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ORTHOGONAL STABILITY OF GENERALIZED CUBE ROOT

FUNCTIONAL INEQUALITY IN THREE VARIABLES: A FIXED

POINT APPROACH

EENA GUPTA, RENU CHUGH

Abstract. This paper underlined the aspects of stability of orthogonal gen-

eralized cube root functional (GCRF) inequality∣∣∣∣∣
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for all l, m, n ∈ S with l ⊥ m, m ⊥ n and n ⊥ l using fixed point approach

where C : S −→ Z is a mapping from an orthogonal space (S, ⊥) into a

real Banach space, ⊥ represents the orthogonality relation and a, b, c are real
numbers with a 6= 0, b 6= 0, c 6= 0. Using these results, we present the stability

of GCRF inequality in two variables also.

1. Introduction

The crucial point from where the concept of investigating Hyers-Ulam Stability
results of functional equations, differential equations, difference equations is the
problem of Ulam [30]. Hyers [9] presented a partial solution to the problem of
Ulam. Later, Hyers’ theorem was extended and generalized in various forms by
many mathematicians Aoki [28], T. Rassias [29], J. Rassias [16] and Gavruta [23].
These results instigated many mathematicians to investigate stability of various
types of functional equations in different types of spaces. For detailed review of
literature on this field, one can refer ([6], [22], [21], [15], [12], [3], [24], [25], [27],
[8]).

The various fundamental stabilities associated with stability of reciprocal adjoint
and difference functional equations were demonstrated in ([18], [19]). In recent
times, there are many papers published on the stabilities and applications of some
multiplicative inverse functional equations, one can refer ([1], [7], [11]).
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We make use the concept of orthogonality space in the sense of Ratz [14].

Definition 1.1. Let S be a real linear space with dimS ≥ 2 and ⊥ is a binary
relation on S with following properties:
(1) l ⊥ 0, 0 ⊥ l, ∀ l ∈ S; (totality of ⊥ for zero)
(2) For non-zero l, m ∈ S, l ⊥ m, then l, m are linearly independent; (inde-
pendence)
(3) For l, m ∈ S, l ⊥ m, then al ⊥ bm ∀ a, b ∈ R; (homogenity)
(4) If T is a 2-dimensional subspace of S, l ∈ T and τ ∈ R+, where R+, is the
set of non-negative real numbers, then there exists m ∈ T such that l ⊥ m and
l +m ⊥ τ l −m. (Thalesian property)
Then the pair (S, ⊥) is called an orthogonality space and if orthogonality space
associated with a normed structure then it is renamed as “orthogonality normed
space”.

We can put forward some interesting and relevant examples here.
(i) The “Birkhoff-James orthogonality” on a normed space (S, ‖.‖) defined by l ⊥ m
if and only if ‖l + τm‖ ≥ ‖l‖ for all τ ∈ R, l, m ∈ S.
(ii) The “James orthogonality” on a normed space (S, ‖.‖) defined by l ⊥ m if and
only if ‖l +m‖ = ‖l −m‖ for all l, m ∈ S.

The authors in [20] give the orthogonal stability of a mixed type additive and
quadratic functional equation.

In 2021, S. Farhadabadi et al. [31] proved the Hyers-Ulam-Aoki-Rassias stability
of the orthogonal quadratic functional inequality∣∣∣∣∣∣Q(
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using fixed point alternatives. The generealized cube root functional equation for
three variables is defined as
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where, C : S −→ Z is a mapping from normed linear space into real Banach space
having solution is C(l) = l

1
3 .

Fixed point theory has abundant applications in various branch of mathematics
especially in stability problems. In 1996, Isac and Rassias [13] were the first to
provide applications of stability theory (functional equations) as the proof of a new
fixed point theorems with applications. The term “generalized metric space” was
coined by Luxemburg [32].

Theorem 1.2. [17] Let (ψ, d) be a “complete generalized metric space” and T :
ψ −→ Y be a strict contraction with the “Lipschitz constant” k such that

d(l0, A(l0)) < +∞ for some l0 ∈ X.
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Then T has a unique fixed point in the set Y := {m ∈ ψ, d(l0,m) < ∞} and the
sequence {Tn(l)} converges to the fixed point l∗ for every l ∈ Y . Also,

d(l0, T (l0)) ≤ ω gives d(l∗, l0) ≤ ω

1− k
.

In this article, we investigate the stability of orthogonal generalized cube root
functional (GCRF) inequality∣∣∣∣∣
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for all l, m, n ∈ S with l ⊥ m, m ⊥ n and n ⊥ l. and using similar arguments,
we investigate the stability of orthogonal generalized cube root functional (GCRF)
inequality∣∣∣∣∣∣C(al + bm+ 3(al)
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for all l, m ∈ S with l ⊥ m in two variables.

2. Solution and Hyers Ulam stability of the GCRF inequality

Under this section, we can assume that (S,⊥) is an orthogonality space and
(Z, ‖.‖) is a real Banach space. Firstly, we go for the solution of the orthogonally
GCRF inequality (1.1) by proving an orthogonal superstability proposition, and
hence forth we prove its Hyers-Ulam stability in orthogonality spaces.

Definition 2.1. A mapping C : S −→ Z is called an (exact) orthogonally GCR
mapping if
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for all l, m ∈ S with l ⊥ m. And it is called an approximate orthogonally GCR
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for all l, m, n ∈ S with l ⊥ m, m ⊥ n and n ⊥ l.

Proposition 2.2. Each approximate orthogonally GCR mapping in the form (2.2)

is also an (exact) orthogonally GCR mapping satisfying (2.1), where a
1
3 +b

1
3 +c

1
3 6=

1.
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Proof. Assume that C : S −→ Z is an approximate orthogonally GCR mapping
satisfying (2.2). Since 0 ⊥ 0, taking l = m = n = 0 in (2.2), we have
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for all l, m ∈ S where l ⊥ m, which is the equation (2.1). Hence C : S −→ Z is an
(exact) orthogonally GCR mapping. �

For the sake of proving our main results in a concise manner, let DCr
: S −→

Z be difference operators defined as follows

DCr (l, m, n) = C
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for all l, m, n ∈ S.

Theorem 2.3. Assume Ω : S3 −→ [0,∞) is a function such that Ω(0, 0, 0) = 0 and

there exists an α such that a
−1
3 < α < 1, a > 0 with condition a

1
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for all l, m, n ∈ S with l ⊥ m, m ⊥ n, n ⊥ l. Let C : S −→ Z be a mapping
satisfying ∣∣∣∣∣∣DCr
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for all l, m, n ∈ S, with l ⊥ m, m ⊥ n and n ⊥ l. Then there exists a unique
orthogonally GCR mapping Cr : S −→ Z such that∣∣∣∣∣∣Cr(l)− C(l)

∣∣∣∣∣∣ ≤ α

1− α
Ω(l, 0, 0) ∀ l ∈ S. (2.5)

Proof. Consider the set H := {u : S −→ Z} and introduce the generalized metric
on H:

d(u, v) = inf{τ ∈ R+ : ‖u(l)− v(l)‖ ≤ τΩ(l, 0, 0), ∀ l ∈ S}.
It is easy to show that (H, d) is complete ([10], lemma 2.1).
Now, we consider the linear mapping K : H −→ H such that

K(u(l)) :=
1

a
1
3

u(al)

∀ u ∈ H and all l ∈ S. Since 0 ⊥ 0, letting l = m = n = 0 in (2.4), we have

‖(1− a 1
3 − b 1

3 )C(0)‖ ≤ ‖c 1
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Hence C(0) = 0.
Since l ⊥ 0 for all l ∈ S, letting m = n = 0 in (2.4), we get

‖C(al)− a 1
3C(l)‖ ≤ Ω(l, 0, 0) for all l ∈ S.
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Let u, v ∈ H be given such that d(u, v) = ω, then ‖u(l) − v(l)‖ ≤ ωΩ(l, 0, 0) for
all l ∈ S. Hence the definition of Ku and (2.3), yields that

‖Ku(l)−Kv(l)‖ = ‖ 1

a
1
3

u(al)− 1

a
1
3

v(al)‖

≤ 1

a
1
3

τ Ω(al, 0, 0)

≤ ατ Ω(l, 0, 0) for all l ∈ S.

Therefore,

d(Ku,Kv) ≤ αω = αd(u, v) for all u, v ∈ H.

Thus K is a strictly contractive mapping with Lipschitz constant α < 1. According
to Theorem 1.2, there exists a mapping Cr : S −→ Z satisfying the following:
(1) Cr is a fixed point of K, therefore, KCr = Cr, and so

1

a
1
3

Cr(al) = Cr(l) ∀ l ∈ S. (2.7)

The mapping Cr is only one fixed point of K in the set {u ∈ H : d(u, v) <∞}. This
signifying (2.7) such that there exists a non zero positive real number τ satisfying

‖C(l)− Cr(l)‖ ≤ τΩ(l, 0, 0) ∀ l ∈ S;

(2) d(KtC, Cr) =⇒ 0 as t −→∞. So, we obtain
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t→∞
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(3) d(C, Cr) ≤ 1
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α
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.

Hence inequality (2.5) holds.
Now, we prove that Cr is an orthogonally GCR mapping.
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Where,
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And, now applying proposition 2.2, we get Cr is an orthogonally GCR mapping.
This proves the result. �

Theorem 2.4. Assume Ω : S3 −→ [0,∞) is a function such that Ω(0, 0, 0) = 0 and
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Proof. Let (H, d) be “generalized metric space” as defined in the proof of previous
Theorem 2.3. Now, we consider the linear mapping K : H −→ H such that

K(u(l)) := a
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for all u ∈ H and all l ∈ S.

Similar to the proof of Theorem 2.3, using condition α < a
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Hence, we obtain
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We can also show that K is a strictly contractive mapping with Lipschitz constant
α < 1. According to Theorem 1.2 again, there exists a mapping Cr : S −→ Z
satisfying

d(C, Cr) ≤
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using (2.12), inequality becomes
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1
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.
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Hence inequality (2.11) holds.
The remaining proof follows the same steps as in previous Theorem 2.3. �

Corollary 2.5. Let S be a normed orthogonally space. Let ω be a non-negative
real number and τ 6= 1
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Hence, we get the reuired result. �

Corollary 2.6. Assume S is a normed orthogonally space. Let ω be a non-negative
real number and τ = p+ q + r 6= 1
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for all l, m, n ∈ S, with l ⊥ m, m ⊥ n, n ⊥ l with condition a
1
3 + b
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3 6= 1,

where a > 0. Then there exists a unique orthogonally GCR mapping Cr : S −→ Z
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For 0 < τ < 1

3 , assume α = aτ−
1
3 and using same arguments as in the previous

corollary we get the required result.
For τ > 1

3 , assume α = a
1
3−τ we get the desired result. �

Orthogonal stability of GCRF inequality in two variables. Throughout
this subsection, let us assume that (S,⊥) is an orthogonality space and (Z, ‖.‖)
is a real Banach space. In the following theorems and corollaries, we present the
stability results of GCRF inequality (1.2)in two variables. The arguments of proving
stability results of inequality (1.2) are akin to the proofs of Section 2. For the sake
of completness, we furnish below the statement of theorems and corollaries only
pertinent to various fundamental stabilities.
For the convenience, let DC2 : S −→ Z be difference operators defined as follow
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there exists an α such that a
−1
3 < α < 1, a > 0 with condition a

1
3 + b

1
3 6= 1,

Ω(l, m) ≤ a 1
3α Ω

( l
a
,
m

a

)
for all l, m ∈ S with l ⊥ m. Let C : S −→ Z ba a mapping satisfying∣∣∣∣∣∣DC2

(l, m)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣b 1

3C(m)
∣∣∣∣∣∣+ Ω(l, m)

for all l, m ∈ S, with l ⊥ m. Then there exists a unique orthogonally GCR mapping
C2 : S −→ Z such that∣∣∣∣∣∣C2(l)− C(l)

∣∣∣∣∣∣ ≤ α

1− α
Ω(l, 0) for all l ∈ S.

Theorem 2.8. Assume Ω : S2 −→ [0,∞) is a function such that Ω(0, 0) = 0 and

there exists an α such that α < a
1
3 < 1, a > 0 with condition a

1
3 + b

1
3 6= 1,

Ω(l, m) ≤ 1

a
1
3

α Ω
(
al, am

)
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for all l, m ∈ S with l ⊥ m. Let C : S −→ Z ba a mapping satisfying∣∣∣∣∣∣DC2
(l, m)

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣b 1
3C(m)

∣∣∣∣∣∣+ Ω(l, m)

for all l, m ∈ S, with l ⊥ m. Then there exists a unique orthogonally GCR mapping
C2 : S −→ Z such that∣∣∣∣∣∣C2(l)− C(l)

∣∣∣∣∣∣ ≤ 1

1− α
Ω(l, 0) for all l ∈ S.

Corollary 2.9. Assume S is a normed orthogonally space. Let ω be a non-negative
real number and τ 6= 1

3 be a positive real number. Let C : S −→ Z be a mapping
satisfying ∣∣∣∣∣∣DC2

(l, m)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣b 1

3C(m)
∣∣∣∣∣∣+ ω

(
‖l‖τ + ‖m‖τ

)
for all l, m ∈ S, with condition l ⊥ m and a

1
3 + b

1
3 6= 1, where a > 0. Then there

exists a unique orthogonally GCR mapping C2 : S −→ Z such that

for 0 < τ < 1
3 with condition a

−1
3 < α < 1, we obtain∣∣∣∣∣∣C2(l)− C(l)

∣∣∣∣∣∣ ≤ aτ

a
1
3 − aτ

ω‖l‖τ

and for τ > 1
3 with condition α < a

1
3 < 1, we obtain∣∣∣∣∣∣C2(l)− C(l)
∣∣∣∣∣∣ ≤ aτ

aτ − a 1
3

ω‖l‖τ

for all l ∈ S.

Corollary 2.10. Assume S is a normed orthogonally space. Let ω be a non-negative
real number and τ = p + q 6= 1

3 be a positive real number. Let C : S −→ Z be a
mapping satisfying∣∣∣∣∣∣DC2

(l, m)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣b 1

3C(m)
∣∣∣∣∣∣+ ω

(
‖l‖p‖m‖q + ‖l‖p+q + ‖m‖p+q

)
for all l, m ∈ S, with condition l ⊥ m and a

1
3 + b

1
3 6= 1, where a > 0. Then there

exists a unique orthogonally GCR mapping C2 : S −→ Z such that

for 0 < τ = p+ q < 1
3 with condition a

−1
3 < α < 1, we obtain∣∣∣∣∣∣C2(l)− C(l)
∣∣∣∣∣∣ ≤ aτ

a
1
3 − aτ

ω‖l‖τ

and for τ = p+ q > 1
3 with condition α < a

1
3 < 1, we obtain∣∣∣∣∣∣C2(l)− C(l)

∣∣∣∣∣∣ ≤ aτ

aτ − a 1
3

ω‖l‖τ

for all l ∈ S.

Conclusion. We wind up this paper with a conclusion that we have proved sta-
bility results of GCRF inequality associating a general control function, sum of
powers of norms and mixed product-sum of powers of norms appropriate to the
results established by Gavruta [23] and Rassias [16] in orthogonality space using
fixed point approach. After that we have given the stability results of orthogonal
GCRF inequality in two variables also which is obtained by following the similar
steps as described in section 2.



10 E. GUPTA, R. CHUGH

Acknowledgments. The authors would like to thank the anonymous referee for
his/her comments that helped us improve this article.

References

[1] A. Bodaghi and B. V. Senthil Kumar, Estimation of inexact reciprocal-quintic and reciprocal-

sextic functional equations, Mathematica, 59(82), No. 1-2, (2017), 3-14.

[2] A. Bodaghi and Y. Ebrahimdoost, On the stability of quadratic reciprocal functional equation
in non-Archimedean fields, Asian-European J. Math. 9(1) (2016), 1650002, 9 pages.

[3] A. Najati and C. Park, Cauchy-Jensen additive mappings in quasi-Banach algebras and its

applications, J. Nonlinear Anal. Appl. (2013), 1-16.
[4] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsvier, North Holand (1983).

[5] A. Serstnev, On the notion of random normed space, Dokl Akad Nauk SSSR 149 (1963),

280283.
[6] B. Bouikhalene and E. Elquorachi, Ulam-Gavruta-Rassias stability of the Pexider functional

equation, Int. J. Appl. Math. Stat. 7 (2007), 7-39.
[7] B. V. Senthil Kumar and H. Dutta, Non-Archimedean stability of a generalized reciprocal-

quadratic functional equation in several variables by direct and fixed point methods, Filomat,

32(9) (2018), 3199-3209.
[8] C. I. Kim and G. Han, Quadratic functional inequality in modular spaces and its stability,

Journal of Computational Analysis and Applications 29(1) (2021), 34-41.

[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Academy of
Sciences of the USA , 27 (1941), 222-224.

[10] D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random

normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.
[11] E. Gupta, R. Chugh and B. V. Senthil Kumar, Non-Archimedean Approximation of MIQD

and MIQA Functional Equations, International Journal of Applied Engineering Research (14)

6 (2019), 1313 - 1318.
[12] E. Movahednia, Fixed point and generaized Hyers-Ulam-Rassias stability of a quadratic func-

tional equation, J. Math. Comp. Sci. 6 (2013), 72-78.
[13] G. Isac. and T. M. Rassias, Stability of ψ- additive mappings: Applications to nonlinear

analysis,, Internat. J. Math. and Math. Sci. 19 (1996), 219-228.

[14] J. Ratz, On orthogonally additive mappings, Aequationes Math. 28 (1985),35-49.
[15] J. R. Lee, D. Y. Shin and C. Park, Hyers-Ulam stability of functional equations in matrix

normed spaces, J. Inequ. Appl. 2013, (2013): 22.

[16] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J.
Funct. Anal. 46 (1982), 126-130.

[17] J. M. Rassias, R. Saadati, G. Sadeghi and J. Vahidi , On nonlinear stability in various

random normed spaces, J. Inequ. Appl. 2011, (2011):62, 1-17.
[18] K. Ravi, J. M. Rassias and B. V. Senthil Kumar, A fixed point approach to the generalized

Hyers-Ulam stability of reciprocal difference and adjoint functional equations, Thai J. Math.

8(3) (2010), 469-481.
[19] K. Ravi, J. M. Rassias, B. V. Senthil Kumar and A. Bodaghi, Intuitionistic fuzzy stability of

a reciprocal-quadratic functional equation, Int. J. Appl. Sci. Math. 1(1) (2014), 9-14.
[20] K. Ravi, J. M. Rassias and R. Murali, Orthogonal stability of a mixed type additive and

quadratic functional equation, Mathematica Aerterna 1(3) (2011), 185-199.

[21] M. E. Gordji, S. Zolfaghari, J. M. Rassias and M. B. Savadkouhi, Solution and stability of
a mixed type cubic and quartic functional equation in quasi-β-Banach spaces, Abst. Appl.

Anal. 2009, Article ID 417473 (2009), 1-14.
[22] N. Ghobadipour and C. Park, Cubic-quartic functional equations in fuzzy normed spaces,

Int. J. Nonlinear Anal. Appl. 1 (2010), 12-21.
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