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AN ITERATION PROCESS FOR COMMON FIXED POINTS OF
TWO NONSELF ASYMPTOTICALLY NONEXPANSIVE

MAPPINGS

(COMMUNICATED BY KICHI-SUKE SAITO)

SAFEER HUSSAIN KHAN

Abstract. In this paper, we introduce an iteration process for approximating
common �xed points of two nonself asymptotically nonexpansive mappings
in Banach spaces. Our process contains Mann iteration process and some
other processes for nonself mappings but is independent of Ishikawa iteration
process. We prove some weak and strong convergence theorems for this itera-
tion process. Our results generalize and improve some results in contemporary
literature.

1. Introduction

Let E be a real Banach space with C its nonempty subset. Let T : C ! C be
a mapping. A point x 2 C is called a �xed point of T i¤ Tx = x. In this paper,
N stands for the set of natural numbers. T is called asymptotically nonexpansive
if for a sequence fkng � [1;1) with limn!1 kn = 1, kTnx� Tnyk � knkx� yk for
all x; y 2 C and all n 2 N: T is called uniformly L-Lipschitzian if for some L > 0,
kTnx�Tnyk � Lkx�yk for all n 2 N and all x; y 2 C: T is said to be nonexpansive
if kTx� Tyk � kx� yk for all x; y 2 C. Let P : E ! C be a nonexpansive
retraction of E into C. A nonself mapping T : C ! E is called asymptotically
nonexpansive (according to Chidume-Ofoedu-Zegeye [3]) if for a sequence fkng �
[1;1) with limn!1 kn = 1, we have kT (PT )n�1x� T (PT )n�1yk � knkx� yk for
all x; y 2 C and n 2 N. T is called uniformly L-Lipschitzian if for some L > 0,
kT (PT )n�1x � T (PT )n�1yk � Lkx � yk for all n 2 N and all x; y 2 C: Because
these de�nitions depend on a given nonexpansive retraction of a space onto its
subset and such retractions may not be unique, therefore from here onwards, all
the nonself mappings are always considered with respect to a �xed nonexpansive
retraction P:
We will also denote by F (T ) the set of �xed points of T , that is, F (T ) = fx 2

C : Tx = xg and by F := F (T ) \ (F (S)), the set of common �xed points of two
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mappings S and T . In what follows, we �x x1 2 C as a starting point of a process,
and take f�ng ; f�ng ; fng sequences in (0; 1).
We know that Mann, and Ishikawa iteration processes are de�ned as:

xn+1 = (1� �n)xn + �nTxn; n 2 N (1.1)

and (
xn+1 = (1� �n)xn + �nTyn;
yn = (1� �n)xn + �nTxn; n 2 N

(1.2)

respectively.
Agarwal-O�Regan-Sahu [1] recently introduced the iteration process:(

xn+1 = (1� �n)Txn + �nTyn;
yn = (1� �n)xn + �nTxn; n 2 N

(1.3)

They showed that their process is independent of Mann and Ishikawa and con-
verges faster than both of these. See Proposition 3.1 [1].
Obviously the above process deals with one self mapping only. The case of two

mappings in iteration processes has also remained under study since Das and Debata
[5] gave and studied a two mappings scheme. Also see, for example, Takahashi and
Tamura [13] and Khan and Takahashi [9]. Note that two mappings case, that is ,
approximating the common �xed points, has its own importance as it has a direct
link with the minimization problem, see for example Takahashi [12].
Being an important generalization of the class of nonexpansive self mappings,

the class of asymptotically nonexpansive self mappings was introduced by Goebel
and Kirk [3] whereas the concept of asymptotically nonexpansive nonself mappings
was introduced by Chidume-Ofoedu-Zegeye [3] in 2003 as the generalization of
asymptotically nonexpansive self mappings. Actually they studied the iteration
process:

xn+1 = P ((1� �n)xn + �nT (PT )n�1 xn); n 2 N (1.4)

Nonself asymptotically nonexpansive mappings have been studied by many au-
thors, for example,Wang [14] and the references cited therein. Wang studied the
process: (

xn+1 = P ((1� �n)xn + �nS (PS)n�1 yn);
yn = P ((1� �n)xn + �nT (PT )

n�1
xn); n 2 N

(1.5)

We modify the iteration process of Agarwal-O�Regan-Sahu [1] to the case of two
nonself asymptotically nonexpansive mappings as follows.

8>><>>:
x1 = x 2 C;
xn+1 = P

�
(1� �n)T (PT )n�1 xn + �nS (PS)n�1 yn

�
;

yn = P
�
(1� �n)xn + �nT (PT )

n�1
xn

�
; n 2 N

(1.6)

It is also to be noted that (1:6) reduces to
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� another extension of Agarwal-O�Regan-Sahu (1:3) process for one asymp-
totically nonexpansive mapping when S = T; namely8>><>>:

x1 = x 2 C;
xn+1 = P

�
(1� �n)T (PT )n�1 xn + �nT (PT )n�1 yn

�
;

yn = P
�
(1� �n)xn + �nT (PT )

n�1
xn

�
; n 2 N

Not even this has been considered yet.
� Chidume-Ofoedu-Zegeye (1:4) process when T = I:
� Wang (1:5) process and our process are independent: neither reduces to the
other. Following Agarwal-O�Regan-Sahu [1], we can say that our process is
independent of Wang and converges faster than it.

Note that Agarwal-O�Regan-Sahu process (1:3) does not reduce to Mann process
(1:1) but our process (1:6) does. It means that the results proved by using (1:6)
not only contain the corresponding results of Agarwal-O�Regan-Sahu using (1:3)
extended to nonself case but also cover the left over ones using Chidume-Ofoedu-
Zegeye process (1:4). Moreover, it is able to compute common �xed points like
(1:5) but at a better rate.
In this paper, we prove some weak and strong convergence theorems for two

asymptotically nonexpansive mappings using (1:6).
We recall the following. Let S = fx 2 E : kxk = 1g and let E� be the dual of

E; that is, the space of all continuous linear functionals f on E: The space E has:
(i) Gâteaux di¤erentiable norm if limt!0

kx+tyk�kxk
t exists for each x and y in

S; (ii) Fréchet di¤erentiable norm (see e.g. [1]) if for each x in S; the above limit
exists and is attained uniformly for y in S and in this case, it is also well-known
that

hh; J(x)i+ 1
2
kxk2 � 1

2
kx+ hk2 � hh; J(x)i

+
1

2
kxk2 + b(khk) (1.7)

for all x; h in E; where J is the Fréchet derivative of the functional 12 k:k
2 at x 2 X;

h:; :i is the pairing between E and E�; and b is an increasing function de�ned on
[0;1) such that limt#0 b(t)t = 0; (iii) Opial condition [10] if for any sequence fxng in
E; xn * x implies that lim supn!1 kxn � xk < lim supn!1 kxn � yk for all y 2 E
with y 6= x (iv) Kadec-Klee property if for every sequence fxng in E; xn * x and
kxnk ! kxk together imply xn ! x as n!1:
Examples of Banach spaces satisfying Opial condition are Hilbert spaces and

all spaces lp(1 < p < 1). On the other hand, Lp[0; 2�] with 1 < p 6= 2 fail
to satisfy Opial condition. Uniformly convex Banach spaces, Banach spaces of
�nite dimension and re�exive locally uniform convex Banach spaces are some of
the examples of re�exive Banach spaces which satisfy the Kadec-Klee property.
Also note that there exist uniformly convex Banach spaces which neither satisfy
the Opial condition nor do they have Fréchet di¤erentiable norm but their duals do
have the Kadec-Klee property. For example (Example 3:1, Falset et al. [6]); let us

take X1 = R2 with the norm denoted by jxj =
q
kx1k2 + kx2k2 and X2 = Lp[0; 1]

with 1 < p < 1 and p 6= 2. The Cartesian product of X1 and X2 furnished with
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the l2-norm is uniformly convex, it neither satis�es the Opial condition [6, 10] nor
it has a Fréchet di¤erentiable norm but its dual does have the Kadec-Klee property.
A mapping T : C ! E is demiclosed at y 2 E if for each sequence fxng in C

and each x 2 E; xn * x and Txn ! y imply that x 2 C and Tx = y:

Lemma 1. [11] Suppose that E is a uniformly convex Banach space and 0 < p �
tn � q < 1 for all n 2 N: Let fxng and fyng be two sequences of E such that
lim supn!1 kxnk � r; lim supn!1 kynk � r and limn!1 ktnxn + (1� tn)ynk = r
hold for some r � 0: Then limn!1 kxn � ynk = 0:

Lemma 2. If frng; ftng and fsng are sequences of nonnegative real numbers such
that rn+1 � (1 + tn) rn+sn;

P1
n=1 tn <1 and

P1
n=1 sn <1, then lim

n!1
rn exists.

Lemma 3. [3] Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T be a nonself asymptotically nonexpansive mapping.
Then I � T is demiclosed with respect to zero.

Lemma 4. [8] Let E be a re�exive Banach space such that E� has the Kadec-
Klee property. Let fxng be a bounded sequence in E and q; y� 2W = !w(xn)(weak
limit set of fxng): Suppose lim

n!1
ktxn + (1� t)q� � y�k exists for all t 2 [0; 1]: Then

q = y�:

Lemma 5. [6] Let C be a convex subset of a uniformly convex Banach space. Then
there is a strictly increasing and continuous convex function g : [0;1) ! [0;1)
with g(0) = 0 such that for every Lipschitzian map U : C ! C with Lipschitz
constant L � 1; the following inequality holds:

kU(tx+ (1� t)y)� (tUx+ (1� t)Uy)k � Lg�1(kx� yk � L�1 kUx� Uyk)

for all x; y 2 C and t 2 [0; 1]:

2. Convergence Theorems

We start with proving some key lemmas for later use.

Lemma 6. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E: Let P : E ! C be a nonexpansive retraction of E into C. Let T and S

be two asymptotically nonexpansive nonself mappings of C with
1P
n=1

(kn � 1) < 1:

Let f�ng; f�ng be in ["; 1 � "] for all n 2 N and for some " in (0; 1); and let
fxng be de�ned by the iteration process (1:6). If F 6= ?; then lim

n!1
kxn � Txnk =

lim
n!1

kxn � Sxnk = 0:
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Proof. Let q 2 F: Then

kxn+1 � qk =
P �(1� �n)T (PT )n�1 xn + �nS (PS)n�1 yn�� Pq

� (1� �n)
T (PT )n�1 xn � q+ �n S (PS)n�1 yn � q

� (1� �n)kn kxn � qk+ �nkn kyn � qk
= kn[(1� �n) kxn � qk+ �n kyn � qk]

� kn

"
(1� �n) kxn � qk+ �n (1� �n) kxn � qk

+�n�n

T (PT )n�1 xn � q
#

= kn [(1� �n + �n (1� �n) + kn�n�n) kxn � qk]
� kn[(1 + (kn � 1)�n�n] kxn � qk
� kn[(1 + kn � 1] kxn � qk
� k2n kxn � qk
=

�
1 +

�
k2n � 1

��
kxn � qk

Thus by Lemma 2, lim
n!1

kxn � qk exists. Call it c:
Now

kyn � qk =
P �(1� �n)xn + �nT (PT )n�1 xn�� q

� �n

T (PT )n�1 xn � q+ (1� �n) kxn � qk
� �nkn kxn � qk+ (1� �n) kxn � qk
= (1 + �n(kn � 1)) kxn � qk
� kn kxn � qk

implies that
lim sup
n!1

kyn � qk � c: (2.1)

Also
kT (PT )n�1 xn � qk � knkxn � qk

for all n = 1, 2,. . . , so

lim sup
n!1

kT (PT )n�1 xn � qk � c: (2.2)

Next,
kS (PS)n�1 yn � qk � knkyn � qk

gives by (2:1) that
lim sup
n!1

kS (PS)n�1 yn � qk � c:

Further,

c = lim
n!1

kxn+1 � qk = lim
n!1

P �(1� �n)T (PT )n�1xn + �nS(PS)n�1yn�� Pq
� lim

n!1
k (1� �n)

�
T (PT )n�1xn � q

�
+ �n

�
S(PS)n�1yn � q

�
k

� lim
n!1

�
(1� �n)

lim sup
n!1

�
T (PT )n�1xn � q

�+ �n lim sup
n!1

�
S(PS)n�1yn � q

��
� lim

n!1
[(1� �n) c+ �nc]

= c
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gives that

lim
n!1

k (1� �n)
�
T (PT )n�1xn � q

�
+ �n

�
S(PS)n�1yn � q

�
k = c: (2.3)

Applying Lemma 1, we obtain

lim
n!1

S(PS)n�1yn � T (PT )n�1xn = 0: (2.4)

kxn+1 � qk =
P �(1� �n)T (PT )n�1xn + �nS(PS)n�1yn�� Pq

�
(1� �n)T (PT )n�1xn + �nS(PS)n�1yn � q

�
T (PT )n�1xn � q+ �n S(PS)n�1yn � T (PT )n�1xn

yields that

c � lim inf
n!1

T (PT )n�1xn � q
so that (2.2) gives limn!1

T (PT )n�1xn � q = c:
In turn,T (PT )n�1xn � q �

T (PT )n�1xn � S(PS)n�1yn+ kS(PS)n�1yn � qk
�

T (PT )n�1xn � S(PS)n�1yn+ knkyn � qk
implies

c � lim inf
n!1

kyn � qk: (2.5)

By (2.1) and (2.5), we obtain

lim
n!1

kyn � qk = c:

Moreover,

c = lim
n!1

kyn � qk = lim
n!1

P �(1� �n)xn + �nT (PT )n�1 xn�� Pq
� lim

n!1
k (1� �n) (xn � q) + �n

�
T (PT )n�1xn � q

�
k

� lim
n!1

�
(1� �n)

lim sup
n!1

(xn � q)
+ �n lim sup

n!1

�
T (PT )n�1xn � q

��
� lim

n!1
[(1� �n) c+ �nc]

= c

gives by Lemma 1 that

lim
n!1

T (PT )n�1xn � xn = 0: (2.6)

Now xn 2 C; the range of P; therefore Pxn = xn for all n 2 N and so

kyn � xnk =
P ��n(T (PT )n�1xn + (1� �n)xn�� Pxn

�
�nT (PT )n�1xn + (1� �n)xn � xn

� �n
T (PT )n�1xn � xn :

Hence by (2:6),

lim
n!1

kyn � xnk = 0: (2.7)



COMMON FIXED POINTS OF NONSELF MAPPINGS 171

Also note that

kxn+1 � xnk =
P �(1� �n)T (PT )n�1xn + �nS(PS)n�1yn�� Pxn

�
(1� �n)T (PT )n�1xn + �nS(PS)n�1yn � xn

�
T (PT )n�1xn � xn+ �n S(PS)n�1yn � T (PT )n�1xn

! 0 as n!1; (2.8)

so that

kxn+1 � ynk � kxn+1 � xnk+ kyn � xnk (2.9)

! 0 as n!1:
Furthermore, fromxn+1 � T (PT )n�1yn � kxn+1 � xnk+

xn � T (PT )n�1xn+ T (PT )n�1xn � T (PT )n�1yn
� kxn+1 � xnk+

xn � T (PT )n�1xn+ kn kxn � ynk
we �nd that

lim
n!1

xn+1 � T (PT )n�1yn = 0: (2.10)

Now we shall make use of the fact that every asymptotically nonexpansive mapping
is uniformly L-Lipschitzian combined with (2:6) ; (2:9) and (2:10) to reach at

kxn � Txnk �
xn � T (PT )n�1xn+ T (PT )n�1xn � T (PT )n�1yn�1
+
T (PT )n�1yn�1 � Txn

�
xn � T (PT )n�1xn+ kn kxn � yn�1k
+L

�T (PT )n�2yn�1 � xn�
so that

lim
n!1

kxn � Txnk = 0: (2.11)

To prove that limn!1 kxn � Sxnk = 0; �rst note that
kS(PS)n�1xn � xnk �

S(PS)n�1xn � S(PS)n�1yn+ S(PS)n�1yn � T (PT )n�1xn
+
T (PT )n�1xn � xn

� kn kxn � ynk+
S(PS)n�1yn � T (PT )n�1xn+ T (PT )n�1xn � xn :

so that by (2:7) ; (2:4) and (2:6) ;

lim
n!1

kS(PS)n�1xn � xnk = 0: (2.12)

Next note that

kxn+1 � S(PS)n�1xnk � kxn+1 � xnk+ kxn � S(PS)n�1xnk
gives by (2:8) and (2:12)

lim
n!1

kxn+1 � S(PS)n�1xnk = 0: (2.13)

Again making use of the fact that every asymptotically nonexpansive mapping
is L-Lipschitzian, we have

kxn+1 � Sxn+1k � kxn+1 � S(PS)nxn+1k+ kS(PS)nxn+1 � S(PS)nxnk
+kS(PS)nxn � Sxn+1k

� kxn+1 � S(PS)nxn+1k+ kn+1kxn+1 � xnk
+LkS(PS)n�1xn � xn+1k:
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That us by (2:12) and (2:13) ; we have

lim
n!1

kxn � Sxnk = 0: (2.14)

This completes the proof of the lemma.

Lemma 7. For any p1; p2 2 F; lim
n!1

ktxn + (1� t)p1 � p2k exists for all t 2 [0; 1]
under the conditions of Lemma 6:

Proof. By Lemma 6; lim
n!1

kxn � pk exists for all p 2 F and therefore fxng is
bounded. Thus there exists a real number r > 0 such that fxng � D � Br(0) \C;
so that D is a closed convex nonempty subset of C: Put

gn(t) = ktxn + (1� t)p1 � p2k

for all t 2 [0; 1]: Then lim
n!1

gn(0) = kp1 � p2k and lim
n!1

gn(1) = lim
n!1

kxn � p2k
exist. Let t 2 (0; 1):
De�ne Bn : D ! D by:

Bnx = P
�
(1� �n)T (PT )n�1x+ �nS(PS)n�1Anx

�
Anx = P

�
(1� �n)x+ �nT (PT )n�1x

�
Then Bnxn = xn+1, Bnp = p for all p 2 F: Also

kAnx�Anyk =
P ((1� �n)x+ �nT (PT )n�1x)� P �(1� �n) y + �nT (PT )n�1y�

�
(1� �n) (x� y) + �n(T (PT )n�1x� T (PT )n�1y)

= (1� �n) kx� yk+ �nknkx� yk
� kn kx� yk

and

kBnx�Bnyk =

 P [(1� �n)T (PT )n�1x+ �nS(PS)n�1Anx]
�P [(1� �n)T (PT )n�1y + �nS(PS)n�1Any)]


�

 [(1� �n)
�
T (PT )n�1x� T (PT )n�1y

�
+�n(S(PS)

n�1Anx� S(PS)n�1Any)]


� (1� �n)knkx� yk+ �nkn kAnx�Anyk
� (1� �n)k2nkx� yk+ �nk2n kx� yk
= k2nkx� yk:

Set

Rn;m = Bn+m�1Bn+m�2:::Bn; m � 1

and

vn;m = kRn;m (txn + (1� t)p1)� (tRn;mxn + (1� t)p1)k :
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Then Rn;mxn = xn+m and Rn;mp = p for all p 2 F: Also

kRn;mx�Rn;myk � kBn+m�1Bn+m�2:::Bnx�Bn+m�1Bn+m�2:::Bnyk
� k2n+m�1 kBn+m�2:::Bnx�Bn+m�2:::Bnyk
� k2n+m�1k

2
n+m�2 kBn+m�3:::Bnx�Bn+m�3:::Bnyk

...

�
�Qn+m�1

j=n k2j

�
kx� yk

Applying Lemma 5 with x = xn; y = p1; U = Rn;m and using the facts that
limn!1 kn = 1 and limn!1 kxn � wk exists for all w 2 F; we obtain vn;m ! 0 as
n!1 and for all m � 1:
Finally, from the inequality

gn+m(t) = ktRn;mxn + (1� t)p1 � p2k
� vn;m + kRn;m(txn + (1� t)p1)� p2k

� vn;m +
n+m�1Y
j=n

k2j gn(t);

it follows that

lim sup
n!1

gn(t) � lim sup
n;m!1

vn;m + lim inf
n!1

gn(t)

= lim inf
n!1

gn(t)

That is,

lim sup
n!1

gn(t) � lim inf
n!1

gn(t):

so that lim
n!1

ktxn + (1� t)p1 � p2k exists for all t 2 [0; 1]:

Lemma 8. Assume that the conditions of Lemma 6 are satis�ed. Then, for any
p1; p2 2 F; lim

n!1
hxn; J(p1 � p2)i exists; in particular, hp� q; J(p1 � p2)i = 0 for

all p; q 2 !w(xn):

Proof. Take x = p1� p2 with p1 6= p2 and h = t(xn� p1) in the inequality (1:7)
to get:

1

2
kp1 � p2k2 + t hxn � p1; J(p1 � p2)i � 1

2
ktxn + (1� t)p1 � p2k2

� 1

2
kp1 � p2k2 + t hxn � p1; J(p1 � p2)i

+b(t kxn � p1k):

As supn�1 kxn � p1k �M 0 for some M 0 > 0; it follows that

1

2
kp1 � p2k2 + t lim sup

n!1
hxn � p1; J(p1 � p2)i � 1

2
lim
n!1

ktxn + (1� t)p1 � p2k2

� 1

2
kp1 � p2k2 + b(tM 0)

+t lim inf
n!1

hxn � p1; J(p1 � p2)i :
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That is,

lim sup
n!1

hxn � p1; J(p1 � p2)i � lim inf
n!1

hxn � p1; J(p1 � p2)i+
b(tM 0)

tM 0 M
0:

If t! 0; then lim
n!1

hxn � p1; J(p1 � p2)i exists for all p1; p2 2 F ; in particular, we
have hp� q; J(p1 � p2)i = 0 for all p; q 2 !w(xn):

2.1. Weak Convergence. We now give our weak convergence theorem.

Theorem 9. Let E be a uniformly convex Banach space and let C; T; S and fxng
be taken as in Lemma 6. Assume that (a) E satis�es Opial�s condition or (b)E has
a Fréchet di¤erentiable norm or (c) dual E� of E satis�es Kadec-Klee property. If
F 6= � then fxng converges weakly to a point of F:

Proof. Let p 2 F: Then lim
n!1

kxn � pk exists as proved in Lemma 6. We

prove that fxng has a unique weak subsequential limit in F: Let u and v be weak
limits of the subsequences fxnig and fxnjg of fxng; respectively. By Lemma 6,
lim
n!1

kxn � Txnk = 0 and I � T is demiclosed with respect to zero by Lemma 3,
therefore we obtain Tu = u: Similarly, Su = u: Again in the same fashion, we can
prove that v 2 F: Next, we prove the uniqueness. To this end, �rst assume (a) is
true. If u and v are distinct, then by Opial condition,

lim
n!1

kxn � uk = lim
ni!1

kxni � uk

< lim
ni!1

kxni � vk

= lim
n!1

kxn � vk

= lim
nj!1

kxnj � vk

< lim
nj!1

kxnj � uk

= lim
n!1

kxn � uk:

This is a contradiction so u = v:Next assume (b). By Lemma 8, hp� q; J(p1 � p2)i =
0 for all p; q 2 !w(xn): Therefore ku � vk2 = hu� v; J(u� v)i = 0 implies u = v.
Finally, say (c) is true. Since lim

n!1
ktxn + (1� t)u� vk exists for all t 2 [0; 1] by

Lemma 7, therefore u = v by Lemma 4: Consequently, fxng converges weakly to a
point of F and this completes the proof.
Although the following can be obtained as a corollary from our above theorem

by putting S = T , yet it is new in itself.

Corollary 10. Let E be a uniformly convex Banach space and let C; T be taken as
in Lemma 6 and and fxng as8>><>>:

x1 = x 2 C;
xn+1 = P

�
(1� �n)T (PT )n�1 xn + �nT (PT )n�1 yn

�
;

yn = P
�
(1� �n)xn + �nT (PT )

n�1
xn

�
; n 2 N

Assume that (a) E satis�es Opial condition or (b) E has a Fréchet di¤erentiable
norm or (c) dual E� of E satis�es Kadec-Klee property. If F (T ) 6= � then fxng
converges weakly to a point of F (T ):
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Corollary 11. Let E be a uniformly convex Banach space and let C; T be taken as
in Lemma 6 and and fxng as

xn+1 = P ((1� �n)xn + �nT (PT )n�1 xn); n 2 N:
Assume that (a) E satis�es Opial condition or (b) E has a Fréchet di¤erentiable
norm or (c) dual E� of E satis�es Kadec-Klee property. If F (T ) 6= � then fxng
converges weakly to a point of F (T ):

2.2. Strong Convergence. Following [7], we say that two mappings S; T : C !
E; where C is a subset of a normed space E; are said to satisfy the Condition (A0)
if there exists a nondecreasing function f : [0;1)! [0;1) with f(0) = 0; f(r) > 0
for all r 2 (0;1) such that either kx� Sxk � f(d(x; F )) or kx� Txk � f(d(x; F ))
for all x 2 C where d(x; F ) = inffkx� pk : p 2 Fg:

Theorem 12. Let E be a real Banach space and let C; T; S; F; fxng be taken as in
Theorem 6. Then fxng converges to a point of F if and only if lim infn!1 d(xn; F ) =
0 where d(x; F ) = inffkx� pk : p 2 Fg:

Proof. Necessity is obvious. Suppose that lim infn!1 d(xn; F ) = 0: As proved
in Theorem 6, lim

n!1
kxn � wk exists for all w 2 F; therefore lim

n!1
d(xn; F ) exists.

But by hypothesis, lim infn!1 d(xn; F ) = 0; therefore we have lim
n!1

d(xn; F ) = 0:

On the lines similar to [7], it can be proved that lim
n!1

d(xn; F ) = 0: This gives that

d(q; F ) = 0 and so q 2 F:
Applying Theorem 12, we obtain a strong convergence of the scheme (1.6) under

the Condition (A0) as follows.

Theorem 13. Let E be a real Banach space and let C; T; S; F; fxng be taken as
in Lemma 6. If T; S satisfy the Condition (A0) then fxng converges strongly to a
common �xed point of T and S :

Proof. We proved in Theorem 6 that

lim
n!1

kxn � Txnk = lim
n!1

kxn � Sxnk = 0: (2.15)

From the Condition (A0) and (2.15), we get

lim
n!1

f(d(xn; F )) � lim
n!1

kxn � Txnk = 0;

or
lim
n!1

f(d(xn; F )) � lim
n!1

kxn � Sxnk = 0;

In both the cases,
lim
n!1

f(d(xn; F )) = 0:

Since f : [0;1)! [0;1) is a nondecreasing function satisfying f(0) = 0; f(r) > 0
for all r 2 (0;1); therefore we have

lim
n!1

d(xn; F ) = 0:

Now all the conditions of Theorem 12 are satis�ed, therefore by its conclusion fxng
converges strongly to a point of F:

Remark 1. Corollaries like Corollary 10 and Corollary 11 can now be obtained in
this case as well.
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Remark 2. The case of nonexapnsive mappings now follows as a corollary from
our above results.

Remark 3. Theorems of this paper can also be proved with error terms.
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