EXISTENCE OF WEAK SOLUTIONS FOR A SEMILINEAR PROBLEM WITH A NONLINEAR BOUNDARY CONDITION

(COMMUNICATED BY VICENTIU RADULESCU)

G. A. AFROUZI, M. MIRZAPOUR, A. HADJIAN, S. SHAKERI

Abstract

This paper shows conditions for the existence of weak solutions of the problem $$
\begin{cases}-\Delta u=\lambda_{1} u+f(x, u)-h(x) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=g(x, u) & \text { on } \partial \Omega\end{cases}
$$ where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with smooth boundary, $\frac{\partial u}{\partial n}$ denotes the derivative of u with respect to the outer normal $n, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are bounded Carathéodory functions, $h \in L^{2}(\Omega)$ and $\lambda_{1}>0$ is the principal eigenvalue of $-\Delta$ on Ω with zero Dirichlet boundary conditions. Our method is based on the minimum principle.

1. Preliminaries

The aim of this paper is to investigate the following semilinear problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+f(x, u)-h(x) & \text { in } \Omega \tag{1.1}\\ \frac{\partial u}{\partial n}=g(x, u) & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}(N \geq 1)$ with smooth boundary, $\frac{\partial u}{\partial n}$ denotes the derivative of u with respect to the outer normal $n, f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \partial \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are bounded Carathéodory functions and $h \in L^{2}(\Omega)$.

Boundary value problems for partial differential equations play a fundamental role both in theory and applications. To establish the existence of solutions to nonlinear differential problems is very important as well as the application of such results in the physical reality. In fact, it is well known that the mathematical modelling of important questions in different fields of research, such as mechanical engineering, control systems, economics, computer science and many others, leads naturally to the consideration of nonlinear differential equations.
Elliptic problems involving the Laplacian have been studied by several authors; see, e.g., $[2,5,6,7,9]$ and their references. We follow the proof of main results from Arcoya and Orsina [4].

[^0]It is well known that the eigenvalue problem

$$
\begin{cases}-\Delta u=\lambda u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a principal eigenvalue (i.e., the least one) $\lambda_{1}>0$ which is simple and characterized variationally by

$$
\lambda_{1}=\inf _{u \in W^{1,2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u(x)|^{2} d x}{\int_{\Omega}|u(x)|^{2} d x} .
$$

Let us denote by φ_{1} the positive (in Ω) eigenfunction associated with λ_{1}. We will suppose that f and g satisfy the following conditions:
(F) $\lim _{s \rightarrow \pm \infty} f(x, s)=f_{ \pm \infty}(x), \quad$ for a.a. $x \in \Omega$,
(G) $\lim _{\tau \rightarrow \pm \infty} g(x, \tau)=g_{ \pm \infty}(x), \quad$ for a.a. $x \in \partial \Omega$.

By a (weak) solution of (1.1), we mean any $u \in W^{1,2}(\Omega)$ such that

$$
\begin{align*}
\int_{\Omega} \nabla u(x) \nabla v(x) d x-\lambda_{1} \int_{\Omega} u(& x) v(x) d x-\int_{\Omega} f(x, u(x)) v(x) d x \\
& +\int_{\Omega} h(x) v(x) d x-\int_{\partial \Omega} g(x, u(x)) v(x) d S=0 \tag{1.2}
\end{align*}
$$

for all test function $v \in W^{1,2}(\Omega)$, where $d S$ is the measure on the boundary.

2. Existence Results

Our main result is the following.
Theorem 2.1. Let $f(x, \cdot)$ and $g(x, \cdot)$ be strictly decreasing and let the conditions (F) and (G) be satisfied. Then the problem (1.1) has at least one weak solution if and only if

$$
\left.\begin{array}{rl}
\int_{\Omega} f_{+\infty}(x) \varphi_{1}(x) d x+\int_{\partial \Omega} g_{+\infty} & (x) \varphi_{1}(x) d S
\end{array}\right)=\int_{\Omega} h(x) \varphi_{1}(x) d x .
$$

The associated energy functional to the problem (1.1), $E: W^{1,2}(\Omega) \rightarrow \mathbb{R}$ is defined by

$$
\begin{align*}
E(u):=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x & -\frac{\lambda_{1}}{2} \int_{\Omega}|u(x)|^{2} d x-\int_{\Omega} F(x, u(x)) d x \\
& +\int_{\Omega} h(x) u(x) d x-\int_{\partial \Omega} G(x, u(x)) d S \tag{2.2}
\end{align*}
$$

where

$$
F(x, s):=\int_{0}^{s} f(x, t) d t \quad \text { for a.a. } \quad x \in \Omega \quad \text { and } \quad s \in \mathbb{R}
$$

and

$$
G(x, \tau):=\int_{0}^{\tau} g(x, t) d t \quad \text { for a.a. } \quad x \in \partial \Omega \quad \text { and } \quad \tau \in \mathbb{R}
$$

By the hypotheses on f and g, E is well defined and $E \in C^{1}\left(W^{1,2}(\Omega), \mathbb{R}\right)$. Also, the weak solutions of (1.1) are exactly the critical points of the functional E.

Definition 2.2. We say that a functional $E: W^{1,2}(\Omega) \rightarrow \mathbb{R}$ satisfies the (PS) condition, if every sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset W^{1,2}(\Omega)$ satisfying

$$
d:=\sup _{n} E\left(u_{n}\right)<\infty, \quad \nabla E\left(u_{n}\right) \rightarrow 0
$$

contains a convergent subsequence.
Lemma 2.3. Let E be the energy functional associated with (1.1) and the LandesmanLazer type condition (2.1) be satisfied. Then each (PS)-sequence for E is bounded.

Proof. Let $\left\{u_{n}\right\}_{n=1}^{\infty} \subset W^{1,2}(\Omega)$ be such that there exists $c>0$ such that

$$
\begin{equation*}
\left|E\left(u_{n}\right)\right| \leq c \quad \forall n \in \mathbb{N} \tag{2.3}
\end{equation*}
$$

and there exists a strictly decreasing sequence $\left\{\epsilon_{n}\right\}_{n=1}^{\infty}, \lim _{n \rightarrow \infty} \epsilon_{n}=0$, such that

$$
\begin{equation*}
\left|\left\langle E^{\prime}\left(u_{n}\right), v\right\rangle\right| \leq \epsilon_{n}\|v\| \quad \forall n \in \mathbb{N}, \quad \forall v \in W^{1,2}(\Omega) \tag{2.4}
\end{equation*}
$$

Suppose by contradiction that $\left\|u_{n}\right\| \rightarrow \infty$, and define $v_{n}:=\frac{u_{n}}{\left\|u_{n}\right\|}$. Thus $\left\{v_{n}\right\}_{n=1}^{\infty}$ is bounded in $W^{1,2}(\Omega)$ and hence, at least its subsequence, converges to a function v_{0} weakly in $W^{1,2}(\Omega)$ and strongly in $L^{2}(\Omega)$ and $L^{2}(\partial \Omega)$ (see [8, Theorem A.8]).

Dividing (2.2) with $u=u_{n}$ by $\left\|u_{n}\right\|^{2}$, we get due to (2.3),

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left[\frac{1}{2}-\frac{\lambda_{1}}{2} \int_{\Omega}\left|v_{n}(x)\right|^{2} d x\right. & -\int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d x \\
& \left.+\int_{\Omega} h(x) \frac{u_{n}(x)}{\left\|u_{n}\right\|^{2}} d x-\int_{\partial \Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d S\right] \leq 0
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty}\left[\int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d x+\int_{\Omega} h(x) \frac{u_{n}(x)}{\left\|u_{n}\right\|^{2}} d x-\int_{\partial \Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|^{2}} d S\right]=0
$$

by the hypotheses on f, h, g and $\left\{u_{n}\right\}_{n=1}^{\infty}$ while

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|v_{n}(x)\right|^{2} d x=\int_{\Omega}\left|v_{0}(x)\right|^{2} d x
$$

we have

$$
\lambda_{1} \int_{\Omega}\left|v_{0}(x)\right|^{2} d x \geq 1
$$

Using the weak lower semicontinuity of the norm and the variational characterization of λ_{1}, we get

$$
1 \leq \lambda_{1} \int_{\Omega}\left|v_{0}(x)\right|^{2} d x \leq \int_{\Omega}\left|\nabla v_{0}(x)\right|^{2} d x \leq \liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla v_{n}(x)\right|^{2} d x=1
$$

Thus

$$
\left\|v_{0}\right\|=1 \quad \text { and } \quad \int_{\Omega}\left|\nabla v_{0}(x)\right|^{2} d x=\lambda_{1} \int_{\Omega}\left|v_{0}(x)\right|^{2} d x
$$

This implies, by the definition of φ_{1}, that $v_{0}= \pm \varphi_{1}$. Choosing $v=v_{n}-\varphi_{1}$ in (2.4), we obtain

$$
\begin{aligned}
& \mid \int_{\Omega} \nabla v_{n}(x) \nabla\left(v_{n}(x)-\varphi_{1}(x)\right) d x-\lambda_{1} \int_{\Omega} v_{n}(x)\left(v_{n}(x)-\varphi_{1}(x)\right) d x \\
& -\int_{\Omega} f\left(x, v_{n}(x)\right)\left(v_{n}(x)-\varphi_{1}(x)\right) d x+\int_{\Omega} h(x)\left(v_{n}(x)-\varphi_{1}(x)\right) d x \\
& -\int_{\partial \Omega} g\left(x, v_{n}(x)\right)\left(v_{n}(x)-\varphi_{1}(x)\right) d S \mid \leq \epsilon_{n}\left\|v_{n}-\varphi_{1}\right\|
\end{aligned}
$$

Since $v_{n} \rightarrow \varphi_{1}$ in $L^{2}(\Omega)$ and in $L^{2}(\partial \Omega)$, by the hypotheses on f, g and h,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \int_{\Omega} v_{n}(x)\left(v_{n}(x)-\varphi_{1}(x)\right) d x=0 \\
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(x, v_{n}(x)\right)\left(v_{n}(x)-\varphi_{1}(x)\right) d x=0 \\
\lim _{n \rightarrow \infty} \int_{\partial \Omega} g\left(x, v_{n}(x)\right)\left(v_{n}(x)-\varphi_{1}(x)\right) d S=0 \\
\lim _{n \rightarrow \infty} \int_{\Omega} h(x)\left(v_{n}(x)-\varphi_{1}(x)\right) d x=0
\end{gathered}
$$

we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \nabla v_{n}(x) \nabla\left(v_{n}(x)-\varphi_{1}(x)\right) d x=0
$$

Subtracting

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \nabla \varphi_{1}(x)\left(\nabla v_{n}(x)-\nabla \varphi_{1}(x)\right) d x
$$

we conclude that
$0=\lim _{n \rightarrow \infty} \int_{\Omega}\left(\nabla v_{n}(x)-\nabla \varphi_{1}(x)\right)\left(\nabla v_{n}(x)-\nabla \varphi_{1}(x)\right) d x \geq \lim _{n \rightarrow \infty}\left(\left\|v_{n}\right\|-\left\|\varphi_{1}\right\|\right)^{2} \geq 0$,
which implies $\left\|v_{n}\right\| \rightarrow\left\|\varphi_{1}\right\|$. The uniform convexity of $W^{1,2}(\Omega)$ yields that v_{n} converges strongly to φ_{1} in $W^{1,2}(\Omega)$.
Now we write (2.3) and (2.4) with $v=u_{n}$ in the equivalent forms

$$
\begin{aligned}
-2 c \leq & \int_{\Omega}\left|\nabla u_{n}(x)\right|^{2} d x-\lambda_{1} \int_{\Omega}\left|u_{n}(x)\right|^{2} d x-2 \int_{\Omega} F\left(x, u_{n}(x)\right) d x \\
& +2 \int_{\Omega} h(x) u_{n}(x) d x-2 \int_{\partial \Omega} G\left(x, u_{n}(x)\right) d S \leq 2 c
\end{aligned}
$$

and

$$
\begin{aligned}
-\epsilon_{n}\left\|u_{n}\right\| \leq & -\int_{\Omega}\left|\nabla u_{n}(x)\right|^{2} d x+\lambda_{1} \int_{\Omega}\left|u_{n}(x)\right|^{2} d x+\int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) d x \\
& -\int_{\Omega} h(x) u_{n}(x) d x+\int_{\partial \Omega} g\left(x, u_{n}(x)\right) u_{n}(x) d S \leq \epsilon_{n}\left\|u_{n}\right\|
\end{aligned}
$$

Summing up and dividing by $\left\|u_{n}\right\|$, we have

$$
\begin{aligned}
& \mid \int_{\Omega} f\left(x, u_{n}(x)\right) v_{n}(x) d x-2 \int_{\Omega} \psi\left(x, u_{n}(x)\right) v_{n}(x) d x+\int_{\Omega} h(x) v_{n}(x) d x \\
& +\int_{\partial \Omega} g\left(x, u_{n}(x)\right) v_{n}(x) d S-2 \int_{\partial \Omega} \phi\left(x, u_{n}(x)\right) v_{n}(x) d S \left\lvert\, \leq \frac{2 c}{\left\|u_{n}\right\|}+\epsilon_{n}\right.
\end{aligned}
$$

where

$$
\psi(x, s)= \begin{cases}\frac{F(x, s)}{s} & \text { if } s \neq 0 \\ f(x, 0) & \text { if } s=0\end{cases}
$$

and

$$
\phi(x, s)= \begin{cases}\frac{G(x, s)}{s} & \text { if } s \neq 0 \\ g(x, 0) & \text { if } s=0\end{cases}
$$

Letting n to infinity and supposing for example $v_{n} \rightarrow \varphi_{1}$, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left[\int_{\Omega} f\left(x, u_{n}(x)\right) v_{n}(x) d x\right. & -2 \int_{\Omega} \psi\left(x, u_{n}(x)\right) v_{n}(x) d x+\int_{\partial \Omega} g\left(x, u_{n}(x)\right) v_{n}(x) d S \\
\left.-2 \int_{\partial \Omega} \phi\left(x, u_{n}(x)\right) v_{n}(x) d S\right] & =-\int_{\Omega} h(x) \varphi_{1}(x) d x
\end{aligned}
$$

Since v_{n} converges to φ_{1}, we have $\lim _{n \rightarrow \infty} u_{n}(x)=\infty$ for a.a. $x \in \Omega$ and so

$$
\begin{array}{rll}
f\left(x, u_{n}(x)\right) \rightarrow f_{+\infty}(x) \quad \text { for a.a. } & x \in \Omega \\
\psi\left(x, u_{n}(x)\right) \rightarrow f_{+\infty}(x) & \text { for a.a. } & x \in \Omega \\
g\left(x, u_{n}(x)\right) \rightarrow g_{+\infty}(x) & \text { for a.a. } & x \in \partial \Omega \\
\phi\left(x, u_{n}(x)\right) \rightarrow g_{+\infty}(x) \quad \text { for a.a. } & x \in \partial \Omega
\end{array}
$$

The properties of f, F, g and G and the Lebesgue Dominated Convergence Theorem then imply

$$
\begin{aligned}
\lim _{n \rightarrow \infty}[& \int_{\Omega} f\left(x, u_{n}(x)\right) v_{n}(x) d x-2 \int_{\Omega} \psi\left(x, u_{n}(x)\right) v_{n}(x) d x+\int_{\partial \Omega} g\left(x, u_{n}(x)\right) v_{n}(x) d S \\
& \left.-2 \int_{\partial \Omega} \phi\left(x, u_{n}(x)\right) v_{n}(x) d S\right]=-\int_{\Omega} f_{+\infty}(x) \varphi_{1}(x) d x-\int_{\partial \Omega} g_{+\infty}(x) \varphi_{1}(x) d S
\end{aligned}
$$

and so

$$
\int_{\Omega} f_{+\infty}(x) \varphi_{1}(x) d x+\int_{\partial \Omega} g_{+\infty}(x) \varphi_{1}(x) d s=\int_{\Omega} h(x) \varphi_{1}(x) d x
$$

which contradicts (2.1) and the Lemma is proved.
Lemma 2.4. The functional E given by (2.2) is weakly coercive in $W^{1,2}(\Omega)$.
Proof. We proceed by contradiction. It is possible to choose a sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ such that

$$
\left\|u_{n}\right\| \rightarrow \infty, \quad E\left(u_{n}\right) \leq c \quad \text { and } \quad v_{n} \rightarrow+\varphi_{1} \quad \text { in } W^{1,2}(\Omega)
$$

We get

$$
\begin{aligned}
\int_{\Omega} h(x) \varphi_{1}(x) d x & -\int_{\Omega} f_{+\infty}(x) \varphi_{1}(x) d x+\int_{\partial \Omega} g_{+\infty}(x) \varphi_{1}(x) d S \\
& =\lim _{n \rightarrow \infty}\left[\int_{\Omega} h(x) v_{n}(x)-\int_{\Omega} \frac{F\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|} d x+\int_{\partial \Omega} \frac{G\left(x, u_{n}(x)\right)}{\left\|u_{n}\right\|} d S\right] \\
& \leq \limsup _{n \rightarrow \infty} \frac{E\left(u_{n}\right)}{\left\|u_{n}\right\|} \leq \lim _{n \rightarrow \infty} \frac{c}{\left\|u_{n}\right\|}=0
\end{aligned}
$$

which contradicts (2.1). This proves the Lemma.

3. Proof of Theorem 2.1

By lemma 2.4 and weak lower semicontinuity of E, applying the Minimum principle (see [8, p. 4, Theorem 1.2]), the functional E has a global minimum and the problem (1.1) admits a weak solution.
Next, we show that (2.1) is a necessary condition. Let $u \in W^{1,2}(\Omega)$ be a weak solution of (1.1). Then taking $v=\varphi_{1}$ as a test function in (1.2), we obtain

$$
\begin{equation*}
\int_{\Omega} f(x, u(x)) \varphi_{1}(x) d x+\int_{\partial \Omega} g(x, u(x)) \varphi_{1}(x) d S=\int_{\Omega} h(x) \varphi_{1}(x) d x \tag{3.1}
\end{equation*}
$$

due to

$$
\int_{\Omega} \nabla u(x) \nabla \varphi_{1}(x) d x=\lambda_{1} \int_{\Omega} u(x) \varphi_{1}(x) d x
$$

Since $f(x, \cdot)$ and $g(x, \cdot)$ are strictly decreasing functions, we obtain

$$
\int_{\Omega} f_{+\infty}(x) \varphi_{1}(x) d x<\int_{\Omega} f(x, u(x)) \varphi_{1}(x) d x<\int_{\Omega} f_{-\infty}(x) \varphi_{1}(x) d x
$$

for a.a. $x \in \Omega$, and

$$
\int_{\partial \Omega} g_{+\infty}(x) \varphi_{1}(x) d S<\int_{\partial \Omega} g(x, u(x)) \varphi_{1}(x) d S<\int_{\partial \Omega} g_{-\infty}(x) \varphi_{1}(x) d S
$$

for a.a. $x \in \partial \Omega$. Summing up and using (3.1), then the proof is complete.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984) 381-384.
[3] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[4] D. Arcoya, L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Anal. 28 (1997) 1623-1632.
[5] P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Anal. Appl. 127 (1987) 435-442.
[6] E. N. Landesman, A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623.
[7] S. Martinez, J. Rossi, Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance, Electron. J. Differential Equations 2003 (27) (2003) 1-14.
[8] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Fourth Edition, Springer-Verlag, Berlin, 2008.
[9] C. L. Tang, Solvability for two-point boundary value problem, J. Math. Anal. Appl. 216 (1997) 368-374.
G. A. Afrouzi

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: afrouzi@umz.ac.ir
M. Mirzapour

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: mirzapour@stu.umz.ac.ir
A. Hadjian

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, BabolSar, Iran

E-mail address: a.hadjian@umz.ac.ir
S. Shakeri

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail address: s.shakeri@umz.ac.ir

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B30, 35B40.
 Key words and phrases. Semilinear elliptic equation; Nonlinear boundary condition; Landesman-Lazer type conditions; Minimum principle.
 (C)2011 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted May 25, 2011. Published June 29, 2011.

