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PROPER EXTENSIONS OF A CERTAIN CLASS OF CARLEMAN

OPERATORS

(COMMUNICATED BY SALAH MECHERI)

HAFIDA BENDAHMANE, BERRABAH BENDOUKHA

Abstract. In this paper, we discribe all proper (in particular, selfadjoint and

dissipative) extensions of a certain type of Carleman operators defined in the

Hilbert space L2 (Ω, µ). For such operators, general forms of proper extensions
are given and their spectral properties investigated. Generalized resolvents are

also given by means of Nevanlinna families and associated Nevanlinna pairs.

1. Introduction

In this paper, we consider in the Hilbert space L2 (Ω, µ) Carleman operators
with kernels of the form;

K (x, y) =+∞
p=0 apΨp (x) Ψp (y), (1.1)

where {Ψp}+∞p=0 and {ap}+∞p=0 are respectively an orthonormal sequence in L2 (Ω, µ)

and a real number sequence verifying some convergence conditions. Such Carleman
operators have been studied in [2, 3], . In [2], necessary and suffisent conditions are
given in order to have equal deficiency indices. In [3], quasi-selfadjoint extensions
(see also [1, 17]) of operator A are investigated in the case when deficiency indices
equal 1. Furthermore, general forms of corresponding generalized resolvents and
generalized spectral functions are given by means of the Stieljes inversion formula.

The principal aim of this present paper is to explore the class of proper extensions

of A. That is, extensions Ã satisfying the condition A ⊂ Ã ⊂ A∗. Other than
quasi-selfadjoint extensions, it contains also symmetric, selfadjoint and dissipative
extensions of A. Our goal is to describe all elements of this class and characterize
their spectral properties. But in stead of the classical approach of extension theory
of symmetric operators, we will use the new approach based on the consepts of
linear relations in Hilbert spaces, boundary triplets (also called boundary value
spaces) and Weyl functions. This new approach was very widely developed and
used during the two last decades (see for exemple [5, 6, 7, 8, 15, 16]).
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This paper is organised as follows ; in the first section, basic concepts and results
concerning linear relations and boundary triplets associated to the adjoint of sym-
metric operator are exposed. We also give the definition of the Weyl function and
remind without proofs its fundamental properties that will be used all along this
work. At the end, Carleman operators (subjet of this present study) are introduced.
In the second section, we express the main results. Firstly, we construct a bound-
ary triplet for the adjoint of the studied operator. This is then used to describe
all proper extensions and to find the explicit form of the Weyl function. Secondly,
we characterize the spectrum of extensions. Some auxilary results are also derived.
We also give the explicit form of the resolvent of any proper extension. In the last
section we use the Krein-Näımark formula to give the explicit form of generalized
resolvents by means of Nevanlinna families and associated Nevanlinna pairs.

Throughout this work, all considered spaces are complex and Hilbertian. More-
over, if X is a such space then, B (X ) will denote the space of all bounded linear
operators in X . IX (resp. 0X ) will stand for the identity in X .(resp. the null opera-
tor in X ). The symbol C+ (resp. C−) will be used for the subset {z ∈ C : Imz > 0}
(resp. {z ∈ C : Imz < 0}) of the complex plane. If A is an operator then, σ (A)
(resp. σp (A) , σc (A) , σr (A)) designs the spectrum (resp. punctual, continuous,
residual spectrum ) of A and ρ (A) its resolvent set.

2. Preliminaries

In this section, essential results concerning the extension theory of closed densely
defined symmetric operators with equal deficiency indices are exposed. An approach
based on the consept of boundary triplets (also called boundary value spaces) is
used. These results are of general level and can be found in details in [5, 6, 10, 11, 12]

2.1. Linear relations. A linear relation in H is a linear subset of the product
H×H. To every linear relation Θ in H correspond the following linear subspaces:

domΘ = {x ∈ H : (x, y) ∈ Θ; y ∈ H} ; ranΘ = {y ∈ H : (x, y) ∈ Θ;x ∈ H} ,

ker Θ = {x ∈ H : (x, 0) ∈ Θ} ; mulΘ = {y ∈ H : (0, y) ∈ Θ} .
The set of all closed linear relations will be noted C̃ (H) . The identification of every

bounded linear operator with its graph allows to regard B (H) as a subset of C̃ (H) .

If Θ belongs to C̃ (H) then the inverse and the adjoint relations of Θ are respectively
defined by:

(y, x) ∈ Θ−1 ⇐⇒ (x, y) ∈ Θ (2.1)

(y∗, x∗) ∈ Θ∗ ⇐⇒ 〈y, y∗〉 = 〈x, x∗〉 ;∀ (x, y) ∈ Θ (2.2)

Let us designate by J the operator acting in H×H by the rule J (x, y) = (y,−x).
It is not difficult to see that Θ∗ = JΘ⊥ where Θ⊥ designates the orthogonal in
H×H of Θ.

Definition 1. An element Θ of C̃ (H) is called:

a) symmetric if Θ ⊆ Θ∗,
b) selfadjoint if Θ = Θ∗,
c) dissipative if Im 〈y, x〉 is nonnegative for all (x, y) ∈ Θ,
d) dissipative maximal if it is dissipative and doesn’t admit any proper dissi-

pative extension.
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Let Θ ∈ C̃ (H) and λ a complex number. Consider the relation

Θ− λ = {(x, y − λx) ; (x, y) ∈ Θ} (2.3)

λ belongs to the resolvent set ρ (Θ) of Θ if (Θ− λ)
−1

is an element of B (H). If
it is not the case, then λ is an element of the spectrum σ (Θ) of Θ. The punctual,
continuous and residual parts of the spectrum are defined as for an operator. Some-
times (as in the present case), it is useful to define the resolvent set as a subset
of the extended complex plane by saying that ∞ ∈ ρ (Θ) if mulΘ = {0} . In the
contrary case, ∞ is said to be an eigenvalue of Θ.

Since in next sections, we shall be dealing with operators having deficiency in-
dices equal 1, let us give a general form of a relation in this case. As dimX × X = 2,
there are only three possibilities for any linear relation Θ in X :

a) dim Θ = 0⇐⇒ Θ = {(0, 0)} ,
b) dim Θ = 2⇐⇒ Θ = X × X ,
c) dim Θ = 1⇐⇒ ∃ (a, b) ∈

(
C2
)∗

:Θ = Θ(a,b) = {(x, y) ∈ X × X : ax+ by = 0} .
In the first case, we have a symmmetric, dissipative but nonselfadjoint relation

(Θ∗ = X × X ), in the second case, the relation Θ = X × X is a non symmetric
and non dissipative relation (Θ∗ = {(0, 0)}). For relations of the third form, the
following result can be easily established;

Proposition 1. Assume that dimX =1 and let

Θ(a,b) = {(x, y) ∈ X × X : ax+ by = 0} , (a, b) ∈
(
C2
)∗

be a linear relation in X . Then,

(1) Θ(a,0) and Θ(0,b) are both selfadjoints ∀a, b ∈ C∗,
(2) If ab 6= 0 then Θ(a,b) is selfadjoint if and only if, Im

(a
b

)
= 0,

(3) If ab 6= 0 then Θ(a,b) is dissipative if and only if, Im
(a
b

)
≤ 0,

(4) σ
(
Θ(a,0)

)
= {∞} and σ

(
Θ(0,b)

)
= {0} ,∀a, b 6= 0,

(5) If ab 6= 0 then σ
(
Θ(a,b)

)
=
{
−a
b

}
.

2.2. Boundary triplets. Let A be a closed densely defined symmetric operator
with domainD (A) ⊆ H and equal deficiency indices (e.g.n± (A)=dim ker (A∗ ± iIH)
< +∞). A triplet Π = (X ,Γ0,Γ1) constituted by a Hilbert space X and linear
mappings Γ0,Γ1 : D (A∗) −→ X is called a boundary triplet (or also boundary
value space) for the adjoint A∗ if,

(1) formula Γ (x) = (Γ0 (x) ,Γ1 (x)) defines a linear surjection from D (A∗) into
X × X ,

(2) the abstract second Green formula

〈A∗ (x) , y〉 − 〈x,A∗ (y)〉 = 〈Γ1 (x) ,Γ0 (y)〉 − 〈Γ0 (x) ,Γ1 (y)〉 ,

holds for all x, y ∈ D (A∗) .

Note that in case of equal deficiency indices, boundary triplets always exist.
Moreover, if Π = (X ,Γ0,Γ1) and Π′ = (X ′,Γ′0,Γ′1) are two boundary triplets for A∗

then, there exists a bounded invertible operatorW = (Wij)
2
i,j=1 : X × X −→ X ′×X ′

such that

W ∗
(

0 −iIX ′
iIX ′ 0

)
W =

(
0 −iIX
iIX 0

)
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and (
Γ′0
Γ′1

)
=

(
W11 W12

W21 W22

)(
Γ0

Γ1

)
Definition 2. Let A and Ã be two linear operators in H. Assume that A is symmet-

ric, closed and densely defined. Ã is called a proper extension of A if, A ⊂ Ã ⊂ A∗

We have the following fundamental result,

Theorem 1. Let A be a closed densely defined symmetric operator with equal defi-

ciency indices and Π = (X ,Γ0,Γ1) be a boundary triplet for A∗. Then Ã is a proper

extension of A if and only if there exists Θ ∈ C̃ (H) such that

D(Ã) = Γ−1 (Θ) = {x ∈ D (A∗) : (Γ0 (x) ,Γ1 (x)) ∈ Θ} (2.4)

Moreover,

a) Ã is selfadjoint (resp. symmetric)⇐⇒ Θ is selfadjoint (resp. symmetric),

b) Ã is dissipative(resp. maximal dissipative)⇐⇒ Θ is dissipative(resp. max-
imal dissipative).

Remark 1.

a) Extension generated by Θ ∈ C̃ (H) in the sens of the preceding theorem will
be noted AΘ,

b) If Θ is an element of B (X ) then, D (AΘ) = ker (Γ1 −ΘΓ0) ,
c) Operators A0 and A∞ with respective domains ;
D (A0) = {x ∈ D (A∗) : Γ1 (x) = 0} and D (A∞) = {x ∈ D (A∗) : Γ0 (x) = 0}
are selfadjoint extensions of A. Moreover, it can be easily verified that if
n± (A) = 1 then A0 = AΘ(0,b)

and A∞ = AΘ(a,0)
.

Let A be a closed densely defined symmetric operator with equal deficiency
indices n and Π = (X ,Γ0,Γ1) be a boundary triplet for A∗. According to [12],
the mapping Γ0 establishes a bijection from ker (A∗ − zIH) to Cn (n = n± (A)) for
every complex number z ∈ ρ (A∞) . Functions;

γ (z) =
[
Γ0

∣∣
ker(A∗−zIH)

]−1

,M (z) = Γ1γ (z) ; z ∈ ρ (A∞) , (2.5)

are respectively called γ−field and Weyl function associated to boundary triplet
Π = (X ,Γ0,Γ1). It is not difficult to see that

M (z) Γ0 (xz) = Γ1 (xz) ;∀xz ∈ ker (A∗ − zIH) .

Fundamental properties of the Weyl function are resumed in the next result [5, 6]

Theorem 2. Let A be a closed densely defined symmetric operator wih equal defi-
ciency indices n, Π = (X ,Γ0,Γ1) a boundary triplet for A∗. Then,

a) M (z) is analytic in the domain z ∈ ρ (A∞) ,
b) ImM (z) Imz > 0, z ∈ ρ (A∞) ,
c) [M (z)]

∗
= M (z̄) , z ∈ ρ (A∞) ,

d) M (z)−M (ξ) = (z − ξ) γ∗
(
ξ̄
)
γ (z) ; z, ξ ∈ ρ (A∞) ,

e) z ∈ ρ (AΘ)⇐⇒ (Θ−M (z))
−1 ∈ B (X ) , z ∈ ρ (A∞) ,

f) If dimX =1, then z belongs to the punctual (resp. continuous or residual)
spectrum of AΘ if and only if M (z) belongs to the punctual (resp. contin-
uous or residual) spectrum of Θ,
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g) (AΘ − zIH)
−1 − (A∞ − zIH)

−1
= γ (z) (Θ−M (z))

−1
γ∗ (z̄) ;

z ∈ ρ (AΘ) ∩ ρ (A∞) .

2.3. Carleman operators. Let Ω be an arbitrary set, µ a σ−finite measure de-
fined on a σ−algebra of subsets of Ω and L2 (Ω, µ) the corresponding Hilbert space
of square integrable functions with respect to µ. According to the general theory
of integral operators [1, 4, 13, 18], a Carleman operator in L2 (Ω, µ) is a closed
symmetric and densely defined operator of the form;

Af (x) =

∫
Ω

K (x, y) f (y) dµ (y) , (2.6)

where the kernel K (x, y) satisfies the following conditions:∫
Ω

|K (x, y)|2 dµ (y) < +∞ almost everywhere in Ω. (2.7)

The domain of A is defined as follows

D (A) =

{
f ∈ L2 (Ω, µ) :

∫
Ω

|f (x)| k (x) dx < +∞
}
, k2 (x) =

∫
Ω

|K (x, y)|2 dy

In this paper, we consider the case,

K (x, y) =+∞
p=0 apΨp (x) Ψp (y), (2.8)

where {Ψp}+∞p=0 is an orthonormal sequence in L2 (Ω, µ) such that

+∞
p=0 |Ψp (x)|2 < +∞ almost everywhere in Ω, (2.9)

and {ap}+∞p=0 a real number sequence verifying

+∞
p=0a

2
p |Ψp (x)|2 < +∞ almost everywhere in Ω. (2.10)

Note that the sequence {Ψp}+∞p=0 is not total and +∞
p=0a

2
p = +∞. Otherwise, the

corresponding operator would be either selfadjoint or Hilbert-Schmidt. This Car-
leman operator has been studied in [2, 3]. From [2], one can retain the following
fundamental result.

Theorem 3. If the operator A possesses equal deficiency indices n± (A) = 1 then,

for all numbers λ ∈ C\R there exists a sequence {δp (λ)}+∞p=0 of complex numbers

such that;

a) +∞
p=0 |δp (λ)|2 = +∞ ; +∞

p=0

|δp (λ)|2

|ap − λ|2
< +∞,

b) Function ϑ =+∞
p=0 δp (λ) Ψp satisfies conditions:∫

Ω

ϑ (x) Ψq (x)dµ (x) = 0; q = 0, 1, 2, ...

and the function

ϕλ (x) =
δp (λ)

ap − λ
Ψp (x) , (2.11)

is a solution of the equation A∗f = λf.
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In [3], quasi-selfadjoint extensions (see [1, 17]) of operator A with deficiency

indices equal to1 are considered. That is nonselfadjoint proper extensions Ã of

A satisfying the additionnal condition dimD(Ã) = 1(modD (A)). General forms
of the corresponding generalized resolvents and generalized spectral functions are
given using Stieljes inversion formula. In particular, one has the following result [3]

Theorem 4. Following formulas:

Rλf = R̊λf +
1− ω (λ)

ω (λ) s (λ)− 1
.

〈f, ϕλ̄〉
(λ+ i) 〈ϕλ, ϕi〉

ϕλ (Imλ > 0), (2.12)

Rλ̄f = R̊λ̄f +
1− ω (λ)

ω (λ)s (λ)− 1
.

〈f, ϕλ〉(
λ̄− i

)
〈ϕλ̄, ϕ−i〉

ϕλ̄ (Imλ > 0), (2.13)

establish a bijective correspondance between the set of generalized resolvents of
operator A and the set of analytic functions ω (λ) (|ω (λ)| ≤ 1, Imλ > 0). R̊λ is the
resolvent of a certain selfadjoint extension of A;

s (λ) =
λ− i
λ+ i

×

+∞
p=0

|δp (λ)|2

(ap − λ) (ap − i)

+∞
p=0

|δp (λ)|2

(ap − λ) (ap + i)

. (2.14)

In the present work, we propose a new approach based on the concept of boundary
triplet. This allows to study not only quasi-selfadjoint extensions but all proper
extensions of operator A. Similar formulas for generalized resolvents are obtained
and corresponding spectra investigated by means of Weyl and γ−field functions.

3. Spectral properties of proper extensions

3.1. Proper extensions and Weyl functions. In the following, we will always
suppose that deficiency indices of operator A are equal to 1.

Let us put

Nλ = ker (A∗ − λIH) , eλ (x) =

(
+∞
p=0

|δp (λ)|2

|ap − λ|2

)− 1
2

ϕλ (x) . (3.1)

it is clear that eλ ∈ Nλ and ‖eλ‖ = 1. According to Von Neumann Formula, for
every complex z such that Imz 6= 0 one has the direct sum

D (A∗) = D (A) +̇Nz+̇Nz̄ (3.2)

Consider now in D (A∗)×D (A∗) the sesquilinear form defined by

Φ (f, g) = 〈f, g〉+ 〈A∗ (f) , A∗ (g)〉 (3.3)

Lemma 1. The sesquilinear form Φ satisfies the following properties:

a) ∀f ∈ D (A) : Φ (f, ei) = Φ (f, e−i) = Φ (ei, e−i) = 0,
b) Φ (ei, ei) = Φ (e−i, e−i) = 2,
c) ∀f ∈ D (A∗) : f = f0 + 1

2Φ (f, ei) ei + 1
2Φ (f, e−i) e−i,

d) for every complex z (Imz 6= 0) : Φ (ez, ei) + Φ (ez, e−i) 6= 0.
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Proof. The first two properties are directly verifiable. Let now f be an element of
D (A∗) . It follows from (3.2) that

f = f0 + α (i) ei + α (−i) e−i, f0 ∈ D (A) , α (i) , α (−i) ∈ C.

Thus, by using the first property, one can easily obtain that,

2α (i) = Φ (f, ei) ; 2α (−i) = Φ (f, e−i) .

In order to prove the last assertion, let us suppose that Φ (ez, ei) + Φ (ez, e−i) = 0,
then by c) Φ (ez, ei)− Φ (ez, e−i) = Φ2 (ez, ei)− Φ2 (ez, e−i) = 0 and consequently,
ez ∈ D (A) ∩Nz = {0} ; so ez = 0 which is impossible. �

Proposition 2. Let f be an element of D (A∗) and z, Imz 6= 0 a complex number.
Assume that

f = f0 + α (z) ez + α (z̄) ez̄, f0 ∈ D (A) , α (z) , α (z̄) ∈ C.

is the canonical decomposition of f according to direct sum (3.2) then,

α (z) =
Φ (f, ei) Φ (ez̄, e−i)− Φ (f, e−i) Φ (ez̄, ei)

Φ (ez, ei) Φ (ez̄, e−i)− Φ (ez, e−i) Φ (ez̄, ei)

(3.4)

α (z̄) =
Φ (f, e−i) Φ (ez, ei)− Φ (f, ei) Φ (ez, e−i)

Φ (ez, ei) Φ (ez̄, e−i)− Φ (ez, e−i) Φ (ez̄, ei)

Proof. By precedent lemma,

f = f0 +
1

2
Φ (f, ei) ei +

1

2
Φ (f, e−i) e−i

where, (
Φ (f, ei)

Φ (f, e−i)

)
=

(
Φ (ez, ei) Φ (ez̄, ei)

Φ (ez, e−i) Φ (ez̄, e−i)

)(
α (z)

α (z̄)

)
Uniqueness of α (z) and α (z̄) implies that the matrix(

Φ (ez, ei) Φ (ez̄, ei)
Φ (ez, e−i) Φ (ez̄, e−i)

)
is invertible and(

α (z)

α (z̄)

)
=

(
Φ (ez, ei) Φ (ez̄, ei)

Φ (ez, e−i) Φ (ez̄, e−i)

)−1(
Φ (f, ei)

Φ (f, e−i)

)
.

Thus, (3.4) follows from direct computations. �

Proposition 3. The triplet Π = (C,Γ0,Γ1) where Γ0,Γ1 are two linear mappings
from D (A∗) to C given by

Γ0 (f) =
1

2
[Φ (f, ei) + Φ (f, e−i)] ; Γ1 (f) =

i

2
[Φ (f, ei)− Φ (f, e−i)] , (3.5)

is a boundary triplet for A∗.

Proof. follows from the more general formula for canonical boundary triplets pre-
sented by A. N. Kochubëı [12] for symmetric operators with arbitrary defect num-
bers (n, n) ;n < +∞. �
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We shall now discribe all proper extensions of operator A by means of boundary

triplet Π = (C,Γ0,Γ1) , defined in the preceding theorem. Let Ã be a proper
extension of A. It has been shown in preceding sections that there exists (a, b) ∈(
C2
)∗

such that,

D(Ã) = {f ∈ D (A∗) : aΓ0 (f) + bΓ1 (f) = 0} (3.6)

= {f ∈ D (A∗) : (a+ ib) Φ (f, ei) + (a− ib) Φ (f, e−i) = 0} .

Note that for a = b = 0 the corresponding extension is A∗. Because of that, we will
always suppose that (a, b) 6= (0, 0) .

Theorem 5. Let Ã be a proper extension of A. Then, there exists a complex number

c such that D(Ã) admits one of two following representations:

D(Ã) = {f0 + α (i) (cei + e−i) ; f0 ∈ D (A) , α (i) ∈ C} , (3.7)

where,

Ã (f) = A (f0) + iα (i) (cei − e−i) (3.8)

or,

D(Ã) = {f0 + α (i) (ei + ce−i) ; f0 ∈ D (A) , α (i) ∈ C} , (3.9)

where,

Ã (f) = A (f0) + iα (i) (ei − ce−i) (3.10)

Moreover, Ã is selfadjoint if and only if |c| = 1.

Proof. It follows from J. Von Neumann’s formula written for the case of defect
numbers (1, 1) . �

Remark 2. It follows from theorem 5 that there exists a bijective correspondance
between the set of all selfadjoint (resp. dissipative) extensions of operator A and the
field of real numbers (resp. the upper half plane). Moreover, selfadjoint extension
A0 (resp.A∞ ) corresponds to c = 1 in (3.9) (resp. c = −1 in (3.7)).

Theorem 6. The γ−field and Weyl functions associated to boundary triplet defined
in proposition 3 admit the following representations:

[γ (z)] (λ) =
2λ

Φ (ez, ei) + Φ (ez, e−i)
.ez; z ∈ C ∩ ρ (A∞) , (3.11)

[M (z)] (λ) = iλ
Φ (ez, ei)− Φ (ez, e−i)

Φ (ez, ei) + Φ (ez, e−i)
; z ∈ C ∩ ρ (A∞) , (3.12)

Proof. The first relation follows immediately from the fact that 2λ
Φ(ez,ei)+Φ(ez,e−i)

.ez
is an element of Nz and the easily verifyable equalities

Γ0 [γ (z)] (λ) = λ ; [γ (z)] Γ0 (ez) = ez
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For the second one,

[M (z)] (λ) = Γ1 [γ (z)] (λ)

= Γ1

(
2λ

Φ (ez, ei) + Φ (ez, e−i)
.ez

)
=

2λ

Φ (ez, ei) + Φ (ez, e−i)
Γ1 (ez)

2λ

Φ (ez, ei) + Φ (ez, e−i)
× i

2
[Φ (ez, ei)− Φ (ez, e−i)]

= iλ
Φ (ez, ei)− Φ (ez, e−i)

Φ (ez, ei) + Φ (ez, e−i)
.

�

3.2. Spectral properties. In the following, A(a,b) will denote the proper extension

of A corresponding to (a, b) ∈ C2 and D(a,b) it’s associated domain .

Proposition 4. Let (a, b) ∈ C2. Then;

a) 0 ∈ σp
(
A(a,b)

)
,

b) Ψk ∈ D(a,b),

⇐⇒ b
[
‖ϕ−i‖ δk (i) + ‖ϕi‖ δk (−i)

]
= ia

[
‖ϕ−i‖ δk (i)− ‖ϕi‖ δk (−i)

]
.

In this case, Ψk is an eigenvector of A(a,b) corresponding to the eigen-
value ak.

c) If Ψk /∈ D(a,b) then ak ∈ σr
(
A(a,b)

)
Proof. a) Direct computations show that for all f ∈ D (A∗) :

Φ (f, ei) = −i ‖ϕi‖−1
p=0

+∞δp (i) 〈f,Ψp〉 , (3.13)

Φ (f, e−i) = i ‖ϕ−i‖−1
p=0

+∞δp (−i) 〈f,Ψp〉 , (3.14)

Then,

Γ0 (f) =
i

2

+∞

p=0

[
−‖ϕi‖−1

δp (i) + ‖ϕ−i‖−1
δp (−i)

]
〈f,Ψp〉 , (3.15)

Γ1 (f) =
1

2

+∞

p=0

[
‖ϕi‖−1

δp (i) + ‖ϕ−i‖−1
δp (−i)

]
〈f,Ψp〉 , (3.16)

Thus for all f ∈ D (A∗) :

f ∈ D(a,b) ⇐⇒ aΓ0 (f) + bΓ1 (f) = 0

⇐⇒ ia+∞
p=0

[
−‖ϕi‖−1

δp (i) + ‖ϕ−i‖−1
δp (−i)

]
〈f,Ψp〉

+ b+∞p=0

[
‖ϕi‖−1

δp (i) + ‖ϕ−i‖−1
δp (−i)

]
〈f,Ψp〉 = 0.

Let LΨ be a closed subspace generated by vectors Ψp, p = 0, 1, 2, ... It is
clear that L⊥Ψ ⊂ D(a,b) for all (a, b) ∈ C2. Since {Ψp, p = 0, 1, 2, ...} is not

total, then L⊥Ψ 6= {0} . Finally, it follows from the relation

∀f ∈ L⊥Ψ;A(a,b) (f) = A∗ (f) = 0

that 0 belongs to the punctual spectrum of A(a,b).
b) follows from precedent characterization of elements of D(a,b) and the rela-

tion A∗ (Ψk) = akΨk; k = 0, 1, 2, ...
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c) Suppose now that Ψk /∈ D(a,b). Let us firstly prove that
(
A(a,b) − ak

)
is

injective. Indeed, suppose that there exists in D(a,b) a nonnul vector f such
that A(a,b) (f) = A∗ (f) = akf. Setting

f =+∞
p=0 〈f,Ψp〉Ψp + f⊥Ψ ; f⊥Ψ⊥LΨ,

it is not difficult to see that f is necessary of the form f = αkΨk;αk ∈ C
and then, f /∈ D(a,b). Consequently, operator

(
A(a,b) − ak

)
is injective.

On the other hand, one has for all k ∈ {0, 1, 2, ...} ,(
A(a,b) − ak

)
(f) = (A∗ − ak) (f) =+∞

p=0 (ap − ak) 〈f,Ψp〉Ψp − akf⊥Ψ
= p 6=k (ap − ak) 〈f,Ψp〉Ψp − akf⊥Ψ .

It is clear that (
A(a,b) − ak

)
(f)⊥Ψk

and thus, ak belongs to the residual spectrum of the operator A(a,b).
�

Lemma 2. Let z ∈ ρ (A∞) . Then for every g ∈ L2 (Ω, µ) there exists g⊥Ψ ∈ L⊥Ψ and
complex numbers C,C0, C1...such that;

g =+∞
p=0 CpΨp + C (i− z) ei + C (i+ z) e−i + g⊥Ψ ;+∞p=0 |Cp|

2
< +∞, (3.17)

Cp = 〈g,Ψp〉 − C (i− z) δp (i)

‖ϕi‖ (ap − i)
− C (i+ z)

δp (−i)
‖ϕ−i‖ (ap + i)

. (3.18)

Proof. Since z ∈ ρ (A∞) one has L2 (Ω, µ) = (A∞ − z) (D (A∞)) . Hence, for g ∈
L2 (Ω, µ) there exists f0 ∈ D (A) and a complex number C such that,

g = (A∞ − z) (f0 + Cei − Ce−i)
Setting

f0 =+∞
p=0 〈f0,Ψp〉Ψp + f⊥0Ψ ; f⊥0Ψ ∈ L⊥Ψ,

One has

g = (A∞ − z) (f0) + C (i− z) ei + C (i+ z) e−i − zf⊥0Ψ

= +∞
p=0 (ap − z) 〈f0,Ψp〉Ψp + C (i− z) ei + C (i+ z) e−i − zf⊥0Ψ.

Let g⊥Ψ = −zf⊥0Ψ and Cp = (ap − z) 〈f0,Ψp〉 . Then,

g⊥Ψ ∈ L⊥Ψ ; +∞
p=0 |Cp|

2
< +∞,

and for all p = 0, 1, 2, ...,

〈g,Ψp〉 = Cp + C (i− z) 〈ei,Ψp〉+ C (i+ z) 〈e−i,Ψp〉

= Cp + C (i− z) δp (i)

‖ϕi‖ (ap − i)
+ C (i+ z)

δp (−i)
‖ϕ−i‖ (ap + i)

.

�

Corollary 1. Keeping notations of the preceding lemma, operator (A∞ − z)−1
ap-

plies L2 (Ω, µ) into D (A∞) according to the rule,

(A∞ − z)−1
(g) =+∞

p=0

Cp
ap − z

Ψp + Cei − Ce−i −
1

z
g⊥Ψ .

Corollary 2. σ (A∞) = {0, a0, a1, a2, ...} .

Theorem 7. Let (a, b) ∈ C× C∗ and A(a,b). Then,
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a) {0, a0, a1, a2, ...} ⊂ σ
(
A(a,b)

)
,

b) ∀z ∈ ρ (A∞) ,

z ∈ σ
(
A(a,b)

)
⇐⇒ ib (Φ (ez, e−i)− Φ (ez, ei)) = a (Φ (ez, ei) + Φ (ez, e−i)) .

In this last case, z is an eigenvalue of A(a,b).

Proof. Point a) has already been treated above. Let now z ∈ ρ (A∞). Taking into

account that σ
(
Θ(a,b)

)
=
−a
b

(see proposion 1 ) and theorem 2, one has

z ∈ σ
(
A(a,b)

)
⇐⇒M (z) ∈ σ

(
Θ(a,b)

)
⇐⇒M (z) =

−a
b

⇐⇒ i
Φ (ez, ei)− Φ (ez, e−i)

Φ (ez, ei) + Φ (ez, e−i)
=
−a
b

⇐⇒ ib (Φ (ez, e−i)− Φ (ez, ei)) = a (Φ (ez, ei) + Φ (ez, e−i)) ,

It remains to prove that z belongs to the ponctual spectrum. This follows immedi-
ately from point e) of the theorem 2 and and the fact that the spectrum of Θ(a,b)

is ponctual �

To end this section, let us give the general form for the resolvents of proper
extensions of A.

Lemma 3. Let (a, b) ∈ C × C∗ and let Θ(a,b) be its corresponding linear relation.

Then, for all z ∈ ρ (A∞) ∩ ρ
(
A(a,b)

)
,(

Θ(a,b)−M (z)
)−1

=
−b

a+ bM (z)
.IC. (3.19)

Proof. Note firstly that z ∈ ρ (A∞) ∩ ρ
(
A(a,b)

)
=⇒M (z) 6= −a

b
. Moreover,(

Θ(a,b)−M (z)
)−1

= {(x, y −M (z)x) : ax+ by = 0;x, y ∈ C}−1

= {(y −M (z)x, x) : ax+ by = 0;x, y ∈ C}

=

{(
−a+ bM (z)

b
x, x

)
, x ∈ C

}
=

{(
x,

−b
a+ bM (z)

x

)
, x ∈ C

}
=

−b
a+ bM (z)

.IC.

�

Proposition 5. Let (a, b) ∈ C× C∗. Then, for all z ∈ ρ (A∞) ∩ ρ
(
A(a,b)

)
and all

g ∈ L2 (Ω, µ) ,(
A(a,b) − z

)−1
(g) =+∞

p=0

Cp
ap − z

Ψp + Cei − Ce−i −
1

z
g⊥Ψ

− b

a+ bM (z)
× 4 〈g, ez̄〉

(Φ (ei, ez̄) + Φ (e−i, ez̄)) (Φ (ez, ei) + Φ (ez, e−i))
ez,

where constants g⊥Ψ , C, Cp, p = 0, 1, 2, ...are defined from lemma 2.
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Proof. Note firstly that γ∗ (z̄) applies ker (A∗ − z) into C according to the rule,

γ∗ (z̄) (h) =
2 〈h, ez̄〉

Φ (ei, ez̄) + Φ (e−i, ez̄)

On the other hand, by theorem 2, one has for every g ∈ L2 (Ω, µ) ,

(
A(a,b) − z

)−1
(g) = (A∞ − z)−1

(g) + γ (z)
(
Θ(a,b) −M (z)

)−1
γ∗ (z̄) (〈g, ez̄〉 ez̄)

= (A∞ − z)−1
(g) +

+ 〈g, ez̄〉 γ (z)
(
Θ(a,b) −M (z)

)−1
(

2

Φ (ei, ez̄) + Φ (e−i, ez̄)

)
= (A∞ − z)−1

(g) +

+ 〈g, ez̄〉 γ (z)

(
−b

a+ bM (z)
× 2

Φ (ei, ez̄) + Φ (e−i, ez̄)

)
= (A∞ − z)−1

(g) +

− b

a+ bM (z)
〈g, ez̄〉 γ (z)

(
2

Φ (ei, ez̄) + Φ (e−i, ez̄)

)
= (A∞ − z)−1

(g) +

− b

a+ bM (z)
× 4 〈g, ez̄〉

(Φ (ei, ez̄) + Φ (e−i, ez̄)) (Φ (ez, ei) + Φ (ez, e−i))
ez.

hence, the result follows now from lemma 2 and corollary 1. �

4. Generalized resolvents

4.1. Nevanlinna families and exit space extensions. So far, all considered
extensions are canonical (e.g. act in the same space that operator A). In this
section, investigations concern selfadjoint (exit space) extensions, that is selfadjoint
extensions acting in a wider space. Except theorem 8, all following definitions and
statements are taken from [7, 8].

Definition 3. A family of linear relations τ (λ) , λ ∈ C\R, on Hilbert space X is
called a Nevanlinna family if;

(1) for every λ ∈ C+(C−), the relation τ (λ) is maximal dissipative ( accumu-
lative respectively),

(2) τ (λ)
∗

= τ
(
λ̄
)

;λ ∈ C\R,
(3) for some (and hence all) µ ∈ C+(C−), the operator family (τ (λ) + µ)

−1

∈ (B (X )) is holomorphic for all λ ∈ C+(C−).

By the maximality condition, each relation τ (λ),λ ∈ C\R is necessarily closed.

The class of Nevanlinna families in X is denoted by R̃ (X ) .

Definition 4. A pair {Φ1,Φ2} of holomorphic B (X )−valued functions on C+∪C−
is said to be a Nevanlinna pair if,

a)
Im (Φ1 (λ) ,Φ∗2 (λ))

Imλ
≥ 0;λ ∈ C+ ∪ C−,

b) Φ∗2
(
λ̄
)

Φ1 (λ)− Φ∗1
(
λ̄
)

Φ2 (λ) = 0;λ ∈ C+ ∪ C−,
c) 0 ∈ ρ (Φ2 (λ)± iΦ1 (λ)) , λ ∈ C±.
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Note that Nevanlinna families and Nevanlinna pairs are connected via the for-
mula

τ (λ) = {(Φ1 (λ) (x) ,Φ2 (λ) (x)) : x ∈ X} (4.1)

Let A be a symmetric operator on a Hilbert space H with equal defect numbers.

Let Ã be a selfadjoint extension of A acting on a Hilbert space H̃ which contains H
as a closed subspace. Denote by PH the orthoprojector of H̃ onto H. The compres-

sion Rλ = PH (A− λ)
−1 ∣∣
H of the resolvent of Ã to H is said to be a generalized

resolvent of A.

For the studied Carleman operator, one has the following result,

Theorem 8. Let Ã be an exit space selfadjoint extension of A. Then, there exists
a Nevanlinna pair {Φ1,Φ2} of holomorphic scalar functions such that for every

λ ∈ ρ(Ã) ∩ ρ (A∞) ; Φ2 (λ) +M (λ) Φ1 (λ) 6= 0 and

Rλ =+∞
p=0

Cp
ap − z

Ψp + C (ei − e−i)−
1

z
g⊥Ψ

− Φ1 (λ)

Φ2 (λ) +M (λ) Φ1 (λ)
× 4 〈g, ez̄〉

(Φ (ei, ez̄) + Φ (e−i, ez̄)) (Φ (ez, ei) + Φ (ez, e−i))
ez,

where constants g⊥Ψ , C, Cp, p = 0, 1, 2, ... are defined from lemma 2.

Proof. Suppose firstly that Rλ = (A∞ − λ)
−1
. In this case, one can take as a

Nevanlinna pair {Φ1,Φ2} = {0,Φ2} ; where Φ2 is a holomorphic function on C+∪C−
such that Φ2 (λ) 6= 0.

Suppose now that Rλ 6= (A∞ − λ)
−1
. According to [5, 14], there exists a Nevan-

linna function τ (.) ∈ R̃ (X ) such that the Krein-Näımark formula

Rλ = (A∞ − λ)
−1 − γ (λ) (τ (λ) +M (λ))

−1
γ∗
(
λ̄
)

(4.2)

holds. M (λ) and γ (λ) are the Weyl function and the γ−field defined in preceding
section. Let {Φ1,Φ2} be a Nevanlinna pair satisfying (4.1). Then,

(τ (λ) +M (λ))
−1

= {(Φ1 (λ)x, (Φ2 (λ) +M (λ) Φ1 (λ))x) : x ∈ C}−1

= {((Φ2 (λ) +M (λ) Φ1 (λ))x,Φ1 (λ)x) : x ∈ C}
Remark that Φ2 (λ) +M (λ) Φ1 (λ) 6= 0. Indeed;

Φ2 (λ) +M (λ) Φ1 (λ) = 0 ∧ (τ (λ) +M (λ))
−1

(∈ B (C))

=⇒ Φ1 (λ) = 0

=⇒ Φ2 (λ) = (τ (λ) +M (λ))
−1

= 0

=⇒ Rλ = (A∞ − λ)
−1
.

Consequently,

(τ (λ) +M (λ))
−1

=

{(
x,

Φ1 (λ)

Φ2 (λ) +M (λ) Φ1 (λ)
x

)
: x ∈ C

}
=

Φ1 (λ)

Φ2 (λ) +M (λ) Φ1 (λ)
.IC.

Replacing in formula (4.2) and using the same reasonning as in proposition 5, one
can easily obtain the expected result. �
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Remark 3. The canonical selfadjoint extension case (proposition 5) can be derived
from the precedent theorem by setting {Φ1,Φ2} = {b, a}
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