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ON THE CLASS OF n-POWER QUASI-NORMAL OPERATORS
ON HILBERT SPACE

(COMMUNICATED BY SALAH MECHERI)

OULD AHMED MAHMOUD SID AHMED

ABSTRACT. Let T be a bounded linear operator on a complex Hilbert space
H. In this paper we investigate some, properties of the class of n-power quasi-
normal operators , denoted [nQN], satisfying T"|T|? — |T|2T™ = 0 and some
relations between n-normal operators and n-quasinormal operators.

1. INTRODUCTION AND TERMINOLOGIES

A bounded linear operator on a complex Hilbert space, is quasi-normal if T
and T*T commute. The class of quasi-normal operators was first introduced and
studied by A.Brown [5] in 1953. From the definition, it is easily seen that this class
contains normal operators and isometries. In [9] the author introduce the class
of n-power normal operators as a generalization of the class of normal operators
and study sum properties of such class for different values of the parameter n. In
particular for n = 2 and n = 3 (see for instance [9,10]). In this paper, we study
the bounded linear transformations 7' of complex Hilbert space H that satisfy an
identity of the form

™T*T =T"TT", (1.1)

for some integer n. Operators T satisfying (1.1) are said to be n-power quasi-
normal.

Let L(H) = L(H, H) be the Banach algebra of all bounded linear operators on
a complex Hilbert space H. For T' € L(H), we use symbols R(T) , N(T') and T*
the range , the kernel and the adjoint of T" respectively,.

Let W(T) ={ (Tz | z) :z € H,|jz|| = 1} the numerical range of T". A subspace
M C H is said to be invariant for an operator T' € L(H) if TM C M, and in
this situation we denote by T|M the restriction of T to M. Let o(T),c,(T) and
o,(T), respectively denote the spectrum, the approximate point spectrum and point
spectrum of the operator 7.
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For any arbitrary operator T' € L(H), |T| = (I'"*T)z and

[T*,T) =TT - TT* = |T|> — |T*|?
(the self-commutator of T).

An operator T is normal if T*T = TT™*, positive-normal (posinormal) il there ex-
its a positive operator P € L(H) such that TT* = T*PT, hyponormal if [T*,T]
is nonnegative(i.e. |T*|? < |T|?, equivalently ||[T*z| < ||Tx|, V 2 € H), quasi-
hyponormal if T*[T*, T|T is nonnegative, paranormal if | Tz||?> < ||T%x| for all
x € H, n-isometry if

ALy (;L)T*n_lTn_l + (;L)T*n—QTn—Qm + (_1)71[ =0,

m-hyponormal if there exists a positive number m, such that
m*(T — NXI)*(T — \I) — (T — \I)(T — \I)* < 0;for all \€C,
Let [N]; [@N]; [H]; and (m — H) denote the classes constituting of normal, quasi-
normal, hyponormal, and m-hyponormal operators. Then
[N] C [@N] C [H] C [m — H].
For more details see [1, 2, 3, 11, 14 ,15].

Definition 1.1. (/7]) An operator T € L(H) is called (e, §)-normal (0
B) if

IN
Q

IN
—_
IN

Q?T*T < TT* < B*T*T.
or equivalently
al|Tz|| < || T*z|| < B||Tz|| for all x € H.

Definition 1.2. ([9]) Let T € L(H). T is said n-power normal operator for a
positive integer n if

™7 =T"T".
The class of all n-normal operators is denoted by [nN].
Proposition 1.3. (/9]) Let T € L(H), then T is of class [nN] if and only if T™ is
normal for any positif integer n.

Remark. T is n-power normal if and only if T™ is (1,1)-normal.

The outline of the paper is as follows: Introduction and terminologies are de-
scribed in first section. In the second section we introduce the class of n-power
quasi-normal operators in Hilbert spaces and we develop some basic properties of
this class. In section three we investigate some properties of a class of operators
denoted by (Z") contained the class [nQN.]

2. BASIC PROPERTIES OF THE CLASS [nQN]

In this section, we will study some property which are applied for the
n—power quasi-normal operators.

Definition 2.1. For n € N, an operator T € L(H) is said to be n-power quasi-
normal operator if

TMT*T = T+,
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We denote the set of n-power quasi-normal operators by [nQN]. It is obvious
that the class of all n-power quasi-normal operators properly contained classes of
n-normal operators and quasi-normal operators, i.e., the following inclusions holds

[nN] C [nQN] and [QN] C [nQN].
Remark.

(1) A I-power quasi-normal operator is quasi-normal.

(2) Ewvery quasi-normal operator is n-power quasi-normal for each n.

(3) It is clear that a m-power normal operator is also n-power quasi-normal.
That the converse need not hold can be seen by choosing T to be the unilat-

0o 0 0
. o 9 . 10 0 ... .
eral shift, that is, if H =1, the matriz T = 0 L0 LIt is

easily verified that T*T* — T*T? # 0 and (T*T* — T*T?)T = 0. So that T
is not 2-power normal but is a 2-power quasi-normal.
Remark. An operator T is n-power quasi-normal if and only if
[T, T*T) = [T", T*]T = 0.
Remark. An operator T is n-power quasi-normal if and only if
TT|? = |T|*T".
First we record some elementary properties of [nNQ)]
Theorem 2.2. If T € [nQN], then
(1) T is of class 2nQN].
(2) if T has a dense range in H , T is of class [nN]. In particular, if T is
invertible, then T~ is of class [nQN].
(3) If T and S are of class [NnQN] such that [T, S| = [T, S*] =0, then T'S is
of class [nQN].
(4) If S and T are of class [nQN] such that ST =TS = T*S = ST* = 0,,
then S + T is of class [nQN].

Proof.
(1) Since T is of [n@QN], then
T"T*T = T*TT™. (2.1)
Multiplying (2.1) to the left by 7", we obtain
T?"T*T = T*TT*".

Thus T is of class [2nQN].
(2) Since T is of class [nQN], we have for y € R(T) : y =Tz, x € H, and
|(T"T* = T*T™)y|| = ||(T"T* — T*T™)Ta|| = |(T"T*T — T*T"* )z = 0.

Thus, T is n-power normal on R(T) and hence T is of class [nN]. In case
T invertible, then it is an invertible operator of class [nN] and so

™7 =T"T".
This in turn shows that
Tfn(T*—lel) _ [(TT*)Tn]fl _ [Tn+1T*]71 _ [T*—lel]Tfn,
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which prove the result.
3)
(rs)~(rs)rs = 1T"S"T*S*TS=1T"T"TS"S*S
T*TH S S = (TS)*(TS)" .
Hence, T'S is of class [nQN].
(4)
(T+8)"(T+8)(T+S) = (IT"+8")(T"T+ S*S)
= T"T*"T+85"S*S
_ T*T'n.+1 + S*sn+1
= (T+8)*(T+S)" .
Which implies that 7'+ S is of class [nQN].

Proposition 2.3. If T is of class [nQN] such that T is a partial isometry, then T
is of class [(n + 1)QN].

Proof. Since T is a partial isometry, therefore

TT*T =T [4],p.153). (2.2)
Multiplying (2.2) to the left by T*T"*! and using the fact that T is of class [nNQ)],
we get

T2 = T*TPATRT
= T"1*1T.1TT*T
7T,

which implies that T is of class [(n + 1)QN].

The following examples show that the two classes [2NQ] and [3N(Q)] are not the
same.

-1 0 O
Example 2.4. Let H=C3 and let T = 0 0 0 | €L(C3).Then by simple
1 01
calculations we see that T is not of class [3QN] but of class [2QN].
1 1 1
Example 2.5. Let H = C? and let S = 0 0 O € L(C?). Then by simple
-1 0 -1

calculations we see that S is not of class [2QN] but of class [3QN].

Proposition 2.6. Let T € L(H) such that T is of class [2QN]([3QN], then T is
of class [nQN] for all positive integer n > 4.

Proof. We proof the assertion by using the mathematical induction. For n =4 it
is a consequence of Theorem 2.2. 1 .

We prove this for n = 5. Since T' € [2QN] ,
T°T*T = T*T3, (2.3)
multiplying (2.3) to the left by T° we get
T°T*T = T3T*T?.
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Thus we have
57T = T37*T3
_ T*T4T2
T*T5.
Now assume that the result is true for n > 5 i.e
T"T*T = T*TT",
then
T = TT*T"
= TT*T37" 2
= 737" TT"?
—  rpATr(n-2)
= T2,
Thus T is of class [(n + 1)QN].

Proposition 2.7. If T is of class [nQN] such that N(T*) C N(T), then T is of
class [nN].

Proof. In view of the inclusion N(T™*) C N(T), it is not difficult to verify the
normality of T".

Next couple of results shows that [nQN] is not translation invariant
Theorem 2.8. If T and T — I are of class [2QN], then T is normal.
Proof. First we see that the condition on 7" — I implies
T*(T*T) — T°T* — 2T(T*T) + 2TT* = (T*T)T? — T*T? — 2(T*T)T + 2T*T.
Since T is of class [2QN], we have
~T?T* - 2T(T*T) + 2TT* = —T*T? — 2(T*T)T + 2T*T,

. —TT** - 2(T*T)T* 4+ 2TT* = —T**T — 2T*(T*T) + 2T*T (2.4)
We first show that (2.4) implies
N(T*) C N(T) (2.5)
Suppose T*z = 0. From (2.4), we get
—3T7**Tx +2T*Tx = 0. (2.6)
Then

—3T**Tx + 27Tz = 0.
Therefore, as T is of class [2QN],
=3T*TT**x + 2T**Tx = 0
and hence
27**Tx = 0.

Consequently, (2.6) gives 2T*Tx = 0 or Tx = 0.This proves (2.5). As observe in
Proposition 2.7 and Proposition 1.3 T2 is normal. This along with (2.4) gives

~T(T*T) + TT* = —(T*T)T + T*T,
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. T*(T*T — TT*) = T*T — TT". (2.7)
If N(T* — I) = {0}, then (2.7) implies T is normal.
Now assume that N(T* — I) is non trivial. Let T*z = z. Then (2.6) gives
T*Ty — T*Tx = T*Tx — Tx.
Since T*2T = TT*?, we have
T*Tx =Tu.
Therefore
|IT2||?> =< T*Tx |z >=<Tx |z >=< x| T*z >= ||z||*.

Hence

|| Tz — x||? ||[Tz||> + ||2]|> — 2Re < Tx | >
1T|* = |||?

0.

Or Tax = x. Thus N(T* —I) C N(T — I).This along with (2.7), yields

T(T*T — TT*) = T*T — TT*

and so
T(T*T-TT)T =TT -TT"T
or
TT*T? — T*T*T = T*T* - TT*T.
Since T?T* = T*T? and T3T* = T*T3 we deduce that T*T2? = TT*T. Thus T is
quasinormal. From (2.5), the normality of T follows.
In attempt to extend the above result for operators of class [nQN], we prove

Theorem 2.9. If T is of class 2QN] N [3QN] such that T — I is of class [nQN],
then T is normal.

Proof. Since T — I is of class [nQN], we have
S a TP T =TT =TT " apTF = T ap T, ax = (=1)"7*(}).
k=1 k=1 k=1 k=1
Under the condition on 7', we have by Proposition 2.6

aT(T*T) — (Y axTH)T* = ay(T*T)T = T* () axT*)
k=1 k=1
or

a (T*T)T* =T axT**) = ay T*(T*T) — (Y axT**)T. (2.8)
k=1 k=1
(2.8) implies that N(T™) C N(T'). In fact, let T*z = 0. From (2.8),we have

n
o TTz — () axT**)Tx = 0.
k=1
T is of class [2QN] and of class [3QN], we deduce that

a\T**Tx — ayT*Tx — a;T**Tx =0 (2.9)
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and hence
a1 T*3Tx — ayT*2T — as T3 Tz =0
Hence
a1 T**Tx.

Consequently (2.9) gives T*Tx = 0, which implies that Ta = 0.
It follows by Proposition 2.7 that T* is normal for k = 2,3, ...,n and hence

T(T'T)-TT" =(T"T)T - T*T
or
™(TT" —T*T)=TT* - T*T.
Hence,
(T*—=I)(TT*-T*T) =0.
A similar argument given in as in the proof of Theorem 2.8 gives the desired result.
Theorem 2.10. If T and T* are of class [nQN], then T™ is normal.
First we establish
Lemma 2.11. If T is of class [nQN], then N(T™) C N(T*") forn > 2.
Proof. Suppose T"x = 0. Then
T (T*T)T" 'z = 0.

By hypotheses,

T*TT*"T" 'z =0

which implies

TT*"T" 'z = 0.
Hence

T 'z = 0.
Under the condition on T', we have

T*TT*" " 23 = ()

Hence
T ?z = 0.
By repeating this process we can find
T"x = 0.

Proof of Theorem 2.10. By hypotheses and Lemma 2.11
N(T*™) = N(T™).

Since T is of [n@QN], [T"T* —T*T"|T™ = 0,i.e. [T"T* —T*T"] =0 on cR(T).
also the fact that N(T™) is a subset of N(T™) gives [T"T* — T*T"] = 0 on N(T™).
Hence the result follows.

Theorem 2.12. If T and T? are of class 2QN], and T is of class [3QN], then T?
is quasinormal.
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Proof. The condition that T2 is of class [2QN] gives
T(T*2T?) = (T*2T2)T*
Implies
T*5(T*T)T = (T*2T2)T**
Since T if of class [3QN], we have
T2(T*TYT*T = (T*2T?)T*

And hence
T**(T*T)*T** = (T**T*)T** [T is of class [2QN]].
Implies
(T*T)*T** = (T**T*)T** [Tis of class 2QN]]
or

T'(T*T)* — T**T?) = 0.
By Lemma 2.11,
T*ZTQ((T*T)Q _ T*2T2) =0

or
T?(T*T)? — T**T?)] = 0. (2.10)
Hence
T*2[((T*T)*> = T**T%)] =0, [N(T?)is a subset of N(T*?)].
Or

[(T*T)? — T**T?)]T? = 0. (2.11)
Since T is of class [2QN], T? commutes with (T*T)?. Hence from (2.10) and (2.11),
we get the desired conclusion.

Theorem 2.13. If T and T? are of class [2QN] and N(T) C N(T*), then T? is
quasinormal.

Proof. By the condition that 72 is of class [2QN], we have

(T*2T2)T*4 _ T*4(T*2T2)
= T*T*YT*T)T
= TH(T*T)T**T [T is of class [2QN]]
= TH(T*T)T*(T*T)T**

Thus we have
{(T*2T2)T*2 _ [T* (T*T)]Q}T*Q _ 0

or

T{T*(T**T?) — [(T*T)T)*} = 0.
Then under the kernel condition

T{T*(T**T?) — [(T*T)T)*} =0
or

(T**T*)T** — [T*(T*T)*}x = 0 for = € clR(T*).

(1),
{(T**T*)T*? — [T*(T*T))*}y =0 for y € N(T).

{
Since N(T') C N
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Thus
{TPTT [T T)P) =0
or
TQ(T*2T2) — [(T*T)T]Q

= T*T°T*T?

= T*T*(T*TT

= T*(T*T)T3 [Tis of class [2QN]

— (T*2T2)T2.
This proves the result.
Theorem 2.14. Let T be an operator of class [2QN] with polar decomposition

T = U|T|. If N(T*) C N(T), then the operator S with polar decomposition U?|T|
s normal.

Proof. It follows by Proposition 2.7 that 72 is normal and N (T*) = N(T*?) and
by Lemma 2.11 we have

N(T) = N(T™). (2.12)
As a consequence, U turns out to be normal and it is easy to verify that
[T|U|TPU*|T| = |T|U*|TPU|T].
Since
N(|T|) = N(U) = N(U"),
[TlU|T]*U* = |T|U*|T]PU
and hence
UIT]?U* = U*|T|*U.
Again by the normality of U , we have
U|T|\U* =U"T|U (2.13)
Also U*?U? = U*U, showing U? to be normal partial isometry with N(U?) =

N(|T]). Thus U?T| is the polar decomposition Note that (2.13) the normality
shows that U? and |T| are commuting. Consequently

(U2|T])* (U?|T1) T\U**U?|T|
T\U*U*?|T|

(U2[T))(U?IT])"

This completes the proof.
Corollary 2.15. If T is of class [2QN] and 0 ¢ W(T'), then T is normal

Proof. Since 0 ¢ W(T') gives N(T) = N(T*) = {0} and so by our Proposition 2.7
, T? is normal. Then [T*T,TT*] = 0. Now the conclusion follows form [8].

Theorem 2.16. Let T is of class [2QN] such that [T*T,TT*] = 0. Then T? is
quasinormal.
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Proof.

(T*2T2)T2 _ T*(T*T)T3
T*T*T*T*?
(T*T)(TT*)T?
(TT*)(T*T)T?
= TT*T?T*T
T(T*T)(TT*)T
T(TT*)(T*T)T
T2(T*2T?).

This proves the result.

Theorem 2.17. If T is of class [2QN] and [3QN] with N(T) C N(T*), then T is
quasinormal.

Proof.
T*3(T*T) = T*(T*T)T** [T is of class [2QN]]
(T*T)T*3
Hence
[T**T — T*TT*|T** = 0
or

T[T*T* —TT*T) = 0,
Since N(T) C N(T*),N(T) = N(T?) and therefore
TIT*T? - TT*T) =0, or [T**T — T*TT*|T* = 0.
Again by N(T') C N(T*),we get the desired conclusion.

Theorem 2.18. If an operator T of class [2QN] is a 2-isometry , then it is an
isometry.

Proof. By the definition of a 2-isometry,

(T*2T?)(T*T) — 2(T*T)* + T*T = 0.
Since T is of class [2QN]

T*(T*T)T? — 2(T*T)% + T*T = 0,

that is
T37% —2(T*T)*> + T*T = 0. (2.14)
Also
T*[T**T? - 2T*T + I|T = 0
i.e.

T*3T3 - 2T**T? 4 T*T = 0. (2.15)
From (2-14) and (2-15) T*?*T? = (T*T)? and hence
(T*T)? —2(T*T)+ I =T"T? - 2T*T + 1 = (T*T - 1)* =0

or
™T=1.
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Theorem 2.19. If An operator T is of class [2QN]|N[3QN] is an n-isometry, then
T is an isometry.

Proof. By the definition of n-isometry,
T T T T— ()T T T T+ (1) 2 () T2 TP T T+ (=) ()T TT*T+(—1)"T*T = 0.
Since T is of class [2QN] N [3QN,] we have by Proposition 2.6
T ()T T A (1) 2 () T3+ (1) () (T T)* +(—1)"T*T = 0.
(2.16)

n—2

Also
T[T — ()T T L+ () ()T + (-D)MT =0
ie.
T (T T+ (=) )T 4 ()" TTT =0 (2.17)
From (2.16) and (2.17) T?*T? = (T*T)?2. Consequently (T*)*T* = (T*T)*, V k€
N, and hence

(T )" = (@) 4+ (1))@ T) + (1) T =0= (I - T*T)".

n—1

This completes the proof.

Definition 2.20. An operator A € L(H) is said to be quasi-invertible if A has zero
kernel and dense range.

Definition 2.21. ([18]) Two operators S and T in L(H) are quasi-similar if there
are quasi-invertible operators A and B in L(H) which satisfy the equations

AS=TA and BT = SB.

If M is a closed subspace of H,H = M @& M~. If T is in L(H), then T can be
written as a 2 X 2 matrix with operators entries,

W X
(v %)
where W € L(M), X € LM+, M), Y € L(M,M*'), and Z € L(M*) (cf.
Conway [6]).

Proposition 2.22. If S and T are quasi-similar n-power quasi-normal operators in
L(H) such that N(S) = N(T),N(T) and N(S) are reducing respectively for T and
S, then Sy = S|n(syr and T1 = T|n(ry+ are quasi-similar n-power quasi-normal
operators.

Proof. Since S and T are quasi-similar, there exists quasi-invertible operators
A and B such that AS = TA and SB = BT. the N(S) is invariant under both
A and B . Thus the matrices of 5,7, A and B with respect to decomposition
H = N(S)® N(S)* are

Sl ) T 0] A1 0] By 0]

O O )J°’\ 0O O )’\ Ay Az )’\ By Bsj
respectively. It is easy to verify that the ranges of A; and B; are dense in N(S)*.
We now show that N(4;) = N(By) = {0}.

Suppose that z € N(Ap). Then TA(z @ 0) = 0. The equation AS = T A implies
that € N(Sy). This implies that = 0, and so N(A;) = {0}. Likewise N(B;) =
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{0}. Therefore A; and B; are quasi-invertible operators on N(S)* and equations
AS = TA and SB = TB imply that 4151 = T1A; and S1By = B17;. Hence Sy
and T are quasi-similar. By a similar way as in [10, Proposition 2.1.(iv)] we can
see that the operators S; and T are n-power quasi-normal.

3. THE (Z™) -CLASS OPERATORS
In this section we consider the class (Z?) of operators T satisfies
| T"T*T — T*TT"|* < (T — XI)*™(T — A\I)", for all A€ C

and for a positive a. The motivation is due to S. Mecheri [13] who considered the
class of operators T satisfying

|TT* — T*T|* < (T — \XI)*(T — \)

and A. Uchiyama and T. Yoshino [19] who discussed the class of operators T sat-
isfying
|TT* — T*T|* < (T — M)(T — \)*.

Definition 3.1. For T € L(H) we say that T belongs to the class (Z2) for some
a > 1 if there is a positive number c,, such that

| T"T*T — T*T" ™ < (T — M\)*™ (T — \XI)™ for all )\ €C,
or equivalently, if there is a positive number ¢, such that
| T"T*T = T*TT"| % z|| < o | (T — AI)"z],
for all x in H and X € C. Also, let
zr = |z
a>1

Remark. An operator T of class [nQN], it is of class (Z").

In the following examples we give an example of an operator not in the classes
Z" ,and an operator of these classes, which are not of class [nQN].

Example 3.2. If f is a sequence of complex numbers, f = (f(0), f(1), £(2),... ).

The p-Cesaro operators Cp, acting on the Hilbert space 1?2 of square-summable com-
plex sequences f is defined by

k
(Cpf)(k) = m;f(l) for fired real p >1 and k=0,1,2,....

These operators was studied extensively in [16] where it was shown, that these op-
o0
1

erators are bounded and (Chf) k) = Z mf(z)
In matriz form, we have
1 0 0
(l)p (l)p 0
G=| dr Gy oy
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We consider the sequence f defined as follows
k

§P
=1 and f(k) = ——— for k> 1.

F(0)=1 and f(k) L[l R
In [16] it is verified that f € [? | is eigenvector for C,, associated with eigenvalue 1,
so f € N(Cp,—1I), but f ¢ N(Cy —I). It follows that [[(Cp — I)" f)[| = 0.
On the other hand, we have

(CpCCp = CoC,CH) f = (Cp =IO f #0.

Hence, C), is a bounded operator but not of classes Z".

Example 3.3. Let T be a weighted shift operator on [? with weights a1 = 2, ap = 1
for all k > 2. That is

To(x1, 22, 23, .....) = (0, 121, Qe ...) and T*(x1,x2,...) = (122, @23, ...).
A simple computation shows that
(T"T*T —T*TT™)(2) = (0,0,...,0,621,0,0,...)

with 6x1 at the (n + 1)th place.
Morover

(T*"T*T—T*TT*")(z) = (—62,41,0,0,...) and |T"T*T-T*TT"|*x = (—-36x1,0,0,...).
Therefore T is not of class [nQN] and however T is of class Z} C Z™.

Lemma 3.4. For each o, 8 such as 1 < a < 3, we have Zg, C Zj.

Proof.

TV T — T TP = | T — T B | T T — T T P T T — T TR
< |ThTrT - TP T — Tt |
< @7 E(T = AT =AD"
= (T = N)™(T — \I)"

where

2 21\ B—a 2
CF = (2||T|"**) 2.
There exists an Hilbert space H°: H C H°, and an isometric *-homomorphism

preserving order , i.e, for all T, S € L(H) and A, u € C, we have

Proposition 3.5. ([6],[13] Berberian technique) Let H be a complex Hilbert space.
Then there exists a Hilbert space H® O H and a map

O:L(H)— LH?): Tr—T°

satisfying: ® is an *-isometric isomorphism preserving the order such that

O(T)<P(S) if T<S.
a(®(T)) = o(T), 0a(T) = 0a(2(T)) = 0,((T)).
If T is a positive operator, then ®(T*) = |®(T)|* for all a > 0.

1. &(T*) = &(T)*.

2. BT + pS) = AB(T) + pud(S).
3. d(Iy) = Iyo.

4. ®(TS) = &(T)D(S).

5. | @(T)] = |71l

6.

7

8.
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Lemma 3.6. If an operator T is of class [nQN], then ®(T) is of class [nQN].
Lemma 3.7. If an operator T is of class Z™, then ®(T) is of class Z".
Proof. Since T is of class Z", there exists & > 1 and ¢, > 0 such that
|T"T*T — T*T" ™ < (T — \)*(T — \I)™ for all ) €C.

It follows from the properties of the map ¢ that

O(TT*T — T*T™ ) < ®(2(T — \)*™(T — AI)") forall X e C.
By the condition 8. above we have

o(T"T*T — T*T" M) = |o(|T"T*T — T*T™|)|*, for all a > 0.
Therefore

|B(T)"®(T*)D(T) — &(T*)®(T)" | < ®(A(T — N\)*™(T — X)) for all X € C.

Hence ®(T) is of class Z™.

Proposition 3.8. Let T be a class Z™ operator and assume that there exists a
subspace M that reduces T, then T|M is of class Z™ operator.

Proof. Since T is of class Z", there exists an integer p > 1 and ¢, > 0 such that
NT"T*T — T*T" 2" || < eon||(T — AI)"2||, for allx € H, for all A € C.

M reduces T, T can be written respect to the composition H = M @M as follows:

A O
(5 %)
By a simple calculation we get
A"A*A — A*AnHL 0]
naxp kgl
TT*T T ( O BnB*B_B*Bn+1>

By the uniqueness of the square root, we obtain
s el _ [ JATATA — A* AT 0]
|TTT T |—< 9] ‘BW‘B*BfB*BnJrH .
Now by iteration to the order 2P, it results that

oo nA* A _ A* An+1 or—1
T T T-T* T2 = 4747 — A4 , 1201
0 |B"B*B — B*B"t1|

Therefore for all x € M, we have
T T T=T* T 2" | = | A" A A=A A P | < o[ (T=AD)a]| = [[(A=AD) "],
Hence A is of class Z3, C Z".

Theorem 3.9. Let T of class Z".

(1) If X € 0,(T), A # 0, then X € 0,(T*), furthermore if X # p, then Ey (the
proper subspace associated with \) is orthogonal to E,,.

(2) If X € 0,(T), then X € o, (T*).

(3) TT*T — T*T? is not invertible.

Proof.
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(1) If T € Z*, then T € ZL, for some a > 1 and there exists a positive constant
Co such that

|TT*T — T*T?* < co(T — X)*(T — M) for all X € C.

As Tx = Az implies |TT*T — T*T?|22 = 0 and (TT* — T*T)z = 0 and
hence
(T = A)"z|| = [[(T = A)z]]

Mz fy) = Az ly) = (T |y) = (& |T"y) = (x [py) = plz [y).
Hence
(x ly) =0.
(2) Let A € 04(T") from the condition 7. above, we have

0a(T) = 0a(®(T)) = op(p(T)).

Therefore A € 0,(¢(T)). By applying Lemma 3.7 and the above condition
1., we get

A€ 0p(D(T)*) = 0, ((T™)).
(3) Let T' € Z'. then there exists an integer p > 1 and ¢, > 0 such that

I TT*T — T*T2)%" 2| < (T — M)z||> forall € H and for all A€ C.

It is know that 04(T) # 0. If X € 0,(T), then there exists a normed
sequence (&) in H such that |(T — A)z,,|| — 0 as m — co. Then

(TT*T — T*T*)2, —> 0as m — 0o
and so, (TT*T — T*T?) is not invertible.
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