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COMPACT MULTIPLICATION OPERATORS ON NONLOCALLY

CONVEX WEIGHTED SPACES OF CONTINUOUS FUNCTIONS

(COMMUNICATED BY FUAD KITTANEH)

J. S. MANHAS

Abstract. Let V be a system of weights on a completely regular Hausdorff
space and let B(E) be the topological vector space of all continuous linear

operators on a Hausdorff topological vector space E. Let CV0(X,E) and

CVb(X,E) be the nonlocally convex weighted spaces of continuous functions.
In the present paper, we characterize compact multiplication operators Mψ

on CV0 (X,E) ( or CVb(X,E)) induced by the operator-valued mappings

ψ : X → B(E) (or the vector-valued mappings ψ : X → E, where E is a
topological algebra).

1. Introduction

The theory of multiplication operators has extensively been studied during the
last three decades on different function spaces. Many authors like Abrahamse [1] ,
Axler [6] , Halmos [12] , Singh and Kumar [35] , Takagi and Yokouchi [45] have stud-
ied these operators on LP −spaces, whereas Arazy [4] , Axler [5] , Bonet, Domanski
and Lindström [9] , Shields and Williams [34] , Feldman [10] , Ghatage and Sun
[11] , Stegenga [42] , and Vukotic [46] have explored these operators on spaces of
analytic functions. Also, a study of these operators on weighted spaces of continu-
ous functions has been made by Singh and Manhas [36, 37, 38, 39, 40] , Manhas and
Singh [24] , Manhas [21, 22, 23] , Khan and Thaheem [17, 18] , Alsulami and Khan
[2, 3] , and Oubbi [29] , In this paper, we have made efforts to characterize compact
multiplication operators on the nonlocally convex weighted spaces of continuous
functions generalizing some of the results of the author [22, 23] and Alsulami and
Khan [2].
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2. Preliminaries
Throughout this paper, we shall assume, unless stated otherwise, that X is a

completely regular Hausdorff space and E is a non-trivial Hausdorff topological vec-
tor space with a base N of closed balanced shrinkable neighbourhoods of zero. A
neighbourhood G of zero in E is called shrinkable [19] if tḠ ⊆ intG, for 0 ≤ t < 1.
It is proved by Klee [19, Theorem 4 and Theorem 5] that every Hausdorff topo-
logical vector space has a base of shrinkable neighbourhoods of zero, and also the
Minkowski functional ρG of any such neighbourhood G is continuous and satisfies

Ḡ = {y ∈ E : ρG (y) ≤ 1} , intG = {y ∈ E : ρG (y) < 1} .
Let C (X,E) be the vector space of all continuous E-valued functions on X. Let

V be a set of non-negative upper semicontinuous functions on X. Then V is said
to be directed upward if for given u, v ∈ V and α ≥ 0, there exists w ∈ V such that
αu, αv ≤ w (pointwise). A directed upward set V is called a system of weights if
for each x ∈ X, there exists v ∈ V such that v (x) > 0. Let U and V be two systems
of weights on X. Then we say that U ≤ V if for every u ∈ U, there exists v ∈ V
such that u ≤ v. Now, for a given system of weights V , we define

CV0 (X,E) = {f ∈ C (X,E) : vf vanishes at infinity on X for each v ∈ V } ,
and

CVb (X,E) = {f ∈ C (X,E) : vf (X) is bounded in E for each v ∈ V } .
Clearly CV0 (X,E) ⊆ CVb (X,E) . When E (= R or C) , the above spaces are de-

noted by CV0 (X) and CVb (X) . The weighted topology on CVb (X,E) (resp.CV0 (X,E))
is defined as the linear topology which has a base of neighbourhoods of zero con-
sisting of all sets of the form

N (v,G) = {f ∈ CVb (X,E) : vf (X) ⊆ G} ,
where v ∈ V and G ∈ N .
With this topology, the vector space CVb (X,E) (resp.CV0 (X,E)) is called the

weighted space of vector-valued continuous functions which is not necessarily locally
convex. For more details on these weighted spaces, we refer to [13, 14, 15, 16, 19, 27] .
In case E is a locally convex space, a detailed information can be found in [7, 8, 25, 26,

30, 31, 32, 33, 43, 44.] . Let B(E) be the vector space of all continuous linear op-
erators on E. We denote by B, the family of all bounded subsets of E. For each
B ∈ B and G ∈ N , we define the set

W (B,G) = {T ∈ B (E) : T (B) ⊆ G} .
Then clearly B(E) is a topological vector space with a linear topology which has

a base of neighbourhoods of zero consisting of all sets of the form W (B,G). This
topology is known as the topology of uniform convergence on bounded subsets of
E.

By a topological algebra E we mean a topological vector space which is also
an algebra such that multiplication in E is separately continuous. Multiplication
in E is said to be left (right) hypocontinuous if for each G ∈ N and B ∈ B,
there exists H ∈ N such that BH ⊆ (resp. HB ⊆ G) . In case E is equipped
with both left and right hypocontinuous multiplication, we call E as a topological
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algebra with hypocontinuous multiplication. Clearly every topological algebra with
joint continuous multiplication is always a topological algebra with hypocontinuous
multiplication. For more details on these algebras, we refer to Mallios [20] .

For the mapping ψ : X → B (E) (or ψ : X → E, E as a topological algebra) ,
we define the linear map Mψ : CV0 (X,E)→ F (X,E) by Mψ (f) = ψ.f, for every
f ∈ CV0 (X,E) , where F (X,E) denotes the vector space of all functions from X
into E and the product ψ.f is defined pointwise on X as (ψ.f) (x) = ψx (f (x)) (or
(ψ.f) (x) = ψ (x) (f (x)) , for every x ∈ X. In case Mψ takes CV0 (X,E) into itself
and is continuous, we call Mψ, the multiplication operator on CV0 (X,E) induced
by the mapping ψ.

3. Compact Multiplication Operators

Throughout this section, we shall assume that for each x ∈ X, there exists f ∈
CV0 (X) such f (x) 6= 0. In case X is locally compact Hausdorff space this condition
is automatically satisfied.

In order to present the desired results, we need to record some definitions and
results as follows.

Let T ∈ B (E) . Then T is said to be compact if it maps bounded subsets of E
into relatively compact subsets of E. A completely regular Hausdorff space X is
called a KR − space if a function f : X → R is continuous if and only if f | K
is continuous for each compact subset K of X. Clearly all locally compact or
metrizable spaces are KR− spaces. A completely regular Hausdorff space X is said
to be a VR − space with respect to a given system of weights V on X if a function
f : X → R is necessarily continuous whenever, for each v ∈ V, the restriction of f
to {x ∈ X : v (x) ≥ 1} is continuous. Also, if V1 ≤ V2 for two systems of weights on
X, then of course any (V1)R − space is again a (V2)R − space. For more details on
VR − spaces, we refer to Bierstedt [8] .

A subset H ⊆ CV0 (X,E) is called equicontinuous at x0 ∈ X if for every neigh-
bourhood G of zero in E, there exists a neighbourhood N of x0 in X such that
f (x) − f (x0) ∈ G, for every x ∈ N and f ∈ H. If H is equicontinuous at every
point of X, then we say that H is equicontinuous on X. Moreover, using nets, we
say that a subset H ⊆ CV0 (X,E) is equicontinuous on X if and only if for every
x ∈ X and for every net xα → x in X,

sup {ρG (f (xα)− f (x)) : f ∈ H} → 0, for every G ∈ N .

The following generalized Arzela-Ascoli type theorem and related results can be
found in Khan and Oubbi [16] .

Theorem 3.1. Let X be a completely regular Hausdorff VR − space and let E be a
quasi-complete Hausdorff topological vector space. Then a subset M ⊆ CV0 (X,E)
is relatively compact if and only if

(i) M is equicontinuous;
(ii) M (x) = {f (x) : f ∈M} is relatively compact in E, for each x ∈ X;
(iii) vM vanishes at infinity on X for each v ∈ V (i,e., for each v ∈ V and

G ∈ N, there exists a compact set K ⊆ X such that v (x) f (x) ∈ G, for all f ∈M
and x ∈ X\K).
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Corollary 3.2. Let X be a locally compact Hausdorff space and let E be a quasi-
complete Hausdorff topological vector space. Let V be a system of constant weights
on X. Then a subset M ⊆ CV0 (X,E) is relatively compact if and only if

(i) M is equicontinuous;
(ii) M (x) = {f (x) : f ∈M} is relatively compact in E, for each x ∈ X;
(iii) M uniformly vanishes at infinity on X (i,e., for every G ∈ N , there exists

a compact set K ⊆ X such that f (x) ∈ G, for all f ∈M and x ∈ X\K).

Remark. Theorem 3.2 and Corollary 3.7 of [24] are proved for a completely regular
Hausdorff KR−space X.But with slight modification in the proofs both the results
are still valid if we take X as a completely regular Hausdorff VR − space.

Now we are ready to present the characterization of compact multiplication
operators on CV0 (X,E) .

Theorem 3.3. Let X be a completely regular Hausdorff VR − space and let E be
a non-zero quasi-complete Hausdorff topological vector space. Let ψ : X → B (E)
be an operator-valued mapping. Then Mψ : CV0 (X,E)→ CV0 (X,E) is a compact
multiplication operator if the following conditions are satisfied:

(i) ψ : X → B (E) is continuous in the topology of uniform convergence on
bounded subsets of E;

(ii) for every v ∈ V and G ∈ N, there exist u ∈ V and H ∈ N, such that
u (x) y ∈ H implies that v (x)ψx (y) ∈ G, for every x ∈ X and y ∈ E;

(iii) for every x ∈ X, ψ (x) is a compact operator on E;
(iv) ψ : X → B (E) vanishes at infinity uniformly on X, i,e., for each G ∈ N

and B ∈ B, there exists a compact set K ⊆ X such that ψx (B) ⊆ G, for every
x ∈ X\K;

(v) for every bounded set F ⊆ CV0 (X,E) , the set {ψxof : f ∈ F} is equicon-
tinuous for every x ∈ X.

Proof. According to [24, Corollary 3.7] and Remark 1, conditions (i) and (ii) imply
that Mψ is a multiplication operator on CV0 (X,E) . Let S ⊆ CV0 (X,E) be a
bounded set. To prove that Mψ is a compact operator, it is enough to show that
the set Mψ(S) satisfies all the conditions of Theorem 1. Fix x0 ∈ X. We shall
verify that the set Mψ(S) is equicontinuous at x0. Let G ∈ N . Then there exists
H ∈ N such that H + H ⊆ G. Choose v ∈ V such that v (x0) ≥ 1. Let Fv =
{x ∈ X : v (x) > 1} . Consider the set B = {f (x) : x ∈ Fv, f ∈ S} . Clearly the
set B is bounded in E. By condition (i), there exists a neighbourhood K1 of
x0 such that ψx − ψx0

∈ W (B,H) , for every x ∈ K1. Further, it implies that
ψx (f (x))−ψx0

(f (x)) ∈ H, for every x ∈ K1∩ Fv and f ∈ S. Again, by condition
(v), there exists a neighbourhood K2 of x0 such that ψx0

(f(x) − f(x0)) ∈ H, for
every x ∈ K2 and f ∈ S. Let N = K2 ∩K1 ∩Fv. Then for every x ∈ N and f ∈ S,
we have

ψx (f (x))− ψx0
(f (x0)) = ψx (f (x))− ψx0

(f (x)) + ψx0
(f (x))− ψx0

(f (x0))

∈ H +H ⊆ G.
This proves the equicontinuity of the set Mψ(S) at x0 and hence it is equicontinuous
on X. This established the condition (i) of Theorem 1. To prove condition (ii) of
Theorem 1, we shall show that the setMψ(S) (x0) is relatively compact in E for each
x0 ∈ X. Since the set B = {f (x0) : f ∈ S} is bounded in E and ψx0

is compact
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operator on E, by condition (iii), it follows that the set ψx0
(B) = Mψ(S) (x0) is

relatively compact in E. Finally we shall establish condition (iii) of Theorem 1
by showing that the set vMψ(S) vanishes at infinity on X for each v ∈ V. Fix
v ∈ V and G ∈ N . Since the set B = {v (x) f (x) : x ∈ X, f ∈ S} is bounded
in E, according to Condition (iv), there exists a compact set K ⊆ X such that
ψx(B) ⊆ G, for every x ∈ X\K. That is, v (x)ψx (f (x)) ∈ G, for every x ∈ X\K
and f ∈ S. This proves that the set vMψ(S) vanishes at infinity on X. With this
the proof of the theorem is complete. �

Theorem 3.4. Let X be a completely regular Hausdorff VR − space and let E be
a non-zero quasi-complete Hausdorff topological vector space. Let U be a system of
constant weights on X such that ∪ ≤ V. Let ψ : X → B (E) be an operator-valued
mapping. Then conditions (i) through (v) in Theorem 3 are necessary and sufficient
for Mψ to be a compact multiplication operator on CV0 (X,E) .

Proof. We suppose that Mψ is a compact multiplication operator on CV0 (X,E) . To
prove condition (i) , we fix x0 ∈ X, B ∈ B and G ∈ N . Let v ∈ V and f ∈ CV0 (X)
be such that v (x0) ≥ 1 and f (x0) = 1. Let K1 = {x ∈ X : v (x) |f (x)| ≥ 1} . Then
K1 is a compact subset of X such that x0 ∈ K1. According to [26, Lemma 2, p.
69], there exists h ∈ CV0 (X) such that h (K1) = 1. For each y ∈ B, we define
the function gy : X → E as gy (x) = h (x) y, for every x ∈ X. If we put F =
{gy : y ∈ B} , then F is clearly bounded in CV0 (X,E) and hence the set Mψ(F )
is relatively compact in CV0 (X,E) . According to Theorem 1, the set Mψ(F ) is
equicontinuous at x0. This means that there exits a neighbourhood K2 of x0 such
that ψx (gy(x))−ψx0

(gy(x0)) ∈ G, for every x ∈ K2 and y ∈ B. Let K = K1 ∩K2.
Then we have ψx (y) − ψx0

(y) ∈ G, for every x ∈ K and y ∈ B. This shows
that ψx − ψx0

∈ W (B,G) , for every x ∈ K. This proves that ψ : X → B (E)
is continuous at x0 and hence on X. In view of Remark 1, the proof of condition
(ii) follows from Corollary 3.7 of [24]. To establish condition (iii), let x0 ∈ X.
We select f ∈ CV0 (X) such that f (x0) = 1. Let B ∈ B. Then for each y ∈
B , we define the function hy : X → E as hy (x) = f (x) y, for every x ∈ X.
Clearly the set S = {hy : y ∈ B} is bounded in CV0 (X,E) and hence the set
Mψ(S) is relatively compact in CV0 (X,E). Again, according to Theorem 1, it
follows that the set Mψ(S) (x0) = {ψx0 (y) : y ∈ B} is relatively compact in E.
This proves that ψx0 is a compact operator on E. Now, to prove condition (iv),
we suppose that ψ : X → B (E) does not vanishes at infinity on X. This implies
that there exist G ∈ N and B ∈ B such that for every compact set K ⊆ X,
there exists xk ∈ X\K for which ψxk

(B)  G. Further, it implies that there
exists yk ∈ B such that ψxk

(yk) /∈ G. According to [41, Lemma 3.1], there exists
an open neighbourhood Nk of xk such that each v ∈ V is bounded on Nk. Let
Ok = Nk ∩ X\K. Then Ok is an open neighbourhood of xk for each compact set
K ⊆ X. Further, according to [26, Lemma 2, p.69], there exists fk ∈ CV0 (X) such
that 0 ≤ fk ≤ 1, fk (xk) = 1 and fk (X\Ok) = 0. For each compact K ⊆ X, we
define the function hk : X → E as hk (x) = fk (x) yk, for every x ∈ X. Clearly the
set M = {hk : K ⊆ X, K compact subset} is bounded in CV0 (X,E) and hence
the set Mψ(M) is relatively compact in CV0 (X,E) . Since U ≤ V, we can select
v ∈ V such that v (x) ≥ 1, for every x ∈ X. Again, Theorem 1 implies that the set
vMψ(M) vanishes at infinity on X. This implies that there exists a compact set
K0 ⊆ X such that v(x)ψx (hk (x)) ∈ G, for all hk ∈ M and for every x ∈ X\K0.
Since v (x) ≥ 1, for all x, it follows that ψx (fk0 (x) yk0) ∈ G, for every x∈ X\K0.
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For x = xk0 , we have ψxk0
(yk0) ∈ G, which is a contradiction. This proves that

ψ : X → B (E) vanishes at infinity on X. Finally, we shall prove condition (v). Let
F ⊆ CV0(X,E) be a bounded set. Fix x0 ∈ X andG ∈ N . Then there existsH ∈ N
such that H+H ⊆ G. Clearly the set B = {f (x) : x ∈ X, f ∈ F )} is bounded in E.
Since ψ : X → B (E) is continuous at x0, there exists a neighbourhood N1 of x0 in
X such that ψx (f (x))−ψx0

(f (x)) ∈ H, for every x ∈ N1 and f ∈ F. Again, since
the set Mψ(F ) is relatively compact in CV0(X,E), according to Theorem 1, the set
Mψ(F ) is equicontinuous at x0. This implies that there exists a neighbourhood N2

of x0 in X such that ψx (f (x))−ψx0
(f (x0)) ∈ H, for every x ∈ N2 and f ∈ F. Let

N = N1 ∩N2. Then for every x ∈ N and f ∈ F, we have

ψx0 (f (x)− f (x0)) = ψx0 (f (x))− ψx(f (x))+ψx(f (x))−ψx0(f (x0)) ∈ H+H ⊆ G.

This proves condition (v). This completes the proof of the theorem as the sufficient
part is already proved in Theorem 3. �

Theorem 3.5. Let X be a completely regular Hausdorff VR − space and let E
be a quasi-complete Hausdorff topological algebra with hypocontinuous multiplica-
tion containing the unit element e. Let U be a system of constant weights on X
such that U ≤ V. Then the vector-valued mapping ψ : X → E induces a compact
multiplication operator Mψ on CV0 (X,E) if and only if

(i) ψ : X → E is continuous;
(ii) for every v ∈ V and G ∈ N , there exist u ∈ V and H ∈ N such that

u (x) y ∈ H implies that v (x)ψ (x) y ∈ G, for every x ∈ X and y ∈ E;
(iii) for every x ∈ X, the operator Lψ(x) : E → E, defined by Lψ(x) (y) = ψ (x) y,

for every y ∈ E, is compact;
(iv) ψ : X → E vanishes at infinity on X;
(v) for every bounded set F ⊆ CV0 (X,E) , the set

{
Lψ(x)of : f ∈ F

}
is equicon-

tinuous for every x ∈ X.

Proof. In [24, Theorem 3.2], Manhas and Singh have characterized the weighted
composition operators Wψ,φ on CV0 (X,E) induced by the mappings φ : X → X
and ψ : X → E. If we take φ : X → X as the identity map, then Theorem 3.2 of
Manhas and Singh [24] and Remark 1 implies that Mψ is a multiplication operator
on CV0 (X,E) if and only if condition (i)-(ii) of Theorem 5 hold. Also, using
similar arguments of Theorem 4, it can be shown that Mψ is a compact operator
on CV0 (X,E) . �

Corollary 3.6. Let X be a locally compact Hausdorff space and let E be a non-zero
quasi-complete Hausdorff topological vector space. Let V be a system of constant
weights on X.Let ψ : X → B (E) be an operator-valued mapping. Then Mψ :
CV0 (X,E) → CV0 (X,E) is a compact multiplication operator if and only if the
following conditions are satisfied:

(i) ψ : X → B (E) is continuous in the topology of uniform convergence on
bounded subsets of E;

(ii) for every G ∈ N, there exists H ∈ N, such that y ∈ H implies that ψx (y) ∈
G, for every x ∈ X and y ∈ E;

(iii) for every x ∈ X, ψ (x) is a compact operator on E;
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(iv) ψ : X → B (E) vanishes at infinity uniformly on X, i,e., for each G ∈ N
and B ∈ B, there exists a compact set K ⊆ X such that ψx (B) ⊆ G, for every
x ∈ X\K;

(v) for every bounded set F ⊆ CV0 (X,E) , the set {ψxof : f ∈ F} is equicon-
tinuous for every x ∈ X.

Proof. The proof follows from Theorem 4 after using Corollary 2 instead of Theorem
1. �

Remark. (i) In case E is a quasi-complete locally convex Hausdorff space and X
is a locally compact Hausdorff space, Theorem 4 reduces to [23, Theorem 3.4].

(ii) In Corollary 6, if E is a quasi-complete locally convex Hausdorff space, it
reduces to Theorem 2.4 of Manhas [22].

(iii) If X is as VR−space without isolated points, then it is proved in [2, Corollary
4] that there is no non-zero compact multiplication operator Mψ on CV0 (X,E) .
But if X is a VR − space with isolated points, then Theorem 4 provide ( e.g. see
Example 1 below) non-zero compact multiplication operators Mψ on some weighted
spaces CV0 (X,E) whereas it is not the case with some of the Lp − spaces and
spaces of analytic functions. In [35], Singh and Kumar have shown that the zero
operator is the only compact multiplication operator on Lp − spaces (with non-
atomic measure). In [9], Bonet Domanski and Lindstrom have shown that there is
no non-zero compact multiplication operator on Weighted Banach Spaces of analytic
functions. Also, recently, Ohno and Zhao [28] have proved that the zero operator is
the only compact multiplication operator on Bloch Spaces.

Example 3.1. Let X = Z, the set of integers with the discrete topology and let
V = K+ (Z) , the set of positive constant functions on Z. Let E = Cb (R) be the
Banach space of bounded continuous complex valued functions on R. For each t ∈ Z,
we define an operator At : Cb (R)→ Cb (R) as Atf (s) = f (t) , for every f ∈ Cb (R)
and for every s ∈ R. Clearly, for each t ∈ Z, At is a compact operator. Let
ψ : Z → B (E) be defined as ψ (t) = e−|t|At, for t ∈ Z. Then all the conditions of
Corollary 6 are satisfied by the mapping ψ and hence Mψ is a compact multiplication
operator on C0 (Z, E) . In case we take E = C (R) with compact-open topology,
then the mapping ψ : Z → B (E) defined as above does not induces the compact
multiplication operator Mψ on C0 (Z, E) . But, if E = C (R) with compact-open

topology and we define ψ : Z → B (E) as ψ (t) = e−|t|At0 , for every t ∈ Z, where
At0 is a fixed compact operator on C (R) defined as At0f (s) = f (t0) , for every
f ∈ C (R) and for every s ∈ R, then it turns out that Mψ is a compact multiplication
operator on C0 (Z, E) .

Acknowledgement. The author is thankful to the referee for bringing into
notice the article by Alsulami and Khan [2]. The work of the author is independent
of the paper [2] and there is no overlaping of our results with those of [2]. In fact,
if X is a V R− space with isolated points, then our main Theorem 4 gives necessary
and sufficient conditions for Mψ to be non-zero compact multiplication operator on
some weighted spaces CV0 (X,E) which makes this result different from the result
given in [2].
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