OPTIMAL INEQUALITIES FOR HYPERBOLIC AND TRIGONOMETRIC FUNCTIONS

(COMMUNICATED BY MOHAMMAD S. MOSLEHIAN)

EDWARD NEUMAN AND JÓZSEF SÁNDOR

Abstract. We determine the best positive constants p and q such that

$$
\left(\frac{1}{\cosh x}\right)^{p}<\frac{\sin x}{x}<\left(\frac{1}{\cosh x}\right)^{q}
$$

as well as p^{\prime} and q^{\prime} such that

$$
\left(\frac{\sinh x}{x}\right)^{p^{\prime}}<\frac{2}{\cos x+1}<\left(\frac{\sinh x}{x}\right)^{q^{\prime}}
$$

1. Introduction

In recent years inequalities involving trigonometric and hyperbolic inequalities have attracted attention of several researchers. For instance, the Huygens, the Cusa-Huygens, and the Wilker inequalities for trigonometric and hyperbolic functions have been studied extensively in numerous papers. For more references the interested reader is referred to [1] and [4]. For example, it was demonstrated in [1] that for all $x \in(0, \pi / 2)$ one has

$$
\begin{align*}
& \frac{x^{2}}{\sinh ^{2} x}<\frac{\sin x}{x}<\frac{x}{\sinh x}, \tag{1.1}\\
& \frac{1}{\cosh x}<\frac{\sin x}{x}<\frac{x}{\sinh x} \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{1}{\cosh x}\right)^{1 / 2}<\frac{x}{\sinh x}<\left(\frac{1}{\cosh x}\right)^{1 / 4} \tag{1.3}
\end{equation*}
$$

for $0<x<1$.
In the recent paper [5] we have determined the best inequalities of type (1.1). The goal of this paper is to determine optimal inequalities which are similar to (1.1) - (1.3). They are contained in Theorems 2.1 and 2.2.

[^0]
2. Main Results

The following auxiliary results will be needed in the sequel.
Lemma 2.1. For all $x>0$ one has

$$
\begin{equation*}
\ln \cosh x>\frac{x}{2} \tanh x \tag{2.1}
\end{equation*}
$$

Proof. Let us define $f_{1}(x)=\ln \cosh x-\frac{x}{2} \tanh x, x \geq 0$.
A simple computation gives

$$
2 \cosh ^{2} x \cdot f_{1}^{\prime}(x)=\sinh x \cdot \cosh x-x>0
$$

where the last inequality follows immediately from $\sinh x>x$ and $\cosh x>1$ $(x>0)$. Thus f_{1} is a strictly increasing function. This in turn implies that $f_{1}(x) \geq f_{1}(0)=0$ for $x \geq 0$, with equality if $x=0$. This completes the proof of inequality (2.1).

Lemma 2.2. For all $x \in(0, \pi / 2)$ one has

$$
\begin{equation*}
\ln \frac{x}{\sin x}<\frac{\sin x-x \cos x}{2 \sin x} \tag{2.2}
\end{equation*}
$$

Proof. Let $f_{2}(x)=\frac{\sin x-x \cos x}{2 \sin x}-\ln \frac{x}{\sin x}, 0<x \leq \frac{\pi}{2}$.
A simple computation gives

$$
2 x \sin ^{2} x \cdot f_{2}^{\prime}(x)=x^{2}+x \cdot \sin x \cdot \cos x-2 \sin ^{2} x>0
$$

where the last inequality is satisfied iff

$$
\begin{equation*}
\frac{\sin x}{x}<\frac{\cos x+\sqrt{\cos ^{2} x+8}}{4} \tag{2.3}
\end{equation*}
$$

In order to prove (2.3) it suffices to use the Cusa-Huygens inequality (see, e.g., [4])

$$
\begin{equation*}
\frac{\sin x}{x}<\frac{\cos x+2}{3} \tag{2.4}
\end{equation*}
$$

together with

$$
\frac{\cos x+2}{3}<\frac{\cos x+\sqrt{\cos ^{2} x+8}}{4}
$$

where the last inequality is equivalent to

$$
(\cos x-1)^{2}>0
$$

Thus $f_{2}^{\prime}(x)>0$ for $x>0$, and this implies

$$
f_{2}(x)>f_{2}\left(0_{+}\right)=\lim _{x \rightarrow 0_{+}} f_{2}(x)=0 .
$$

The proof of inequality (2.2) is complete.
The main results of this paper are contained in the following two theorems.
Theorem 2.1. The best positive constants p and q in the following inequality

$$
\begin{equation*}
\frac{1}{(\cosh x)^{p}}<\frac{\sin x}{x}<\frac{1}{(\cosh x)^{q}}, x \in\left(0, \frac{\pi}{2}\right) \tag{2.5}
\end{equation*}
$$

are $p=\ln (\pi / 2) / \ln \cosh (\pi / 2) \approx 0.49$ and $q=\frac{1}{3}=0.33 \ldots$.

Proof. Let

$$
h_{1}(x)=\frac{\ln \frac{x}{\sin x}}{\ln \cosh x}=\frac{f_{1}(x)}{g_{1}(x)}, x \in\left(0, \frac{\pi}{2}\right) .
$$

Simple computations give

$$
\begin{align*}
f_{1}^{\prime}(x) & =\frac{\sin x-x \cos x}{x \sin x}, g_{1}^{\prime}(x)=\frac{\sinh x}{\cosh x} \\
(\ln \cosh x)^{2} h_{1}^{\prime}(x) & =\frac{\sin x-x \cos x}{x \sin x} \ln (\cosh x)-\tanh x \ln \frac{x}{\sin x} \tag{2.6}
\end{align*}
$$

Using the inequalities $\sin x>x \cos x, \frac{x}{\sin x}>1, \cosh x>1,(2.1)$ and (2.2), we see using (2.6), that $h_{1}^{\prime}(x)>0$ for $x>0$. This shows that, the function h_{1} is strictly increasing, so

$$
\begin{equation*}
h_{1}\left(0_{+}\right)<h_{1}(x)<h_{1}\left(\frac{\pi}{2}\right) \text { for any } 0<x<\frac{\pi}{2} \tag{2.7}
\end{equation*}
$$

Elementary computations give

$$
h_{1}\left(0_{+}\right)=\lim _{x \rightarrow 0} h_{1}(x)=\frac{1}{3} h_{1}(\pi / 2)=\frac{\ln (\pi / 2)}{\ln \cosh (\pi / 2)} \approx 0.49 \ldots
$$

Thus by virtue of (2.7) we see that $q=h_{1}\left(0_{+}\right)$and $p=h_{1}(\pi / 2)$ are the best possible constants in (2.5).

Remark 2.1. The right side inequality in (2.5) also follows from the inequality

$$
\begin{equation*}
\frac{\sinh x}{x}>\sqrt[3]{\cosh x} \tag{2.8}
\end{equation*}
$$

which has been discovered by I. Lazarević (see [3], [4]). We have shown recently (see [6]) that (2.8) is equivalent to an inequality in the theory of bivariate means [2]:

$$
\begin{equation*}
L>\sqrt[3]{G^{2} A} \tag{2.9}
\end{equation*}
$$

where $L=L(a, b)=(b-a) /(\ln b-\ln a)(a \neq b)$ is the logarithmic mean of a and b, while $G=G(a, b)=\sqrt{a b}$, and $A=A(a, b)=\frac{a+b}{2}$ are, respectively, the geometric and arithmetic means of a and b.

We note that inequality (2.1) of Lemma 2.1 also follows from known results in the theory of means. Let

$$
S=S(a, b)=\left(a^{a} \cdot b^{b}\right)^{1 /(a+b)}
$$

be a mean which has been studied, e.g., in [7]. It is known that

$$
\begin{equation*}
S<\frac{A^{2}}{G} \tag{2.10}
\end{equation*}
$$

We let $a=e^{x}, b=e^{-x}$ to obtain $A=A(a, b)=\cosh x, G=G(a, b)=1$, and $S=S(a, b)=e^{x \tanh x}$. It is clear that (2.10) becomes (2.1). From results in [8] we can deduce the following refinement of (2.1):

$$
\begin{equation*}
\ln \cosh x>\frac{1}{4}[3(x \operatorname{coth} x-1)+x \tanh x]>\frac{x}{2} \tanh x . \tag{2.11}
\end{equation*}
$$

Theorem 2.2. The best positive constants p^{\prime} and q^{\prime} for which the following inequality

$$
\begin{equation*}
\left(\frac{\sinh x}{x}\right)^{p^{\prime}}<\frac{2}{\cos x+1}<\left(\frac{\sinh x}{x}\right)^{q^{\prime}} \tag{2.12}
\end{equation*}
$$

is valid are $p^{\prime}=\frac{3}{2}=1.5$ and $q^{\prime}=\ln 2 / \ln [\sinh (\pi / 2) /(\pi / 2)]=1.818 \ldots$
Proof. In order to obtain the desired result let us introduce

$$
\begin{equation*}
h_{2}(x)=\frac{\ln (2 /(\cos x+1))}{\ln (\sinh x / x)}=\frac{f_{2}(x)}{g_{2}(x)}, x \in\left(0, \frac{\pi}{2}\right) . \tag{2.13}
\end{equation*}
$$

Easy computations give $f_{2}^{\prime}(x)=\frac{\sin x}{\cos x+1}$ and $g_{2}^{\prime}(x)=\frac{x \cosh x-\sinh x}{x \sinh x}$. Hence

$$
\begin{equation*}
g_{2}^{\prime}(x)^{2} \cdot h_{2}^{\prime}(x)=-\frac{x \cosh x-\sinh x}{x \sinh x}\left(\ln \frac{2}{\cos x+1}\right)+\left(\ln \frac{\sinh x}{x}\right) \frac{\sin x}{\cos x+1} . \tag{2.14}
\end{equation*}
$$

We will need the following inequality:

$$
\begin{equation*}
\ln \frac{\sinh x}{x}>\frac{1}{2} \cdot \frac{x \cosh x-\sinh x}{x \sinh x}, x>0 \tag{2.15}
\end{equation*}
$$

We note that (2.15) follows from [7, 8]:

$$
\begin{equation*}
L^{2}>G \cdot I \tag{2.16}
\end{equation*}
$$

where $I=I(a, b)$ is the identric mean of a and b, defined by

$$
I=e^{-1}\left(b^{b} / a^{a}\right)^{1 /(b-a)} \text { for } a \neq b
$$

Since $L\left(e^{x}, e^{-x}\right)=\frac{\sinh x}{x}, I\left(e^{x}, e^{-x}\right)=e^{x \operatorname{coth} x-1}, G\left(e^{x}, e^{-x}\right)=1,(2.16)$ yields (2.15).

We now prove that

$$
\begin{equation*}
a(x)=\frac{x}{2} \cdot \frac{\sin x}{\cos x+1}-\ln \frac{2}{\cos x+1}>0 \text { for } x \in\left(0, \frac{\pi}{2}\right) . \tag{2.17}
\end{equation*}
$$

An easy computation gives

$$
a^{\prime}(x)=\frac{x-\sin x}{2(\cos x+1)}>0
$$

This in conjunction with $a(0)=0$, yields (2.17).
Making use of (2.15) and (2.17), and taking into account (2.14) we get $h_{2}^{\prime}(x)>0$ for $x>0$. Thus $h_{2}(x)$ is a strictly increasing function. This in turn yields

$$
\begin{equation*}
p^{\prime}=h_{2}\left(0_{+}\right)<h_{2}(x)<h_{2}(\pi / 2)=q^{\prime} \tag{2.18}
\end{equation*}
$$

A simple computation, involving application of l'Hospital's rule, together with the use of the well known limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\sinh x}{x}=1
$$

implies $p^{\prime}=\frac{3}{2}=1.5$ and

$$
q^{\prime}=\frac{\ln 2}{\ln \left(\frac{\sinh (\pi / 2)}{(\pi / 2)}\right)} \approx 1.818 \ldots
$$

This finishes the proof of Theorem 2.2.

Remark 2.2. Since $\frac{\cos x+1}{2}=\cos ^{2} \frac{x}{2}, \sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}, \sin \frac{x}{2}<\frac{x}{2}$ and $\tan \frac{x}{2}>\frac{x}{2}$, one obtains

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{2}<\frac{\cos x+1}{2}<\frac{\sin x}{x} \tag{2.19}
\end{equation*}
$$

This in conjunction with (1.1) yields

$$
\begin{equation*}
\frac{\sinh x}{x}<\frac{2}{\cos x+1}<\left(\frac{\sinh x}{x}\right)^{4} \tag{2.20}
\end{equation*}
$$

Comparison with inequality (2.12) reveals superiority of the latter result.

References

[1] R. Klén, M. Visuri and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Ineq. Appl. vol. 2010, Article ID 362548, 14 pages.
[2] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl., 92(1983), 207-223.
[3] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[4] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions, with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal. Appl., 13(2010), no. 4, 715-723.
[5] J. Sándor, Two sharp inequalities for trigonometric and hyperbolic functions, Math. Inequal., Appl., to appear.
[6] J. Sándor, On certain new inequalities for trigonometric and hyperbolic functions, submitted.
[7] J. Sándor and I. Raşa, Inequalities for certain means in two arguments, Nieuw. Arch. Wiskunde, 15(1997), no. 1-2, 51-55.
[8] J. Sándor, On the identric and logarithmic means, Aequationes Math., 40(1990), 261-270.
Edward Neuman
Department of Mathematics,
Mailcode 4408, Southern Illinois University, 1245 Lincoln Drive,
Carbondale, IL 62901, USA.
E-mail address: edneuman@siu.edu
JÓZSEF SÁNDOR
Babeş-Bolyai University,
Department of Mathematics, Str. Kogălniceanu nr.1, 400084 Cluj-Napoca, Romania.

E-mail address: jjsandor@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 26D05, 26D07.
 Key words and phrases. Optimal inequalities, trigonometric functions, hyperbolic functions.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted June 28, 2011. Published August 1, 2011.

