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A NONLINEAR HENSTOCK-TYPE INTEGRAL FOR RIESZ

SPACE-VALUED FUNCTIONS

MUHAMMAD FATKHURROHMAN, MADE TANTRAWAN

Abstract. In this paper, we introduce a nonlinear extension of the Hen-

stock integral for functions taking values in a Riesz space. By combining the
conditions provided in Lee (1989) for the real case with Fremlins (D)-double

sequence technique, we establish several fundamental properties of the inte-
gral, including a Cauchy-type criterion and the integrability of step functions

and (D)-continuous functions. Furthermore, we demonstrate that the Saks-

Henstock lemma holds for this integral and prove the absolute (D)-continuity
of its primitive.

1. Introduction

The concept of integration is central to mathematical analysis, serving as a pow-
erful tool for accumulation and measurement. Integrals can be defined through
various frameworks, including descriptive, constructive, and measure-theoretic ap-
proaches. In the constructive framework, integration is defined using Riemann-like
sums and tagged partitions, leading to classical integrals such as the Riemann,
McShane, and Henstock integrals, along with their respective Stieltjes extensions
[2, 8, 10]. These integrals are typically formulated over intervals and form the
foundation of both real analysis and its broader extensions.

One such extension occurs in the study of the space of all Henstock-integrable
functions over a given interval, where a Riesz representation theorem holds for
every continuous linear functional. To incorporate nonlinear functionals within
this framework, the Henstock integral was slightly modified to define a nonlinear
Henstock-type integral [6, 9]. This modification not only generalizes the Henstock
and Henstock-Stieltjes integrals but also preserves key properties that ensure the
robustness and applicability of the integration theory. These developments natu-
rally lead to the question of how such nonlinear integrals might behave when defined
over more abstract algebraic structures such as Riesz spaces.

To address this, we turn our attention to integration in the context of Riesz
spaces. A key difficulty in extending integration to Riesz spaces lies in the inappli-
cability of the classical ε-technique, which is crucial in real analysis. For instance,
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the property in R that t = inf A implies the existence of an element a ∈ A such that
t + ε > a (for any ε > 0) does not hold in general Riesz spaces. To overcome this,
Fremlin introduced the double sequence technique, where he defined the so called
(D)-sequence [7]. A bounded double sequence (aij) in a Riesz space X is called a
(D)-sequence if for each i ∈ N, the sequence (aij)j is decreasing and converges to
0. These (D)-sequences serve as substitutes for ε in real-valued analysis. Building
on this, several authors such as Boccuto et al. [3, 4, 5, 12, 13], developed integral
theories in Riesz and ordered spacesthough only for the linear case. In contrast,
this paper aims to develop a nonlinear Henstock-type integral with values in Riesz
spaces, utilizing the double sequence technique as a foundation.

2. Results

We refer to [1, 11, 14] for standard definitions and terminology in Riesz spaces.
Throughout this paper, we always assume that the Riesz space X is Dedekind
complete, meaning that every subset of X with an upper bound has a least upper
bound (supremum), and X is weakly σ-distributive, that is,∧

ϕ∈NN

( ∞∨
i=1

aiϕ(i)

)
= 0, for all (D)-sequence (aij) in X.

Let [a, b] be a closed and bounded interval on R and I[a, b] be the collection
of all intervals I ⊆ [a, b]. For any positive function δ : [a, b] → (0,∞) (known as
a gauge), we denote by Pδ[a, b] the collection of all δ-fine partitions on [a, b], i.e.,
all partitions P = {([ui, vi]; ξi) : i = 1, 2, . . . , n} on [a, b] such that ξi ∈ [ui, vi] ⊆
(ξi − δ(ξi), ξi + δ(ξi)).

Now, let φ : X × I[a, b]→ X. Throughout the rest of paper, we always assume
that φ(x, [u, v]) = φ(x, (u, v]) = φ(x, [u, v)) = φ(x, (u, v)). For a function f :
[a, b]→ X and a (partial) partition P = {([ui, vi]; ξi) : i = 1, 2, . . . , n} on [a, b], we
define

Sφ(P, f) =

n∑
i=1

φ(f(ξi), [ui, vi]).

Using similar double sequence technique idea as in [5], we define a nonlinear
Henstock-type integral with values in Riesz spaces as follows.

Definition 2.1. Let φ : X × I[a, b] → X. A function f : [a, b] → X is said to be
φ-integrable on [a, b] if there is A ∈ X and a (D)-sequence (aij) in X such that for
every ϕ ∈ NN, there is a gauge δ on [a, b] such that for every P ∈ Pδ[a, b], we have

|Sφ(P, f)−A| ≤
∞∨
i=1

aiϕ(i).

Furthermore, the φ-integral value A is denoted by (φ)

∫ b

a

f .

Note that if φ is of the form φ(x, [u, v]) = x(v − u), then the above definition is
the definition of the Henstock integral for Riesz-valued functions. Moreover, if φ
is of the form φ(x, [u, v]) = x(g(v) − g(u)) for some function g : [a, b] → R, then
the above definition becomes the definition of the Henstock-Stieltjes integral for
Riesz-valued functions.
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Lemma 2.2. Let φ : X×I[a, b]→ X. If the function f : [a, b]→ X is φ-integrable
on [a, b], then the element A in Definition 2.1 is unique.

Proof. Suppose that A and B are the φ-integral values of f on [a, b]. Further, let
(aij) be a (D)-sequence in X such that for any ϕ ∈ NN, there exists a gauge δ on
[a, b] such that for any P ∈ Pδ[a, b], we have

|Sφ(P, f)−A| ≤
∞∨
i=1

aiϕ(i) and |Sφ(P, f)−B| ≤
∞∨
i=1

aiϕ(i).

Hence,

|A−B| ≤
∞∨
i=1

2aiϕ(i).

As X is weakly σ-distributive, we obtain |A−B| ≤ 0. It follows A = B. �

In the real-valued case (see [9]), the function φ needs some conditions (N1−N5)
in order to obtain basic properties of the φ-integral. In this paper, we generalize
those conditions to the Riesz space setting as follows.

(N1) For every I ∈ I[a, b], φ(0, I) = 0.
(N2) For every I ∈ I[a, b] and z ∈ X+, there is a (D)-sequence (aij) in X such

that for every ϕ ∈ NN, s ∈ X with |s| ≤ z, and (D)-sequence (bij) in X,
there is ψ ∈ NN such that

|φ(s, I)− φ(t, I)| ≤
∞∨
i=1

aiϕ(i)

for every t ∈ X with |s− t| ≤
∨∞
i=1 biψ(i) and |t| ≤ z.

(N3) For every s ∈ X,

φ(s, I1 ∪ I2) = φ(s, I1) + φ(s, I2),

for every disjoint intervals I1, I2 ∈ I[a, b].
(N4) For every z ∈ X+, there is a (D)-sequence (aij) in X such that for every

ϕ ∈ NN and (D)-sequence (bij) in X, there is ψ ∈ NN such that∣∣∣∣∣
n∑
i=1

φ(si, Ii)−
n∑
i=1

φ(ti, Ii)

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i),

for every si, ti ∈ X with |si − ti| ≤
∨∞
i=1 biψ(i), |si| ≤ z, and |ti| ≤ z for

each i = 1, 2, . . . , n, and pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b].
(N5) For every z ∈ X+, there is a (D)-sequence (aij) in X such that for every

ϕ ∈ NN, there exists µ > 0 such that∣∣∣∣∣
n∑
i=1

φ(si, Ii)

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i),

for every si ∈ X with |si| ≤ z for each i = 1, 2, . . . , n, and pairwise disjoint
intervals I1, I2, . . . , In ∈ I[a, b] with a total length less than µ.
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In this paper, we will not use (N1) and (N2), as they are just consequences of
(N3) and (N4), respectively. Note also that if φ satisfies (N3) and f is a constant
function, then f is φ-integrable on [a, b] and

(φ)

∫ b

a

f = φ(f(a), [a, b]).

Now, we begin our results by examining the properties of the integral when a
function is integrable with respect to both φ and ψ.

Theorem 2.3. Let φ, ψ : X × I[a, b] → X. If f : [a, b] → X is both φ-integrable
and ψ-integrable on [a, b], then f is also (αφ+ψ)-integrable on [a, b] for each α ∈ R
and

(αφ+ ψ)

∫ b

a

f = α(φ)

∫ b

a

f + (ψ)

∫ b

a

f.

Proof. Suppose that A and B are the φ-integral value and ψ-integral value of f
on [a, b], respectively. Further, let (aij) be a (D)-sequence in X such that for any
ϕ ∈ NN, there exists a gauge δ on [a, b] such that for any P ∈ Pδ[a, b], we have

|Sφ(P, f)−A| ≤
∞∨
i=1

aiϕ(i) and |Sψ(P, f)−B| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN and let δ be a gauge on [a, b] satisfying the above condition. Note that
for any P ∈ Pδ[a, b], Sαφ+ψ(P, f) = αSφ(P, f) + Sψ(P, f). Hence,

|Sαφ+ψ(P, f)− (αA+B)| ≤
∞∨
i=1

(|α|+ 1)aiϕ(i).

It follows that f is also (αφ+ ψ)-integrable on [a, b] and

(αφ+ ψ)

∫ b

a

f = α(φ)

∫ b

a

f + (ψ)

∫ b

a

f. �

Theorem 2.4. Let φ, ψ : X × I[a, b] → X satisfy φ(·, I) ≤ ψ(·, I) for every I ∈
I[a, b]. If f : [a, b]→ X is both φ-integrable and ψ-integrable on [a, b], then

(φ)

∫ b

a

f ≤ (ψ)

∫ b

a

f.

Proof. By Theorem 2.3, since f is both φ-integrable and ψ-integrable on [a, b], f is
also (φ− ψ)-integrable on [a, b] and

(φ− ψ)

∫ b

a

f = (φ)

∫ b

a

f − (ψ)

∫ b

a

f.

Suppose that A is the (φ − ψ)-integral value of f on [a, b]. Further, let (aij) be a
(D)-sequence in X such that for any ϕ ∈ NN, there exists a gauge δ on [a, b] such
that for any P ∈ Pδ[a, b], we have

|Sφ−ψ(P, f)−A| ≤
∞∨
i=1

aiϕ(i).
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Fix ϕ ∈ NN and let δ be a gauge on [a, b] satisfying the above condition. Since
(φ− ψ)(·, I) ≤ 0 for any I ∈ I[a, b], we have that,

A ≤ A− Sφ−ψ(P, f) ≤
∞∨
i=1

aiϕ(i)

for any P ∈ Pδ[a, b]. As X is weakly σ-distributive, we conclude that A ≤ 0 and
hence,

(φ)

∫ b

a

f ≤ (ψ)

∫ b

a

f. �

As the name suggests, the nonlinear integral may not be linear as can be seen
in the following example. However, if we assume that the function φ(·, I) is linear
for every I ∈ I[a, b], the integral becomes linear.

Example 2.5. Given a function φ : R× [0, 1]→ R with φ(s, [u, v]) = (es−1)(v−u)
for every [u, v] ∈ I[a, b] and s ∈ R. Define a function f : [0, 1]→ R by

f(x) =

n, if x ∈
(

1

4n
,

1

4n−1

]
for some n ∈ N

0, if x = 0.

It can be shown that f is φ-integrable on [0, 1], but 2f is not.

Theorem 2.6. Let φ : X × I[a, b] → X satisfy that for every I ∈ I[a, b], φ(·, I)
is linear, i.e. φ(αx + y, I) = αφ(x, I) + φ(y, I) for every x, y ∈ X and α ∈ R. If
f, g : [a, b]→ X are φ-integrable on [a, b], then αf + g is also φ-integrable on [a, b]
for all α ∈ R and

(φ)

∫ b

a

(αf + g) = α(φ)

∫ b

a

f + (φ)

∫ b

a

g.

Proof. Suppose that A and B are the φ-integral values of f and g on [a, b], respec-
tively. Further, let (aij) be a (D)-sequence in X such that for any ϕ ∈ NN, there
exists a gauge δ on [a, b] so that for any P ∈ Pδ[a, b], we have

|Sφ(P, f)−A| ≤
∞∨
i=1

aiϕ(i) and |Sφ(P, g)−B| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN and let δ be a gauge on [a, b] satisfying the above condition. For any
P ∈ Pδ[a, b], Sφ(P, αf + g) = αSφ(P, f) + Sφ(P, g) since φ(·, I) is linear for any
I ∈ I[a, b]. Hence,

|Sφ(P, αf + g)− (αA+B)| ≤
∞∨
i=1

(|α|+ 1)aiϕ(i).

It follows that αf + g is also φ-integrable on [a, b] and

(φ)

∫ b

a

(αf + g) = α(φ)

∫ b

a

f + (φ)

∫ b

a

g. �

Next, we show that the Cauchy criterion for nonlinear integrals remains valid,
and notably, this can be established without relying on any of the conditions
(N1)(N5).
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Theorem 2.7 (Cauchy Criterion). Let φ : X×I[a, b]→ X. A function f : [a, b]→
X is φ-integrable on [a, b] if and only if there is a (D)-sequence (aij) in X such that
for every ϕ ∈ NN, there is a gauge δ on [a, b] such that for every P1, P2 ∈ Pδ[a, b],
we have

|Sφ(P1, f)− Sφ(P2, f)| ≤
∞∨
i=1

aiϕ(i).

Proof. (⇒) Suppose that A is the φ-integral value of f on [a, b]. Further, let (aij)
be a (D)-sequence in X such that for any ϕ ∈ NN, there exists a gauge δ on [a, b]
such that for any P1, P2 ∈ Pδ[a, b], we have

|Sφ(P1, f)−A| ≤
∞∨
i=1

aiϕ(i) and |Sφ(P2, f)−A| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN and let δ be a gauge on [a, b] satisfying the above condition. Then for
any P1, P2 ∈ Pδ[a, b],

|Sφ(P1, f)− Sφ(P2, f)| ≤
∞∨
i=1

2aiϕ(i).

Therefore, the forward implication holds.
(⇐) Now, let (aij) be a (D)-sequence in X such that for any ϕ ∈ NN, there exists a
gauge δ on [a, b] satisfying the following condition, denoted as (C): for any P1, P2 ∈
Pδ[a, b], one has

|Sφ(P1, f)− Sφ(P2, f)| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN. Define Mϕ as the set of all gauges δ on [a, b] satisfying (C), and
let Nϕ = {Sφ(P, f) : P ∈ Pδ[a, b], δ ∈ Mϕ}. Note that for any δ1, δ2 ∈ Mϕ, we
have |Sφ(P1, f)− Sφ(P2, f)| ≤ 2

∨∞
i=1 aiϕ(i) for all P1 ∈ Pδ1 [a, b] and P2 ∈ Pδ1 [a, b].

Consequently, Nϕ is bounded. Since X is Dedekind complete, supNϕ and inf Nϕ
exist. Moreover,

supNϕ − inf Nϕ ≤
∞∨
i=1

2aiϕ(i).

As X is weakly σ-distributive, we obtain∧
ϕ∈NN

supNϕ ≤
∨
ϕ∈NN

inf Nϕ +
∧
ϕ∈NN

(supNϕ − inf Nϕ) ≤
∨
ϕ∈NN

inf Nϕ.

On the other hand, note that for any ψ ∈ NN, γ ∈ Mψ ∩Mϕ, and P ∈ Pγ [a, b],
inf Nψ ≤ Sφ(P, f) ≤ supNϕ. Hence,∨

ϕ∈NN

inf Nϕ ≤
∧
ϕ∈NN

supNϕ.

Consequently, ∨
ϕ∈NN

supNϕ =
∧
ϕ∈NN

inf Nϕ.
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Denote this common value by A. Note that for any δ ∈Mϕ and P ∈ Pδ[a, b],

Sφ(P, f)−A ≤ supNϕ −
∨
ϕ∈NN

inf Nϕ ≤ supNϕ − inf Nϕ ≤
∞∨
i=1

2aiϕ(i) and

A− Sφ(P, f) ≤
∧
ϕ∈NN

supNϕ − inf Nϕ ≤ supNϕ − inf Nϕ ≤
∞∨
i=1

2aiϕ(i).

Hence,

|Sφ(P, f)−A| ≤
∞∨
i=1

2aiϕ(i).

It follows that f is φ-integrable on [a, b]. Therefore, the backward implication also
holds. �

Remark 2.8. Let φ : X×I[a, b]→ X and f : [a, b]→ X be a φ-integrable function
on [a, b]. For any ϕ ∈ NN, define Mϕ be the set of all gauge δ on [a, b] satisfying
(C) as in the proof of Theorem 2.7, and let Nϕ = {Sφ(P, f) : P ∈ Pδ[a, b], δ ∈Mϕ}.
The following result holds:∨

ϕ∈NN

supNϕ =
∧
ϕ∈NN

inf Nϕ = (φ)

∫ b

a

f.

Theorem 2.9. Let φ : X × I[a, b]→ X. If f : [a, b]→ X is φ-integrable on [a, b],
then f is also φ-integrable on [c, d] for every [c, d] ⊆ [a, b].

Proof. Let [c, d] ⊆ [a, b]. By the Cauchy Criterion, since f is integrable on [a, b],
there is a (D)-sequence (aij) in X such that for any ϕ ∈ NN, there exists a gauge
δ on [a, b] such that for any P1, P2 ∈ Pδ[a, b], we have

|Sφ(P1, f)− Sφ(P2, f)| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN and let δ be a gauge on [a, b] satisfying the above condition. Define
gauges α, β, and γ as the restrictions of δ on [a, c], [c, d], and [d, b], respectively. Fix
Q1 ∈ Pα[a, c] and Q2 ∈ Pγ [d, b]. Note that for any P1, P2 ∈ Pβ [c, d], Q1 ∪ P1 ∪Q2,
Q1 ∪ P2 ∪Q2 ∈ Pδ[a, b]. Hence,

|Sφ(P1, f)− Sφ(P2, f)| = |Sφ(Q1 ∪ P1 ∪Q2, f)− Sφ(Q1 ∪ P2 ∪Q2, f)| ≤
∞∨
i=1

aiϕ(i).

By the Cauchy Criterion, f is φ-integrable on [c, d]. �

Note that by Theorem 2.9, if f is φ-integrable on [a, b] and c ∈ (a, b), then f is
φ-integrable on [a, c] dan [c, b]. The converse is also true when we assume that φ
satisfies (N3).

Theorem 2.10. Let φ : X × I[a, b] → X satisfy (N3), and let c ∈ [a, b]. If
f : [a, b]→ X is φ-integrable on [a, c] and [c, b], then f is also φ-integrable on [a, b]
and

(φ)

∫ b

a

f = (φ)

∫ c

a

f + (φ)

∫ b

c

f.
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Proof. Suppose that A and B is the φ-integral values of f on [a, c] and [c, b], re-
spectively. Further, let (aij) be a (D)-sequence in X such that for any ϕ ∈ NN,
there exist gauges γ and δ defined on [a, c] and [c, b], respectively, such that for any
P1 ∈ Pγ [a, c] and P2 ∈ Pδ[c, b], we have

|Sφ(P1, f)−A| ≤
∞∨
i=1

aiϕ(i) and |Sφ(P2, f)−B| ≤
∞∨
i=1

aiϕ(i).

Fix ϕ ∈ NN, and let γ and δ be gauges on [a, c] and [c, b], respectively, satisfying
the above condition. Define a gauge β on [a, b] as follows:

β(x) =


min{γ(x), c− x}, if a ≤ x < c

min{γ(c), δ(c)}, if x = c

min{δ(x), x− c}, if c < x ≤ b.

Note that for any P = {(Ii; ξi) : i = 1, 2, . . . , n} ∈ Pβ [a, b], c = ξj for some
j = 1, 2, . . . , n. Further, let Ij = [u, v], P1 = {(Ii; ξi) ∈ P : ξi < c} ∪ {([u, c]; c)},
and P2 = {(Ii; ξi) ∈ P : ξi > c} ∪ {([c, v]; c)}. Note that P1 ∈ Pγ [a, c] and
P2 ∈ Pδ[c, b]. As φ satisfies (N3), we obtain φ(c, [u, v]) = φ(c, [u, c]) + φ(c, [c, v]).
Consequently, Sφ(P, f) = Sφ(P1, f) + Sφ(P2, f). Hence,

|Sφ(P, f)− (A+B)| ≤ |Sφ(P1, f)−A|+ |Sφ(P2, f)−B| ≤
∞∨
i=1

2aiϕ(i).

It follows that f is φ-integrable on [a, b] and

(φ)

∫ b

a

f = (φ)

∫ c

a

f + (φ)

∫ b

c

f. �

As a consequence, assuming (N3), we have that every step function is φ-integrable.

Theorem 2.11. Let φ : X × I[a, b] → X satisfy (N3). Every step function f :
[a, b]→ X is φ-integrable on [a, b]. Moreover, if

f =

n∑
i=1

siχIi

for some s1, s2, . . . , sn ∈ X and pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b]
whose union is [a, b], then

(φ)

∫ b

a

f =

n∑
i=1

φ(si, Ii).

Proof. Suppose that

f =

n∑
i=1

siχIi

for some s1, s2, . . . , sn ∈ X and pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b]
whose union is [a, b]. For any i = 1, 2, . . . , n, let Ii = [ui, vi]. As φ satisfies (N3),
we obtain that f is φ-integrable on Ii = [ui, vi] and

(φ)

∫ vi

ui

f = φ(si, Ii).
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By Theorem 2.10, we obtain that f is also φ-integrable on [a, b] and

(φ)

∫ b

a

f =

n∑
i=1

(φ)

∫ vi

ui

f =

n∑
i=1

φ(si, Ii). �

Theorem 2.12. Let φ : X × I[a, b] → X satisfy (N5) and f : [a, b] → X be a
bounded and φ-integrable function on [a, b]. If g : [a, b]→ X is bounded and f = g
almost everywhere on [a, b], then g is φ-integrable on [a, b] and

(φ)

∫ b

a

g = (φ)

∫ b

a

f.

Proof. Suppose that A is φ-integral value of f on [a, b]. Further, let (aij) be a
(D)-sequence in X such that for any ϕ ∈ NN, there exists a gauge δ on [a, b], such
that for any P ∈ Pδ[a, b], we have

|Sφ(P, f)−A| ≤
∞∨
i=1

aiϕ(i).

As f and g are bounded on [a, b] and φ satisfies (N5), there exists a (D)-sequence
(bij) in X such that for any ϕ ∈ NN, there exists µ > 0 such that∣∣∣∣∣

n∑
i=1

φ(f(xi), Ii)

∣∣∣∣∣ ≤
∞∨
i=1

biϕ(i) and

∣∣∣∣∣
n∑
i=1

φ(g(xi), Ii)

∣∣∣∣∣ ≤
∞∨
i=1

biϕ(i),

for every x1, x2, . . . , xn ∈ [a, b] and pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b]
with a total length of less than µ.

Fix ϕ ∈ NN and let µ > 0 and δ be a gauge on [a, b] satisfying the above
conditions. Let N ⊆ [a, b] with a Lebesgue measure 0 such that f = g on [a, b]\N .
Then there exists a countable collection of open intervals {Oj ∈ I[a−µ, b+µ] : j ∈
N} with a total length less than µ and satisfying N ⊆

⋃∞
j=1Oj . Define a gauge γ

on [a, b] as follows:

γ(x) =

{
inf{|x− y| : y ∈ [a, b]\Oj}, if x ∈ Oj for some j ∈ N
1, otherwise.

For any P = {(Ii; ξi) : i = 1, 2, . . . , n} ∈ Pγ [a, b], define M as the set of all indices
i = 1, 2, . . . , n such that ξi ∈ Oj for some j ∈ N. Observe that for any i = 1, 2, . . . , n,

∗ if i ∈M , then ξi ∈ Oj for some j ∈ N. Hence, Ii ⊆ Oj .
∗ if i /∈M , then ξi /∈ N . Hence, φ(f(ξi), Ii) = φ(g(ξi), Ii).

Consequently,

|Sφ(P, f)− Sφ(P, g)| =

∣∣∣∣∣∑
i∈M

φ(f(ξi), Ii)−
∑
i∈M

φ(g(ξi), Ii)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i∈M

φ(f(ξi), Ii)

∣∣∣∣∣+

∣∣∣∣∣∑
i∈M

φ(g(ξi), Ii)

∣∣∣∣∣ ≤
∞∨
i=1

2biϕ(i)

since the total length of I1, I2, . . . , In is less than µ. Hence, for any P ∈ Pmin{γ,δ},

|Sφ(P, g)−A| ≤ |Sφ(P, f)−A|+ |Sφ(P, f)− Sφ(P, g)| ≤
∞∨
i=1

(aiϕ(i) + 2biϕ(i)).
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It follows that g is φ-integrable on [a, b] and

(φ)

∫ b

a

g = (φ)

∫ b

a

f. �

We say a function f : [a, b] → X is (D)-continuous on [a, b] if there is a (D)-
sequence (aij) in X such that for every ϕ ∈ NN, there is δ > 0 such that for every
x, y ∈ [a, b] with |x− y| < δ, we have

|f(x)− f(y)| ≤
∞∨
i=1

aiϕ(i).

Note that if f : [a, b]→ X is (D)-continuous on [a, b], then f is bounded. Assuming
φ to satisfy (N3) and (N4), we show that every (D)-continuous function is φ-
integrable.

Theorem 2.13. Let φ : X × I[a, b] → X satisfy (N3) and (N4). Every (D)-
continuous function f : [a, b]→ X is φ-integrable on [a, b].

Proof. Let f be a (D)-continuous function on [a, b]. Since f is bounded, by (N4)
there exists a (D)-sequence (aij) in X such that for any ϕ ∈ NN and (D)-sequence
(bij) in X, there exists ψ ∈ NN such that∣∣∣∣∣

n∑
i=1

φ(f(xi), Ii)−
n∑
i=1

φ(f(yi), Ii)

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i)

for any xi, yi ∈ [a, b] with |f(xi) − f(yi)| ≤
∨∞
i=1 biψ(i) for each i = 1, 2, . . . , n and

pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b]. Further, since f is (D)-continuous
on [a, b], there is a (D)-sequence (bij) in X such that for every ψ ∈ NN, there is
δ > 0 such that for every x, y ∈ [a, b] with |x− y| < δ, we have

|f(x)− f(y)| ≤
∞∨
i=1

biψ(i).

Fix ϕ ∈ NN, and let ψ ∈ NN and δ satisfy the above conditions for the (D)-sequence
(bij). Define a gauge γ on [a, b] by γ(x) = δ for every x ∈ [a, b].

Fix P1 = {(Ii; ξi) : i = 1, 2, . . . , n}, P2 ∈ Pγ [a, b]. Let P = {(Jj ; ζj) : j =
1, 2, . . . ,m} ∈ Pγ [a, b] be finer than P1 and P2. For any i = 1, 2, . . . , n, define Mi

as the set of all indices j = 1, 2, . . . ,m such that Jj ⊆ Ii. Note that for any j ∈Mi,
|ξi − ζj | < δ. As φ satisfies (N3), we obtain

|Sφ(P1, f)− Sφ(P, f)| =

∣∣∣∣∣∣
m∑
j=1

φ(f(ζj), Jj)−
n∑
i=1

φ(f(ξi), Ii)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
m∑
j=1

φ(f(ζj), Jj)−
n∑
i=1

∑
j∈Mi

φ(f(ξi), Jj)

∣∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i).

Similarly, we obtain

|Sφ(P2, f)− Sφ(P, f)| ≤
∞∨
i=1

aiϕ(i).
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Hence,

|Sφ(P1, f)− Sφ(P2, f)| ≤
∞∨
i=1

2aiϕ(i).

By the Cauchy criterion, f is φ-integrable on [a, b]. �

We end this paper by investigating properties of the primitive of φ-integrable
functions.

Definition 2.14. Let φ : X × I[a, b] → X and f : [a, b] → X be a φ-integrable
function on [a, b]. The function Fφ : [a, b]→ X on [a, b], defined by

Fφ(t) = (φ)

∫ t

a

f

for every t ∈ [a, b], is called the primitive of the φ-integrable function f on [a, b].

Using the following two lemmas, we show that the Saks-Henstock Lemma remains
valid for the nonlinear integral of Riesz-valued functions.

Lemma 2.15. Let φ : X × I[a, b] → X and f : [a, b] → X be a φ-integrable
function on [a, b] with primitive Fφ. Suppose that (aij) is a (D)-sequence in X and
ϕ ∈ NN such that there is a gauge δ on [a, b] satisfying the condition that for every
P ∈ Pδ[a, b], ∣∣∣∣∣Sφ(P, f)− (φ)

∫ b

a

f

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i).

If P ∗ = {([ui, vi]; ξi) : i = 1, 2, 3, . . . , p} is a partial δ-fine partition on [a, b], then∣∣∣∣∣Sφ(P ∗, f)−
p∑
i=1

(Fφ(vi)− Fφ(ui))

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i).

Proof. Let P ∗ = {([ui, vi], ξi) : i = 1, 2, 3, . . . , p} be a partial δ-fine partition on
[a, b]. Let {[at, bt] : t = 1, 2, 3, . . . , n} be a collection of non-overlapping intervals
such that n ≤ p+ 1, (ui, vi) ∩ (at, bt) = ∅, and(

p⋃
i=1

[ui, vi]

)
∪

(
n⋃
t=1

[at, bt]

)
= [a, b].

Now, since f is φ-integrable on each [at, bt], we can find a (D)-sequence (bij) in X
such that for every ψ ∈ NN, there is a gauge δ∗ on [a, b] so that δ∗ ≤ δ and for every
t = 1, 2, . . . , n and Pt ∈ Pδ∗ [at, bt], we have∣∣∣∣∣Sφ(Pt, f)− (φ)

∫ bt

at

f

∣∣∣∣∣ ≤ 1

p+ 1

∞∨
i=1

biψ(i).

Fix a (D)-sequence (bij) and ψ ∈ NN, and let δ∗ be a gauge on [a, b] satisfying
the above condition. For each t = 1, 2, . . . , n, fix Pt ∈ Pδ∗ [at, bt]. Define P =
P ∗ ∪ (

⋃n
t=1 Pt). Clearly, P ∈ Pδ[a, b] and

Sφ(P, f) = Sφ(P ∗, f) +

n∑
t=1

Sφ(Pt, f).
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Therefore,∣∣∣∣∣Sφ(P ∗, f)−
p∑
i=1

(φ)

∫ vi

ui

f

∣∣∣∣∣ ≤
∣∣∣∣∣Sφ(P, f)− (φ)

∫ b

a

f

∣∣∣∣∣+

n∑
t=1

∣∣∣∣∣Sφ(Pt, f)− (φ)

∫ bt

at

f

∣∣∣∣∣
≤
∞∨
i=1

aiϕ(i) +

∞∨
i=1

biψ(i).

As the inequality holds for every ψ ∈ NN, we have the desired result. �

Lemma 2.16. Let K be a finite subset of X and z ∈ X. If∣∣∣∣∣∑
x∈S

x

∣∣∣∣∣ ≤ z ∀S ⊆ K,

then ∑
x∈K
|x| ≤ 2z.

Proof. Let K = {x1, x2, . . . , xn} and C = {(ci) = (c1, c2, c3, . . . , cn) : ci ∈ {−1, 1}}.
Observe that ∑

x∈K
|x| =

∨
(ci)∈C

c1x1 + c2x2 + · · ·+ cnxn.

Now, take (ci) ∈ C. Let S = {k : ck = 1} and T = {` : c` = −1}. Then we have

|c1x1 + c2x2 + · · ·+ cnxn| =

∣∣∣∣∣∑
k∈S

xk −
∑
`∈T

x`

∣∣∣∣∣ ≤
∣∣∣∣∣∑
k∈S

xk

∣∣∣∣∣+

∣∣∣∣∣∑
`∈T

x`

∣∣∣∣∣ ≤ 2z,

and hence, the conclusion follows. �

Theorem 2.17 (Saks-Henstock Lemma). Let φ : X × I[a, b]→ X and f : [a, b]→
X be a φ-integrable function on [a, b] with primitive Fφ. Then there is a (D)-
sequence (aij) in X such that for every ϕ ∈ NN, there is a gauge δ on [a, b] such
that for any partial δ-fine partition P = {([ui, vi]; ξi) : i = 1, 2, 3, . . . , p} on [a, b],

p∑
i=1

|φ(f(ξi), [ui, vi])− (Fφ(vi)− Fφ(ui))| ≤
∞∨
i=1

aiϕ(i).

Proof. Applying Lemma 2.16 to Lemma 2.15 we obtain the desired result. �

As a consequence of the Saks-Henstock Lemma, we can show that the primi-
tive of a bounded φ-integrable function is absolutely (D)-continuous and hence,
is of bounded variation. We say that a function f : [a, b] → X is absolutely (D)-
continuous on [a, b] if there is a (D)-sequence (aij) in X such that for every ϕ ∈ NN,
there is δ > 0 such that for every pairwise disjoint intervals [x1, y1], [x2, y2], . . . , [xn, yn] ∈
I[a, b] with

∑n
i=1(yi − xi) < δ, we have

n∑
i=1

|f(xi)− f(yi)| ≤
∞∨
i=1

aiϕ(i).

A function f : [a, b]→ X is said to be of bounded variation on [a, b] if supremum of
n∑
i=1

|f(xi)− f(yi)|,
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taken over all partition P = {[xi, yi] : i = 1, 2, . . . , n} on [a, b], exists in X. It is
easy to prove that any absolutely (D)-continuous function on [a, b] is of bounded
variation on [a, b].

Theorem 2.18. Let φ : X ×I[a, b]→ X satisfy (N5). If f : [a, b]→ X is bounded
and φ-integrable on [a, b] with primitive Fφ, then Fφ is absolutely (D)-continuous
on [a, b].

Proof. As f is bounded on [a, b] and φ satisfies (N5), there exists a (D)-sequence
(aij) in X such that for any ϕ ∈ NN, there exists µ > 0 such that∣∣∣∣∣

n∑
i=1

φ(f(xi), Ii)

∣∣∣∣∣ ≤
∞∨
i=1

aiϕ(i),

for every x1, x2, . . . , xn ∈ [a, b] and pairwise disjoint intervals I1, I2, . . . , In ∈ I[a, b]
with a total length less than µ. Further, by Lemma 2.16, it also holds that

n∑
i=1

|φ(f(xi), Ii)| ≤
∞∨
i=1

2aiϕ(i).

On the other hand, by the Saks-Henstock Lemma, since f is φ-integrable on [a, b],
there is a (D)-sequence (bij) in X such that for every ϕ ∈ NN, there is a gauge δ on
[a, b] such that for any partial δ-fine partition P = {([ui, vi]; ξi) : i = 1, 2, 3, . . . , p}
on [a, b],

p∑
i=1

|φ(f(ξi), [ui, vi])− (Fφ(vi)− Fφ(ui))| ≤
∞∨
i=1

biϕ(i).

Fix ϕ ∈ NN, and let µ > 0 and the gauge δ satisfy the above conditions.
Let [u1, v1], [u2, v2], . . . , [un, vn] ∈ I[a, b] be pairwise disjoint intervals with a total

length less than µ. Let P = P1 ∪ P2 ∪ . . . ∪ Pn = {([pj , qj ]; ξj) : j = 1, 2, . . . ,m}
be a partial δ-fine partition on [a, b] where Pi ∈ Pδ[ui, vi] for each i = 1, 2, . . . , n.
Consequently,
n∑
i=1

|Fφ(vi)− Fφ(ui)| ≤
m∑
j=1

|Fφ(qj)− Fφ(pj)|

≤
m∑
j=1

|φ(f(ξj), [pj , qj ])|+
m∑
j=1

|φ(f(ξj), [pj , qj ])− (Fφ(qj)− Fφ(pj))|

≤
∞∨
i=1

(2aiϕ(i) + biϕ(i)).

The conclusion follows. �
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