & 0 \\ \mathbf{N}_{2}^{\sharp} & 0\end{array}\right)$ and with simple calculation we show that

$$
\begin{gathered}
\mathbf{N}^{\sharp m}\left(\mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \\
=\left(\begin{array}{cc}
\mathbf{N}_{1}^{\sharp m} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m} & \mathbf{N}_{1}^{\sharp m} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m-1} \mathbf{N}_{2} \\
\mathbf{N}_{2}^{\sharp} \mathbf{N}_{1}^{\sharp(m-1)} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{2}^{\sharp}\right) N_{1}^{m} & \mathbf{N}_{2}^{\sharp} \mathbf{N}_{1}^{\sharp(m-1)} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}^{m-1} \mathbf{N}_{2}
\end{array}\right),
\end{gathered}
$$

where

$$
\Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right)=\mathbf{N}_{1}^{\#(n+1)} \mathbf{N}_{1}^{n+1}-(n+1) \beta^{n} \mathbf{N}_{1}^{\#} \mathbf{N}_{1}+n \beta^{n+1} \mathbf{P}
$$

for all $\lambda>0$.
Let $\varphi=\psi_{1} \oplus \psi_{2} \in \mathcal{Z} \oplus \mathcal{Z}$ and taking into account that \mathbf{N}_{1} is an $(m-1)$-quasi(n, \mathbf{A})-paranormal, we have

$$
\begin{aligned}
& \left\langle\mathbf{N}^{\# m}\left(\mathbf{N}^{\#(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\#} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \psi \mid \psi\right\rangle_{A_{0}} \\
= & \left\langle\mathbf{N}_{1}^{\# m} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m} \psi_{1} \mid \psi_{1}\right\rangle_{A}+\left\langle\mathbf{N}_{1}^{\# m} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m-1} \mathbf{N}_{2} \psi_{2} \mid \psi_{1}\right\rangle_{A} \\
& +\left\langle\mathbf{N}_{2}^{\#} \mathbf{N}_{1}^{\sharp(m-1)} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{2}^{\sharp}\right) N_{1}^{m} \psi_{1} \mid \psi_{2}\right\rangle_{A}+\left\langle\mathbf{N}_{2}^{\#} \mathbf{N}_{1}^{\sharp(m-1)} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m-1} \mathbf{N}_{2} \psi_{2} \mid \psi_{2}\right\rangle_{A} \\
= & \left\langle\mathbf{N}_{1}^{\sharp(m-1)} \Psi_{n}\left(\mathbf{N}_{1}, \mathbf{N}_{1}^{\sharp}\right) \mathbf{N}_{1}^{m-1}\left(\mathbf{N}_{1} \psi_{1}+\mathbf{N}_{2} \psi_{2}\right),\left(\mathbf{N}_{1} \psi_{1}+\mathbf{N}_{2} \psi_{2}\right)\right\rangle_{A} \geq 0 .
\end{aligned}
$$

The following theorem presents the sufficient conditions for which the product of a member of $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ with an \mathbf{A}-isometry remains in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$.

Theorem 2.8. Let $\mathbf{N}, \mathbf{T} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ be such that $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and \mathbf{T} be an A-isometry. Assume that

$$
\left\{\begin{array}{l}
\mathbf{T N}=\mathbf{N T}, \quad \mathbf{T} \mathbf{N}^{\sharp}=\mathbf{N}^{\sharp} \mathbf{T} \\
\mathbf{T}\left(\mathbf{N u l l}(\mathbf{A})^{\perp}\right) \subseteq \mathbf{N u l l}(\mathbf{A})^{\perp} \\
\mathbf{N}\left(\mathbf{N u l l}(\mathbf{A})^{\perp}\right) \subseteq \mathbf{N u l l}(\mathbf{A})^{\perp}
\end{array}\right.
$$

Then $\mathbf{T N} \in \mathcal{Q}[k] \cap \mathcal{P}_{\mathbf{A}}[n]$.
Proof. Since \mathbf{T} is an \mathbf{A}-isometry, we have $\mathbf{T}^{\sharp} \mathbf{T}=\mathbf{P}$. However, by the conditions $\mathbf{T}\left(\mathbf{N u l l}(A)^{\perp}\right) \subseteq \mathbf{N u l l}(A)^{\perp}$ and $\mathbf{N}\left(\mathbf{N u l l}(A)^{\perp}\right) \subseteq \mathbf{N u l l}(A)^{\perp}$ it follows that $\mathbf{N u l l}(A)$ is a reducing subspace for both \mathbf{T} and \mathbf{N}. This yield to

$$
\mathbf{P T}=\mathbf{T P}, \mathbf{P} \mathbf{T}^{\sharp}=\mathbf{T}^{\sharp} \mathbf{P}
$$

and

$$
\mathbf{P N}=\mathbf{N P}, \mathbf{P N}^{\sharp}=\mathbf{N}^{\sharp} \mathbf{P} .
$$

We deduce that $\mathbf{T}^{\sharp(n+1)} \mathbf{T}^{n+1}=\mathbf{P}$.
In order to prove that $\mathbf{T N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$, we will apply Theorem 2.2. To this gaol we have for all $\beta>0$,

$$
\begin{aligned}
&(\mathbf{N T})^{\sharp m}\left((\mathbf{N T})^{\sharp(n+1)}(\mathbf{N T})^{n+1}-(n+1) \beta^{n}(\mathbf{N T})^{\sharp}(\mathbf{N T})+n \beta^{n+1} \mathbf{P}\right)(\mathbf{N T})^{m} \\
&= \mathbf{T}^{\sharp m} \mathbf{N}^{\sharp m}\left(\mathbf{T}^{\sharp(n+1)} \mathbf{T}^{n+1} \mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{T}^{\sharp} \mathbf{T} \mathbf{N} \mathbf{N}^{\sharp}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \mathbf{T}^{m} \\
&= \mathbf{T}^{\sharp m} \mathbf{N}^{\sharp m} \mathbf{P}\left(\mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \mathbf{T}^{m} \\
&=(\mathbf{P T})^{\sharp m}[\underbrace{\left.\mathbf{N}^{\sharp m}\left(\mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m}\right]}_{\geq \mathbf{A}^{0}})(\mathbf{P T})^{m} \\
&= \\
& \geq \mathbf{A} \quad 0,
\end{aligned}
$$

where the last inequality follows from the assumption that $\mathbf{N} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and [24, Lemma 2.1]).

Theorem 2.9. Let $\mathbf{N} \in \mathcal{B}[\mathcal{Z}]$ be in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$. Assume that $\mathbf{N}\left(\mathbf{N u l l}(\mathbf{A})^{\perp}\right) \subseteq$ $\mathbf{N u l l}(\mathbf{A})^{\perp}$ and $\mathbf{U} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ be an \mathbf{A}-unitarily operator, then $\mathbf{U N U}^{\sharp} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$.
Proof. Since \mathbf{U} is an A-unitary operator, we get $\mathbf{U U}^{\sharp}=\left(\mathbf{U}^{\sharp}\right)^{\sharp} \mathbf{U}^{\sharp}=\mathbf{P}$ or equivalently

$$
\|\mathbf{U} \varphi\|_{\mathbf{A}}=\left\|\mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}=\|\varphi\|_{\mathbf{A}} \quad \forall \varphi \in \mathcal{Z}
$$

By the assumption that $\mathbf{N}\left(\mathbf{N u l l}(\mathbf{A})^{\perp}\right) \subseteq \mathbf{N u l l}(\mathbf{A})^{\perp}$ it follows that $\mathbf{N u l l}(\mathbf{A})$ is a reducing subspace for \mathbf{N}, from which we can write $\mathbf{N P}=\mathbf{P N}$ and
$\mathbf{P A}=\mathbf{A P}=\mathbf{A}$.

So we have that

$$
\begin{align*}
\left(\mathbf{U N U}^{\sharp}\right)^{j} & =\underbrace{\left(\mathbf{U N U}^{\sharp}\right)\left(\mathbf{U N U}^{\sharp}\right) \cdots\left(\mathbf{U N U}^{\sharp}\right)}_{j-\text { times }} \\
& =\left(\mathbf{U N P N U}{ }^{\sharp}\right) \cdots\left(\mathbf{U N U}^{\sharp}\right) \\
& =\mathbf{\mathbf { U P N } ^ { 2 } \mathbf { U } ^ { \sharp } \cdots (\mathbf { U N U } ^ { \sharp })} \\
& =\vdots \\
& =\mathbf{\mathbf { U P N } ^ { j } \mathbf { U } ^ { \sharp } .} \tag{2.5}
\end{align*}
$$

By the assumptions on \mathbf{N}, \mathbf{U} and 2.5 , we infer that

$$
\begin{aligned}
\left\|\left(\mathbf{U N U} \mathbf{U}^{\sharp}\right)^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1} & =\left\|\mathbf{U} \mathbf{P N}^{m+1} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}^{n+1} \\
& \leq\left\|\mathbf{N}^{m+n+1} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{N}^{m} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}^{n} \\
& =\left\|\mathbf{P} \mathbf{N}^{n+1} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{P} \mathbf{N}^{m} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}^{n} \quad(\operatorname{since} \mathbf{N}(\overline{\operatorname{ran}(\mathbf{A})}) \subseteq \overline{\operatorname{ran}(\mathbf{A})}) \\
& =\left\|\mathbf{U} \mathbf{P N}^{m+n+1} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{U P N}^{m} \mathbf{U}^{\sharp} \varphi\right\|_{\mathbf{A}}^{n} \\
& =\left\|\left(\mathbf{U} \mathbf{N U}^{\sharp}\right)^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|\left(\mathbf{U N U}^{\sharp}\right)^{m} \varphi\right\|_{\mathbf{A}}^{n} .
\end{aligned}
$$

So we get

$$
\left\|\left(\mathbf{U N U}^{\sharp}\right)^{n+1} \varphi\right\|_{\mathbf{A}}\left\|\left(\mathbf{U N U}^{\sharp}\right)^{m} \varphi\right\|_{\mathbf{A}}^{n} \geq\left\|\left(\mathbf{U N U}^{\sharp}\right)^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}, \quad \forall \varphi \in \mathcal{Z},
$$

which immediately gives that $\mathbf{U N U}^{\sharp} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$.

Theorem 2.10. Let $\mathbf{N}, \mathbf{T} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ such that $\mathbf{N T}=\mathbf{T N}$. If \mathbf{N} and \mathbf{T} satisfy

$$
\begin{equation*}
\left\|\mathbf{N}^{m+n+1} \mathbf{T}^{m} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{T}^{m+n+1} \mathbf{N}^{m} \varphi\right\|_{\mathbf{A}} \leq\left\|(\mathbf{N} \mathbf{T})^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|(\mathbf{N} \mathbf{T})^{m} \varphi\right\|_{\mathbf{A}} \tag{2.6}
\end{equation*}
$$

$\forall \varphi \in \mathcal{Z}$. Then $\mathbf{N} . \mathbf{T} \in \mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$.
Proof.

$$
\begin{aligned}
& \left\|(\mathbf{N T})^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}=\left\|\mathbf{N}^{m+1} \mathbf{T}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1} \\
\leq & \left\|\mathbf{N}^{m+n+1} \mathbf{T}^{m+1}\right\|_{\mathbf{A}}\left\|\mathbf{N}^{m} \mathbf{T}^{m+1} \varphi\right\|_{\mathbf{A}}^{n} \\
= & \left\|\mathbf{T}^{m+1} \mathbf{N}^{m+n+1} \varphi\right\|_{A}\left\|\mathbf{T}^{m+1} \mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{n} \\
\leq & \left(\left\|\mathbf{T}^{m+n+1} \mathbf{N}^{m+n+1} \varphi\right\|_{A}\left\|\mathbf{T}^{m} \mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{n}\right)^{\frac{1}{n+1}}\left(\left\|\mathbf{T}^{m+n+1} \mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{T}^{m} \mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{n}\right)^{\frac{n}{n+1}} \\
= & \left\|(\mathbf{N T})^{m+n+1}\right\|_{\mathbf{A}}^{\frac{1}{n+1}}\left\|(\mathbf{N T})^{m} \varphi\right\|_{A}^{\frac{n^{2}}{n+1}}\left(\left\|\mathbf{N}^{m+n+1} \mathbf{T}^{m} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{T}^{m+n+1} \mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}\right)^{\frac{n}{n+1}} \\
\leq & \left\|(\mathbf{N T})^{m+n+1}\right\|_{\mathbf{A}}^{\frac{1}{n+1}}\left\|(\mathbf{N T})^{m} \varphi\right\|_{A}^{\frac{n^{2}}{n+1}}\left(\left\|(\mathbf{N T})^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|(\mathbf{T N})^{m} \varphi\right\|_{\mathbf{A}}\right)^{\frac{n}{n+1}} \\
= & \left\|(\mathbf{N T})^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|(\mathbf{T} \mathbf{N})^{m} \varphi\right\|_{\mathbf{A}}^{n} .
\end{aligned}
$$

This leads to

$$
\left\|(\mathbf{N T})^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|(\mathbf{T} \mathbf{N})^{m} \varphi\right\|_{\mathbf{A}}^{n} \geq\left\|(\mathbf{N} \mathbf{T})^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1} \quad \forall \varphi \in \mathcal{Z}
$$

Theorem 2.11. Let $\mathbf{T} \in \mathcal{B}_{\mathbf{I}}[\mathcal{Z}]$ be an invertible operator and \mathbf{N} be an operator such that $\left[\mathbf{N}, \mathbf{T}^{\sharp} \mathbf{T}\right]=0$. Then, \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$ if and only if $\mathbf{T N T}^{-1}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$.
Proof. Assume that \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$, it follows from Theorem 2.2 that

$$
\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \geq_{\mathbf{I}} 0 .
$$

From this we have that

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not{ }^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp} \geq_{\mathbf{I}} 0 .
$$

Since $\left[\mathbf{N}, \mathbf{T}^{\sharp} \mathbf{T}\right]=0$ we have $\left[\mathbf{N}^{\sharp}, \mathbf{T}^{\sharp} \mathbf{T}\right]=0$ and we my write

$$
\begin{aligned}
& \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp}\left(\mathbf{T} \mathbf{T}^{\sharp}\right) \\
= & \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp}{ }^{\sharp+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m}\left(\mathbf{T}^{\sharp} \mathbf{T}\right) \mathbf{T}^{\sharp} \\
= & \mathbf{T}\left(\mathbf{T}^{\sharp} \mathbf{T}\right)\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp} \\
= & \left(\mathbf{T} \mathbf{T}^{\sharp}\right) \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp} .
\end{aligned}
$$

This implies that

$$
\left[\mathbf{T} \mathbf{T}^{\sharp}, \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{*} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp}\right]=0
$$

and hence

$$
\left[\left(\mathbf{T} \mathbf{T}^{\sharp}\right)^{-1}, \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not \sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp}\right]=0 .
$$

By observing that $\left(\mathbf{T T}^{\sharp}\right)^{-1} \geq_{\mathbf{I}} 0$ and

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not \sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp} \geq 0
$$

it follows that

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not n^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp}\left(\mathbf{T} \mathbf{T}^{\sharp}\right)^{-1} \geq 0 .
$$

According to the condition $\left[\mathbf{N}, \mathbf{T}^{\sharp} \mathbf{T}\right]=0$ we my write

$$
\left(\mathbf{T} \mathbf{N T}^{-1}\right)^{\sharp k}=\mathbf{T}^{\sharp-1} \mathbf{N}^{\sharp k} \mathbf{T}^{\sharp} \text { and }\left(\mathbf{T} \mathbf{N T}^{-1}\right)^{k}=\mathbf{T}^{-1} \mathbf{N}^{k} \mathbf{T}
$$

and
$\left(\mathbf{T N T} \mathbf{N}^{-1}\right)^{\sharp}\left(\mathbf{T} \mathbf{N T}^{-1}\right)=\mathbf{T} \mathbf{N}^{\sharp} \mathbf{N T}^{-1} \quad$ and $\left(\mathbf{T N T}{ }^{-1}\right)^{\sharp(n+1)}\left(\mathbf{T} \mathbf{N T}^{-1}\right)^{n+1}=\mathbf{T N}^{\sharp(n+1)} \mathbf{N}^{n+1} \mathbf{T}^{-1}$.
Now we are ready to show that $\mathbf{S}=\mathbf{T N T}^{-1}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$. Indeed,

$$
\begin{aligned}
& \mathbf{S}^{\sharp m}\left(\mathbf{S}^{\sharp(n+1)} \mathbf{S}^{n+1}-(n+1) \beta^{n} \mathbf{S}^{\sharp} \mathbf{S}+n \beta^{n+1} \mathbf{I}\right) \mathbf{S}^{m} \\
= & \mathbf{T}^{\sharp-1} \mathbf{N}^{\sharp m} \mathbf{T}^{\sharp}\left(\mathbf{T} \mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1} \mathbf{T}^{-1}-(n+1) \beta^{n} \mathbf{T} \mathbf{N}^{\sharp} \mathbf{N}^{-1}+n \beta^{n+1} \mathbf{I}\right) \mathbf{T} \mathbf{N}^{m} \mathbf{T}^{-1} \\
= & \mathbf{T} \mathbf{N}^{\sharp m}\left(\mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{-1} .
\end{aligned}
$$

In order to show that the last expression is positive, we take in our consideration that

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp}\left(\mathbf{T} \mathbf{T}^{\sharp}\right)^{-1} \geq 0 .
$$

This leads to

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{\sharp} \mathbf{T}^{\sharp-1} \mathbf{T}^{-1} \geq 0
$$

and therefore

$$
\mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not{ }^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{-1} \geq 0 .
$$

This does means that $\mathbf{T N T}^{-1}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$.
Conversely, assume that $\mathbf{S}=\mathbf{T N T}{ }^{-1}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$. Similarly, we have that

$$
\begin{aligned}
& \mathbf{S}^{\sharp m}\left(\mathbf{S}^{\sharp(n+1)} \mathbf{S}^{n+1}-(n+1) \beta^{n} \mathbf{S}^{\sharp} \mathbf{S}+n \beta^{n+1} \mathbf{I}\right) \mathbf{S}^{m} \geq_{\mathbf{I}} 0 \\
\Longrightarrow & \mathbf{T}\left(\mathbf{\mathbf { N } ^ { \sharp }) ^ { m } (\mathbf { N } ^ { \sharp { } ^ { n + 1 } } \mathbf { N } ^ { n + 1 } - (n + 1) \beta ^ { n } \mathbf { N } ^ { \sharp } \mathbf { N } + n \beta ^ { n + 1 } \mathbf { I }) \mathbf { T } ^ { \sharp } \mathbf { N } ^ { m } \mathbf { T } ^ { - 1 } \geq _ { \mathbf { I } } 0}\right. \\
\Longrightarrow & \mathbf{T}^{\sharp} \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\not{ }^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \mathbf{T}^{-1} \mathbf{T} \geq_{\mathbf{I}} 0 \\
\Longrightarrow & \mathbf{T}^{\sharp} \mathbf{T}\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp^{n+1}} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \geq_{\mathbf{I}} 0 .
\end{aligned}
$$

Since $\left[\mathbf{N}, \mathbf{T}^{\sharp} \mathbf{T}\right]=0,\left[\mathbf{T}^{\sharp} \mathbf{T}, \mathbf{R}\right]=0$ and $\left[\left(\mathbf{T}^{\sharp} \mathbf{T}\right)^{-1}, \mathbf{R}\right]=0$ where

$$
\mathbf{R}=\left(\mathbf{T}^{\sharp} \mathbf{T}\right)\left(\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m}\right)
$$

Moreover $\left(\mathbf{T}^{\sharp} \mathbf{T}\right),\left(\mathbf{T}^{\sharp} \mathbf{T}\right)^{-1}$ and \mathbf{R} are \mathbf{I}-positive we deduce that

$$
\left(\mathbf{T}^{\sharp} \mathbf{T}\right)^{-1} \mathbf{R} \geq_{\mathbf{I}} 0 .
$$

This yields that

$$
\left(\mathbf{N}^{\sharp}\right)^{m}\left(\mathbf{N}^{\sharp n+1} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{I}\right) \mathbf{N}^{m} \geq_{\mathbf{I}} 0 .
$$

This does means \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{I}}[n]$.

3. TEnsor product of m-Quasi- $(n, A \otimes \mathbf{B})$-Paranormal operators

In this section, we prove under suitable conditions that the tensor product of an m -quasi- (n, \mathbf{A})-paranormal and an A-isometry is an m-quasi- $(n, \mathbf{A} \otimes \mathbf{A})$-paranormal operator (Proposition 3.2). However, the tensor product of an m-quasi- (n, \mathbf{A}) paranormal and an m-quasi- (n, \mathbf{B})-paranormal is an m-quasi $(n, \mathbf{A} \otimes \mathbf{B}$-paranormal (Theorem 3.4).

Let $\mathcal{Z} \bar{\otimes} \mathcal{Z}$ denote the completion, endowed with a reasonable uniform cross norm, of the algebraic tensor product of \mathcal{Z} with itself. An inner product on $\mathcal{Z} \overline{\mathcal{Z}}$ is defines as

$$
\left\langle\varphi_{1} \otimes \varphi_{2} \mid \psi_{1} \otimes \psi_{2}\right\rangle:=\left\langle\varphi_{1} \mid \psi_{1}\right\rangle\left\langle\varphi_{2} \mid \psi_{2}\right\rangle \text { where } \varphi_{k}, \psi_{k} \in \mathcal{Z}, \text { for } k=1,2
$$

Let $\mathbf{A}, \mathbf{B} \in \mathcal{B}[\mathcal{Z}]$ are positive operators. The operator $\mathbf{A} \otimes \mathbf{B} \in \mathcal{B}[\mathcal{Z} \bar{\otimes} \mathcal{Z}]$ is positive and defines a positive semi-definite sesquilinear form

$$
\langle. \mid .\rangle_{\mathbf{A} \otimes \mathbf{B}}: \mathcal{Z} \otimes \mathcal{Z} \times \mathcal{Z} \otimes \mathcal{Z} \longrightarrow \mathbb{C}
$$

given by

$$
\left\langle\varphi_{1} \otimes \varphi_{2} \mid \psi_{1} \otimes \psi_{2}\right\rangle_{\mathbf{A} \otimes \mathbf{B}}=\left\langle\mathbf{A} \varphi_{1} \mid \psi_{1}\right\rangle\left\langle\mathbf{B} \varphi_{2} \mid \psi_{2}\right\rangle
$$

This semi-inner product induces a semi-norm $\|\cdot\|_{\mathbf{A} \otimes \mathbf{B}}$ defined by

$$
\begin{aligned}
\|\varphi \otimes \psi\|_{\mathbf{A} \otimes \mathbf{B}}^{2} & =\langle\varphi \otimes \psi \mid \varphi \otimes \psi\rangle_{\mathbf{A} \otimes \mathbf{B}} \\
& =\langle\mathbf{A} \varphi \mid \varphi\rangle\langle\mathbf{B} \psi \mid \psi\rangle \\
& =\|\varphi\|_{\mathbf{A}}^{2}\|\psi\|_{\mathbf{B}}^{2}
\end{aligned}
$$

It should be noted that $\|\varphi \otimes \psi\|_{\mathbf{A} \otimes \mathbf{B}}=0$ if and only if $\varphi \in \operatorname{Null}(\mathbf{A})$ or $\psi \in$ $\mathbf{N u l l}(\mathbf{B})$. For $\mathbf{N} \in \mathcal{B}[\mathcal{Z}]$ and $\mathbf{T} \in \mathcal{B}[\mathcal{Z}], \mathbf{N} \otimes \mathbf{T} \in \mathcal{B}[\mathcal{Z} \otimes Z]$ denotes the tensor product of \mathbf{N} and \mathbf{T} given by $(\mathbf{N} \otimes \mathbf{T})(\varphi \otimes \psi)=\mathbf{N} \varphi \otimes \mathbf{T} \psi$ for $\varphi, \psi \in \mathcal{Z}$.

We begin this section by the following lemma.
Lemma 3.1. Let $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ be in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$, then $\mathbf{N} \otimes \mathbf{I}$ and $\mathbf{I} \otimes \mathbf{N}$ are in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{A}}[n]$.

Proof. For all $\beta>0$, we have

$$
\begin{array}{rl}
& (\mathbf{N} \otimes \mathbf{I})^{\sharp m}\left((\mathbf{N} \otimes \mathbf{I})^{\sharp(n+1)}(\mathbb{N} \otimes \mathbf{I})^{n+1}-(n+1) \beta^{n}(\mathbf{N} \otimes \mathbf{I})^{\sharp}(\mathbf{N} \otimes \mathbf{I})+n \beta^{n+1} \mathbf{P}\right)(\mathbf{N} \otimes \mathbf{I})^{m} \\
= & \mathbf{N}^{\sharp m}\left(\mathbf{N}^{\sharp(n+1)} \mathbf{N}^{n+1}-(n+1) \beta^{n} \mathbf{N}^{\sharp} \mathbf{N}+n \beta^{n+1} \mathbf{P}\right) \mathbf{N}^{m} \otimes \mathbf{P} \\
\geq \mathbf{A} \otimes \mathbf{A} & 0 .
\end{array}
$$

Proposition 3.2. Let $\mathbf{N}, \mathbf{T} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ such that $\operatorname{null}(\mathbf{A})^{\perp}$ is invariant for both \mathbf{N} and \mathbf{T}. If \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and \mathbf{T} is an \mathbf{A}-isometry, then $\mathbf{N} \otimes \mathbf{T} \in$ $\mathcal{B}_{\mathbf{A} \otimes \mathbf{A}}(\mathcal{Z} \bar{\otimes} \mathcal{Z})$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{A}}[n]$.

Proof. We like to notice that $\mathbf{N} \otimes \mathbf{T}=(\mathbf{N} \otimes \mathbf{I})(\mathbf{I} \otimes \mathbf{T})=(\mathbf{I} \otimes \mathbf{T})(\mathbf{N} \otimes \mathbf{I})$. On the other hand we have $\operatorname{Null}(\mathbf{A})^{\perp}$ is invariant for \mathbf{N}, we obtain $\mathbf{N P}=\mathbf{P N}$ and hence

$$
(\mathbf{N} \otimes \mathbf{I})(\mathbf{I} \otimes \mathbf{T})^{\#}=(\mathbf{I} \otimes \mathbf{T})^{\#}(\mathbf{N} \otimes \mathbf{I})
$$

Since \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and \mathbf{T} is an A-isometry, it follows that $\mathbf{N} \otimes \mathbf{I} \in$ $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{A}}[n]$. Moreover

$$
(\mathbf{N} \otimes \mathbf{I})\left(\mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})^{\perp}\right) \subset \mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})^{\perp}
$$

In fact, let $\varphi_{1} \otimes \varphi_{2} \in \mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})^{\perp}$ and $\psi_{1} \otimes \psi_{2} \in \mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})$, we have

$$
\begin{aligned}
\left\langle(\mathbf{N} \otimes \mathbf{I})\left(\varphi_{1} \otimes \varphi_{2}\right), \psi_{1} \otimes \psi_{2}\right\rangle & =\left\langle\mathbf{N} \varphi_{1} \otimes \varphi_{2} \mid\left(\psi_{1} \otimes \psi_{2}\right)\right\rangle \\
& =\left\langle\mathbf{N} \varphi_{1} \mid \psi_{1}\right\rangle\left\langle\varphi_{2} \mid \psi_{2}\right\rangle \\
& =\left\langle\varphi_{1} \mid \mathbf{N}^{*} \psi_{1}\right\rangle\left\langle\varphi_{2} \mid \psi_{2}\right\rangle \\
& =\left\langle\varphi_{1} \otimes \varphi_{2} \mid \mathbf{N}^{*} \psi_{1} \otimes \psi_{2}\right\rangle .
\end{aligned}
$$

According to the fact that $\psi_{1} \otimes \psi_{2} \in \operatorname{Null}(\mathbf{A} \otimes \mathbf{A})$ we get $\psi_{1} \in \operatorname{Null}(\mathbf{A})$ or $\psi_{2} \in \operatorname{Null}(\mathbf{A})$. This above consideration shows that

$$
\mathbf{N}^{*} \psi_{1} \in \mathbf{N u l l}(\mathbf{A}) \text { or } \psi_{2} \in \mathbf{N u l l}(\mathbf{A})(\text { because } \mathbf{N u l l}(\mathbf{A}) \text { reduces } \mathbf{N})
$$

which implies that

$$
\left\langle(\mathbf{N} \otimes \mathbf{I})\left(\varphi_{1} \otimes \varphi_{2}\right) \mid \psi_{1} \otimes \psi_{2}\right\rangle=0
$$

Repeating this argument, we show that

$$
(\mathbf{I} \otimes \mathbf{T})\left(\mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})^{\perp}\right) \subset \mathbf{N u l l}(\mathbf{A} \otimes \mathbf{A})^{\perp}
$$

By applying Theorem 2.8 to $\mathbf{N} \otimes \mathbf{I}$ and $\mathbf{I} \otimes \mathbf{T}$ we can assert that $\mathbf{N} \otimes \mathbf{T} \in \mathcal{Q}[m] \cap$ $\mathcal{P}_{\mathbf{A} \otimes \mathbf{A}}[n]$. The proposition is proved.

Corollary 3.3. Let $\mathbf{N}, \mathbf{T} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ such that $\mathbf{N u l l}(\mathbf{A})^{\perp}$ is invariant for both \mathbf{N} and \mathbf{T}. If \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and \mathbf{T} is an \mathbf{A}-isometry, then $\mathbf{N} \otimes \mathbf{T}^{q} \in \mathcal{Q}[n] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{A}}[n]$ for all positive integer q.
Proof. Since \mathbf{T} is an \mathbf{A}-isometry and $\mathbf{T}\left(\mathbf{N u l l}(\mathbf{A})^{\perp}\right) \subset \operatorname{Null}(\mathbf{A})^{\perp}$ it follows that \mathbf{T}^{q} is an \mathbf{A}-isometry for all positive q. The desired result follows using Proposition 3.2 .

Theorem 3.4. Let $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}[\mathcal{Z}]$ and $\mathbf{T} \in \mathcal{B}_{\mathbf{B}}[\mathcal{Z}]$. If \mathbf{N} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A}}[n]$ and \mathbf{T} is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{B}}[n]$, then $\mathbf{N} \otimes \mathbf{T}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{B}}[n]$.
Proof. From assumptions $\mathbf{N} \in \mathcal{B}_{\mathbf{A}}(\mathcal{Z})$ and $\mathbf{T} \in \mathcal{B}_{\mathbf{B}^{\frac{1}{2}}}(\mathcal{Z})$ we obtain

$$
\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{m+1} \leq\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}^{2}\left\|\mathbf{N}^{m} \varphi\right\|_{\varphi}^{n}, \quad \forall \varphi \in \mathcal{Z}
$$

and

$$
\left\|\mathbf{T}^{m+1} \psi\right\|_{\mathbf{B}}^{n+1} \leq\left\|\mathbf{T}^{m+n+1} \psi\right\|_{\mathbf{B}}\left\|\mathbf{T}^{m} \psi\right\|_{\mathbf{B}}^{n}, \quad \forall \psi \in \mathcal{Z} .
$$

So we have that

$$
\left\|\mathbf{N}^{m+1} \varphi\right\|_{\mathbf{A}}^{n+1}\left\|\mathbf{T}^{m+1} \psi\right\|_{\mathbf{B}}^{n+1} \leq\left\|\mathbf{N}^{m+n+1} \varphi\right\|_{\mathbf{A}}\left\|\mathbf{T}^{m+n+1} \psi\right\|_{\mathbf{B}}\left\|\mathbf{N}^{m} \varphi\right\|_{\mathbf{A}}^{n}\left\|\mathbf{T}^{m} \psi\right\|_{\mathbf{B}}^{n}
$$

$\forall \varphi, \psi \in \mathcal{Z}$. This shows that

$$
\left\|\mathbf{N}^{m+1} \otimes \mathbf{T}^{m+1}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}^{n+1} \leq\left\|\mathbf{N}^{m+n+1} \otimes \mathbf{T}^{m+n+1}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}\left\|\mathbf{N}^{m} \otimes \mathbf{T}^{m}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}^{n}
$$

$\forall \varphi, \psi \in \mathcal{Z}$ or equivalently,
$\left\|(\mathbf{N} \otimes \mathbf{T})^{m+1}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}^{n+1} \leq\left\|(\mathbf{N} \otimes \mathbf{T})^{m+n+1}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}\left\|(\mathbf{N} \otimes \mathbf{T})^{m}(\varphi \otimes \psi)\right\|_{\mathbf{A} \otimes \mathbf{B}}^{n}$, $\forall \varphi, \psi \in \mathcal{Z}$. Therefore we have $\mathbf{N} \otimes \mathbf{T}$ is in $\mathcal{Q}[m] \cap \mathcal{P}_{\mathbf{A} \otimes \mathbf{B}}[n]$.

Acknowledgments. This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-0337).

The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] M.L. Arias, G. Corach, M.C. Gonzalez, Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428, 1460-1475 (2008).
[2] M.L. Arias, G. Corach, M. C. Gonzalez, Metric properties of projections in semi-Hilbertian spaces, Integral Equ. Oper. Thoery 62, 11-28 (2008).
[3] M.L. Arias, G. Corach, M. C. Gonzalez, Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75, 635-653 (2009).
[4] H. Baklouti, K. Feki, O. A. M. Sid Ahmed, Joint numerical ranges of operators in semiHilbertian spaces, Linear Algebra Appl. 555, 266-284 (2018).
[5] P. Bhunia, K. Feki and K. Paul, A-Numerical Radius Orthogonality and Parallelism of Semi-Hilbertian Space Operators and Their Applications, Bull. Iranian Math. Soc., 47(2021), no.2,pp. 435-457..
[6] S.L. Campell, B. C. Gupta, On k-quasihyponormal operators, Math. Jpn. 23, 185-189 (1978).
[7] M. Chō and S. Ôta, On n-Paranormal Operators,Journal of Mathematics Research;Vol. 5, No. 2; 2013.
[8] R. G. Douglas, On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Am. Soc. 17, 413-416 (1966).
[9] K. Feki, Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal., 11 (2020), no.4, pp. 929-946.
[10] T. Furuta, invitation to Linear operators, taylor and francis, London, new York 2002.
[11] T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), no. 7, 594598.
[12] T. Furuta, On the class of paranormal operators, Proc. Jpn. Acad. 43, 594-598 (1967).
[13] F. Gao and X. Li, On k-Quasi-paranormal operators, Journal of Mathematical Inequalities,.Volume 8, Number 1 (2014), 113-122.
[14] M. Guesba and O. A. Mahmoud Sid Ahmed, k-Quasi-A-Paranormal Operators in SemiHilbertian Spaces, Operators and Matrices. Volume 16, Number 3 (2022), 623-643.
[15] M. Guesba and O. A. Mahmoud Sid Ahmed, Paranormal operators in semi-Hilbertian spaces, Afrika Matematika, volume 31, 1409-1428(2020).
[16] F. Kittaneh and A. Zamani, A refinement of A-Buzano inequality and applications to A-numerical radius inequalities, Linear Algebra Appl. (2023), doi: https:doi.org 10.1016j.laa.2023.02.020
[17] H. Qiao, G. Hai and E. Bai, A-numerical radius and A-norm inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra doi: 10.1080/03081087.2021.1971599.
[18] W. Majdak, N. A. Secelean and L. Suciu, Ergodic properties of operators in some semiHilbertian spaces, Linear Multilinear Algebra 61(2) (2013), 139-159.
[19] S. Mecheri, S. M. Patel, Spectral properties of k-quasi-paranormal operators, Math. Reports 16 (66), 4 (2014), 465-476.
[20] M. S. Moslehian, Q. Xu and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591 (2020), 299-321.
[21] N. C. Rout, S. Sahoo and D. Mishra, Some A-numerical radius inequalities for semi- Hilbertian space operators, Linear Multilinear Algebra 69, no. 5 (2021), 980-996.
[22] M. A. Rwabi and O. A. M. Sid Ahmed, ($n, A)$-Paranormal Operators in Semi-Hilbertian Spaces (to appear).
[23] A. Saddi, A-normal operators in semi-Hilbertian spaces, Aust.J. Math.Anal. Appl.,9 (2012) pp. 1-12.
[24] O. A. M. Sid Ahmed and A. Benali, Hyponormal and k-quasi-hyponormal operators on semiHilbertian spaces, Aust.J. Math.Anal. Appl., 13(1), 1-22 (2016).
[25] J. Sen and K. Paul, ($\epsilon, \mathbf{A})$-approximate numerical radius orthogonality and numerical radius derivative, Mathematica Slovaca, 10.1515/ms-2023-0014.
[26] D. Senthilkumar and P. T. Selvi, Weighted Composition of m-Quasi k-Paranormal Operators, Int. J. Math. And Appl., 7(1)(2019), 1-8.

Sid Ahmed Ould Ahmed Mahmoud
Mathematics Department, College of Science, Jouf University, Sakaka P.O.Box 2014. Saudi Arabia
E-mail address: sidahmed@ju.edu.sa
Rwabi Mobarak Alsharar
Mathematics Department, College of Science, Jouf University,
Sakaka P.O.Box 2014. Saudi Arabia
E-mail address: 431204004@ju.edu.sa
Aydah Mohammed Ayed Al-Ahmadi
Mathematics Department, College of Science, Jouf University, Sakaka P.O.Box 2014. Saudi Arabia
E-mail address: amahmadi@ju.edu.sa, aydahahmadi2011@gmail.com

[^0]: 2000 Mathematics Subject Classification. 47A65.
 Key words and phrases. A-adjoint, Semi-Hilbertian spaces, A-positive operators, Paranormal operators, Quasi-paranormal operators.
 (c) 2023 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted August 18, 2023. Published September 29, 2023.
 Communicated by S. Mecheri.
 This work was funded by the Deanship of Scientific Research at Jouf University under grant No (DSR-2021-03-0337).

