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EXISTENCE OF WEAK SOLUTIONS FOR A SEMILINEAR

PROBLEM WITH A NONLINEAR BOUNDARY CONDITION

(COMMUNICATED BY VICENTIU RADULESCU)

G. A. AFROUZI, M. MIRZAPOUR, A. HADJIAN, S. SHAKERI

Abstract. This paper shows conditions for the existence of weak solutions of
the problem {

−∆u = λ1u+ f(x, u)− h(x) in Ω,
∂u
∂n

= g(x, u) on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary, ∂u
∂n

denotes the derivative of u with respect to the outer normal n, f : Ω×R → R
and g : ∂Ω × R → R are bounded Carathéodory functions, h ∈ L2(Ω) and
λ1 > 0 is the principal eigenvalue of −∆ on Ω with zero Dirichlet boundary
conditions. Our method is based on the minimum principle.

1. Preliminaries

The aim of this paper is to investigate the following semilinear problem{
−∆u = λ1u+ f(x, u)− h(x) in Ω,
∂u
∂n = g(x, u) on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary, ∂u
∂n denotes the

derivative of u with respect to the outer normal n, f : Ω×R → R and g : ∂Ω×R → R
are bounded Carathéodory functions and h ∈ L2(Ω).

Boundary value problems for partial differential equations play a fundamental
role both in theory and applications. To establish the existence of solutions to
nonlinear differential problems is very important as well as the application of such
results in the physical reality. In fact, it is well known that the mathematical
modelling of important questions in different fields of research, such as mechanical
engineering, control systems, economics, computer science and many others, leads
naturally to the consideration of nonlinear differential equations.
Elliptic problems involving the Laplacian have been studied by several authors; see,
e.g., [2, 5, 6, 7, 9] and their references. We follow the proof of main results from
Arcoya and Orsina [4].
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It is well known that the eigenvalue problem{
−∆u = λu in Ω,
u = 0 on ∂Ω

has a principal eigenvalue (i.e., the least one) λ1 > 0 which is simple and charac-
terized variationally by

λ1 = inf
u∈W 1,2(Ω)\{0}

∫
Ω
|∇u(x)|2 dx∫

Ω
|u(x)|2 dx

.

Let us denote by φ1 the positive (in Ω) eigenfunction associated with λ1.
We will suppose that f and g satisfy the following conditions:

(F) lims→±∞ f(x, s) = f±∞(x), for a.a. x ∈ Ω,
(G) limτ→±∞ g(x, τ) = g±∞(x), for a.a. x ∈ ∂Ω.
By a (weak) solution of (1.1), we mean any u ∈W 1,2(Ω) such that∫
Ω

∇u(x)∇v(x)dx− λ1

∫
Ω

u(x)v(x)dx−
∫
Ω

f(x, u(x))v(x)dx

+

∫
Ω

h(x)v(x)dx−
∫
∂Ω

g(x, u(x))v(x)dS = 0 (1.2)

for all test function v ∈W 1,2(Ω), where dS is the measure on the boundary.

2. Existence results

Our main result is the following.

Theorem 2.1. Let f(x, ·) and g(x, ·) be strictly decreasing and let the conditions
(F ) and (G) be satisfied. Then the problem (1.1) has at least one weak solution if
and only if∫

Ω

f+∞(x)φ1(x)dx+

∫
∂Ω

g+∞(x)φ1(x)dS <

∫
Ω

h(x)φ1(x)dx

<

∫
Ω

f−∞(x)φ1(x)dx+

∫
∂Ω

g−∞(x)φ1(x)dS. (2.1)

The associated energy functional to the problem (1.1), E : W 1,2(Ω) → R is
defined by

E(u) :=
1

2

∫
Ω

|∇u(x)|2dx− λ1
2

∫
Ω

|u(x)|2dx−
∫
Ω

F (x, u(x))dx

+

∫
Ω

h(x)u(x)dx−
∫
∂Ω

G(x, u(x))dS, (2.2)

where

F (x, s) :=

∫ s

0

f(x, t)dt for a.a. x ∈ Ω and s ∈ R

and

G(x, τ) :=

∫ τ

0

g(x, t)dt for a.a. x ∈ ∂Ω and τ ∈ R.

By the hypotheses on f and g, E is well defined and E ∈ C1(W 1,2(Ω),R). Also,
the weak solutions of (1.1) are exactly the critical points of the functional E.
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Definition 2.2. We say that a functional E : W 1,2(Ω) → R satisfies the (PS)
condition, if every sequence {un}∞n=1 ⊂W 1,2(Ω) satisfying

d := sup
n
E(un) <∞, ∇E(un) → 0,

contains a convergent subsequence.

Lemma 2.3. Let E be the energy functional associated with (1.1) and the Landesman-
Lazer type condition (2.1) be satisfied. Then each (PS)-sequence for E is bounded.

Proof. Let {un}∞n=1 ⊂W 1,2(Ω) be such that there exists c > 0 such that

|E(un)| ≤ c ∀n ∈ N, (2.3)

and there exists a strictly decreasing sequence {ϵn}∞n=1, limn→∞ ϵn = 0, such that

|⟨E′(un), v⟩| ≤ ϵn∥v∥ ∀n ∈ N, ∀v ∈W 1,2(Ω). (2.4)

Suppose by contradiction that ∥un∥ → ∞, and define vn := un

∥un∥ . Thus {vn}∞n=1

is bounded in W 1,2(Ω) and hence, at least its subsequence, converges to a function
v0 weakly in W 1,2(Ω) and strongly in L2(Ω) and L2(∂Ω) (see [8, Theorem A.8]).

Dividing (2.2) with u = un by ∥un∥2, we get due to (2.3),

lim sup
n→∞

[
1

2
− λ1

2

∫
Ω

|vn(x)|2dx−
∫
Ω

F (x, un(x))

∥un∥2
dx

+

∫
Ω

h(x)
un(x)

∥un∥2
dx−

∫
∂Ω

G(x, un(x))

∥un∥2
dS

]
≤ 0.

Since

lim
n→∞

[ ∫
Ω

F (x, un(x))

∥un∥2
dx+

∫
Ω

h(x)
un(x)

∥un∥2
dx−

∫
∂Ω

G(x, un(x))

∥un∥2
dS

]
= 0,

by the hypotheses on f, h, g and {un}∞n=1 while

lim
n→∞

∫
Ω

|vn(x)|2dx =

∫
Ω

|v0(x)|2dx,

we have

λ1

∫
Ω

|v0(x)|2dx ≥ 1.

Using the weak lower semicontinuity of the norm and the variational characteriza-
tion of λ1, we get

1 ≤ λ1

∫
Ω

|v0(x)|2dx ≤
∫
Ω

|∇v0(x)|2dx ≤ lim inf
n→∞

∫
Ω

|∇vn(x)|2dx = 1.

Thus

∥v0∥ = 1 and

∫
Ω

|∇v0(x)|2dx = λ1

∫
Ω

|v0(x)|2dx.

This implies, by the definition of φ1, that v0 = ±φ1. Choosing v = vn−φ1 in (2.4),
we obtain∣∣∣∣ ∫

Ω

∇vn(x)∇
(
vn(x)− φ1(x)

)
dx− λ1

∫
Ω

vn(x)
(
vn(x)− φ1(x)

)
dx

−
∫
Ω

f(x, vn(x))
(
vn(x)− φ1(x)

)
dx+

∫
Ω

h(x)
(
vn(x)− φ1(x)

)
dx

−
∫
∂Ω

g(x, vn(x))
(
vn(x)− φ1(x)

)
dS

∣∣∣∣ ≤ ϵn∥vn − φ1∥.
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Since vn → φ1 in L2(Ω) and in L2(∂Ω), by the hypotheses on f, g and h,

lim
n→∞

∫
Ω

vn(x)
(
vn(x)− φ1(x)

)
dx = 0,

lim
n→∞

∫
Ω

f(x, vn(x))
(
vn(x)− φ1(x)

)
dx = 0,

lim
n→∞

∫
∂Ω

g(x, vn(x))
(
vn(x)− φ1(x)

)
dS = 0,

lim
n→∞

∫
Ω

h(x)
(
vn(x)− φ1(x)

)
dx = 0,

we have

lim
n→∞

∫
Ω

∇vn(x)∇
(
vn(x)− φ1(x)

)
dx = 0.

Subtracting

lim
n→∞

∫
Ω

∇φ1(x)
(
∇vn(x)−∇φ1(x)

)
dx,

we conclude that

0 = lim
n→∞

∫
Ω

(
∇vn(x)−∇φ1(x)

)(
∇vn(x)−∇φ1(x)

)
dx ≥ lim

n→∞

(
∥vn∥− ∥φ1∥

)2 ≥ 0,

which implies ∥vn∥ → ∥φ1∥. The uniform convexity of W 1,2(Ω) yields that vn
converges strongly to φ1 in W 1,2(Ω).
Now we write (2.3) and (2.4) with v = un in the equivalent forms

−2c ≤
∫
Ω

|∇un(x)|2dx− λ1

∫
Ω

|un(x)|2dx− 2

∫
Ω

F (x, un(x))dx

+ 2

∫
Ω

h(x)un(x)dx− 2

∫
∂Ω

G(x, un(x))dS ≤ 2c

and

−ϵn∥un∥ ≤ −
∫
Ω

|∇un(x)|2dx+ λ1

∫
Ω

|un(x)|2dx+

∫
Ω

f(x, un(x))un(x)dx

−
∫
Ω

h(x)un(x)dx+

∫
∂Ω

g(x, un(x))un(x)dS ≤ ϵn∥un∥.

Summing up and dividing by ∥un∥, we have∣∣∣∣ ∫
Ω

f(x, un(x))vn(x)dx− 2

∫
Ω

ψ(x, un(x))vn(x)dx+

∫
Ω

h(x)vn(x)dx

+

∫
∂Ω

g(x, un(x))vn(x)dS − 2

∫
∂Ω

ϕ(x, un(x))vn(x)dS

∣∣∣∣ ≤ 2c

∥un∥
+ ϵn,

where

ψ(x, s) =

{
F (x,s)

s if s ̸= 0,

f(x, 0) if s = 0

and

ϕ(x, s) =

{
G(x,s)

s if s ̸= 0,

g(x, 0) if s = 0.
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Letting n to infinity and supposing for example vn → φ1, we obtain

lim
n→∞

[ ∫
Ω

f(x, un(x))vn(x)dx− 2

∫
Ω

ψ(x, un(x))vn(x)dx+

∫
∂Ω

g(x, un(x))vn(x)dS

−2

∫
∂Ω

ϕ(x, un(x))vn(x)dS

]
= −

∫
Ω

h(x)φ1(x)dx.

Since vn converges to φ1, we have limn→∞ un(x) = ∞ for a.a. x ∈ Ω and so

f(x, un(x)) → f+∞(x) for a.a. x ∈ Ω,

ψ(x, un(x)) → f+∞(x) for a.a. x ∈ Ω,

g(x, un(x)) → g+∞(x) for a.a. x ∈ ∂Ω,

ϕ(x, un(x)) → g+∞(x) for a.a. x ∈ ∂Ω.

The properties of f, F, g and G and the Lebesgue Dominated Convergence Theorem
then imply

lim
n→∞

[ ∫
Ω

f(x, un(x))vn(x)dx− 2

∫
Ω

ψ(x, un(x))vn(x)dx+

∫
∂Ω

g(x, un(x))vn(x)dS

−2

∫
∂Ω

ϕ(x, un(x))vn(x)dS

]
= −

∫
Ω

f+∞(x)φ1(x)dx−
∫
∂Ω

g+∞(x)φ1(x)dS,

and so ∫
Ω

f+∞(x)φ1(x)dx+

∫
∂Ω

g+∞(x)φ1(x)ds =

∫
Ω

h(x)φ1(x)dx,

which contradicts (2.1) and the Lemma is proved. �

Lemma 2.4. The functional E given by (2.2) is weakly coercive in W 1,2(Ω).

Proof. We proceed by contradiction. It is possible to choose a sequence {un}∞n=1

such that

∥un∥ → ∞, E(un) ≤ c and vn → +φ1 in W 1,2(Ω).

We get∫
Ω

h(x)φ1(x)dx −
∫
Ω

f+∞(x)φ1(x)dx+

∫
∂Ω

g+∞(x)φ1(x)dS

= lim
n→∞

[ ∫
Ω

h(x)vn(x)−
∫
Ω

F (x, un(x))

∥un∥
dx+

∫
∂Ω

G(x, un(x))

∥un∥
dS

]
≤ lim sup

n→∞

E(un)

∥un∥
≤ lim

n→∞

c

∥un∥
= 0,

which contradicts (2.1). This proves the Lemma. �

3. Proof of Theorem 2.1

By lemma 2.4 and weak lower semicontinuity of E, applying the Minimum prin-
ciple (see [8, p. 4, Theorem 1.2]), the functional E has a global minimum and the
problem (1.1) admits a weak solution.
Next, we show that (2.1) is a necessary condition. Let u ∈ W 1,2(Ω) be a weak
solution of (1.1). Then taking v = φ1 as a test function in (1.2), we obtain∫

Ω

f(x, u(x))φ1(x)dx+

∫
∂Ω

g(x, u(x))φ1(x)dS =

∫
Ω

h(x)φ1(x)dx (3.1)
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due to ∫
Ω

∇u(x)∇φ1(x)dx = λ1

∫
Ω

u(x)φ1(x)dx.

Since f(x, ·) and g(x, ·) are strictly decreasing functions, we obtain∫
Ω

f+∞(x)φ1(x)dx <

∫
Ω

f(x, u(x))φ1(x)dx <

∫
Ω

f−∞(x)φ1(x)dx

for a.a. x ∈ Ω, and∫
∂Ω

g+∞(x)φ1(x)dS <

∫
∂Ω

g(x, u(x))φ1(x)dS <

∫
∂Ω

g−∞(x)φ1(x)dS

for a.a. x ∈ ∂Ω. Summing up and using (3.1), then the proof is complete.
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