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Abstract. We determine the best positive constants p and q such that(
1

coshx

)p

<
sinx

x
<

(
1

coshx

)q

as well as p′ and q′ such that(
sinhx

x

)p′

<
2

cosx+ 1
<

(
sinhx

x

)q′

.

1. Introduction

In recent years inequalities involving trigonometric and hyperbolic inequalities
have attracted attention of several researchers. For instance, the Huygens, the
Cusa-Huygens, and the Wilker inequalities for trigonometric and hyperbolic func-
tions have been studied extensively in numerous papers. For more references the
interested reader is referred to [1] and [4]. For example, it was demonstrated in [1]
that for all x ∈ (0, π/2) one has

x2

sinh2 x
<

sinx

x
<

x

sinhx
, (1.1)

1

coshx
<

sinx

x
<

x

sinhx
, (1.2)

and (
1

coshx

)1/2

<
x

sinhx
<

(
1

coshx

)1/4

(1.3)

for 0 < x < 1.
In the recent paper [5] we have determined the best inequalities of type (1.1).

The goal of this paper is to determine optimal inequalities which are similar to (1.1)
- (1.3). They are contained in Theorems 2.1 and 2.2.
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2. Main Results

The following auxiliary results will be needed in the sequel.
Lemma 2.1. For all x > 0 one has

ln coshx >
x

2
tanhx. (2.1)

Proof. Let us define f1(x) = ln coshx− x

2
tanhx, x ≥ 0.

A simple computation gives

2 cosh2 x · f ′
1(x) = sinhx · coshx− x > 0,

where the last inequality follows immediately from sinhx > x and coshx > 1
(x > 0). Thus f1 is a strictly increasing function. This in turn implies that
f1(x) ≥ f1(0) = 0 for x ≥ 0, with equality if x = 0. This completes the proof of
inequality (2.1). �

Lemma 2.2. For all x ∈ (0, π/2) one has

ln
x

sinx
<

sinx− x cosx

2 sinx
. (2.2)

Proof. Let f2(x) =
sinx− x cosx

2 sinx
− ln

x

sinx
, 0 < x ≤ π

2
.

A simple computation gives

2x sin2 x · f ′
2(x) = x2 + x · sinx · cosx− 2 sin2 x > 0,

where the last inequality is satisfied iff

sinx

x
<

cosx+
√
cos2 x+ 8

4
. (2.3)

In order to prove (2.3) it suffices to use the Cusa-Huygens inequality (see, e.g.,
[4])

sinx

x
<

cosx+ 2

3
, (2.4)

together with

cosx+ 2

3
<

cosx+
√
cos2 x+ 8

4
,

where the last inequality is equivalent to

(cosx− 1)2 > 0.

Thus f ′
2(x) > 0 for x > 0, and this implies

f2(x) > f2(0+) = lim
x→0+

f2(x) = 0.

The proof of inequality (2.2) is complete. �
The main results of this paper are contained in the following two theorems.
Theorem 2.1. The best positive constants p and q in the following inequality

1

(coshx)p
<

sinx

x
<

1

(coshx)q
, x ∈

(
0,

π

2

)
(2.5)

are p = ln(π/2)/ ln cosh(π/2) ≈ 0.49 and q =
1

3
= 0.33 . . .
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Proof. Let

h1(x) =
ln

x

sinx
ln coshx

=
f1(x)

g1(x)
, x ∈

(
0,

π

2

)
.

Simple computations give

f ′
1(x) =

sinx− x cosx

x sinx
, g′1(x) =

sinhx

coshx
,

(ln coshx)2h′
1(x) =

sinx− x cosx

x sinx
ln(coshx)− tanhx ln

x

sinx
. (2.6)

Using the inequalities sinx > x cosx,
x

sinx
> 1, coshx > 1, (2.1) and (2.2),

we see using (2.6), that h′
1(x) > 0 for x > 0. This shows that, the function h1 is

strictly increasing, so

h1(0+) < h1(x) < h1

(π
2

)
for any 0 < x <

π

2
. (2.7)

Elementary computations give

h1(0+) = lim
x→0

h1(x) =
1

3
h1(π/2) =

ln(π/2)

ln cosh(π/2)
≈ 0.49 . . . .

Thus by virtue of (2.7) we see that q = h1(0+) and p = h1(π/2) are the best
possible constants in (2.5). �

Remark 2.1. The right side inequality in (2.5) also follows from the inequality

sinhx

x
>

3
√
coshx (2.8)

which has been discovered by I. Lazarević (see [3], [4]). We have shown recently
(see [6]) that (2.8) is equivalent to an inequality in the theory of bivariate means
[2]:

L >
3
√
G2A, (2.9)

where L = L(a, b) = (b−a)/(ln b− ln a) (a ̸= b) is the logarithmic mean of a and b,

while G = G(a, b) =
√
ab, and A = A(a, b) =

a+ b

2
are, respectively, the geometric

and arithmetic means of a and b.
We note that inequality (2.1) of Lemma 2.1 also follows from known results in

the theory of means. Let

S = S(a, b) = (aa · bb)1/(a+b)

be a mean which has been studied, e.g., in [7]. It is known that

S <
A2

G
(2.10).

We let a = ex, b = e−x to obtain A = A(a, b) = coshx, G = G(a, b) = 1, and
S = S(a, b) = ex tanh x. It is clear that (2.10) becomes (2.1). From results in [8] we
can deduce the following refinement of (2.1):

ln coshx >
1

4
[3(x cothx− 1) + x tanhx] >

x

2
tanhx. (2.11)

Theorem 2.2. The best positive constants p′ and q′ for which the following
inequality (

sinhx

x

)p′

<
2

cosx+ 1
<

(
sinhx

x

)q′

(2.12)
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is valid are p′ =
3

2
= 1.5 and q′ = ln 2/ ln[sinh(π/2)/(π/2)] = 1.818 . . .

Proof. In order to obtain the desired result let us introduce

h2(x) =
ln(2/(cosx+ 1))

ln(sinhx/x)
=

f2(x)

g2(x)
, x ∈

(
0,

π

2

)
. (2.13)

Easy computations give f ′
2(x) =

sinx

cosx+ 1
and g′2(x) =

x coshx− sinhx

x sinhx
. Hence

g′2(x)
2 ·h′

2(x) = −x coshx− sinhx

x sinhx

(
ln

2

cosx+ 1

)
+

(
ln

sinhx

x

)
sinx

cosx+ 1
. (2.14)

We will need the following inequality:

ln
sinhx

x
>

1

2
· x coshx− sinhx

x sinhx
, x > 0. (2.15)

We note that (2.15) follows from [7, 8]:

L2 > G · I, (2.16)

where I = I(a, b) is the identric mean of a and b, defined by

I = e−1(bb/aa)1/(b−a) for a ̸= b.

Since L(ex, e−x) =
sinhx

x
, I(ex, e−x) = ex coth x−1, G(ex, e−x) = 1, (2.16) yields

(2.15).
We now prove that

a(x) =
x

2
· sinx

cosx+ 1
− ln

2

cosx+ 1
> 0 for x ∈

(
0,

π

2

)
. (2.17)

An easy computation gives

a′(x) =
x− sinx

2(cosx+ 1)
> 0.

This in conjunction with a(0) = 0, yields (2.17).
Making use of (2.15) and (2.17), and taking into account (2.14) we get h′

2(x) > 0
for x > 0. Thus h2(x) is a strictly increasing function. This in turn yields

p′ = h2(0+) < h2(x) < h2(π/2) = q′. (2.18)

A simple computation, involving application of l’Hospital’s rule, together with
the use of the well known limits

lim
x→0

sinx

x
= lim

x→0

sinhx

x
= 1

implies p′ =
3

2
= 1.5 and

q′ =
ln 2

ln

(
sinh(π/2)

(π/2)

) ≈ 1.818 . . .

This finishes the proof of Theorem 2.2. �
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Remark 2.2. Since
cosx+ 1

2
= cos2

x

2
, sinx = 2 sin

x

2
cos

x

2
, sin

x

2
<

x

2
and

tan
x

2
>

x

2
, one obtains (

sinx

x

)2

<
cosx+ 1

2
<

sinx

x
. (2.19)

This in conjunction with (1.1) yields

sinhx

x
<

2

cosx+ 1
<

(
sinhx

x

)4

. (2.20)

Comparison with inequality (2.12) reveals superiority of the latter result.
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[3] D. S. Mitrinović, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
[4] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic func-

tions, with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, Math. Inequal.

Appl., 13(2010), no. 4, 715-723.
[5] J. Sándor, Two sharp inequalities for trigonometric and hyperbolic functions, Math. Inequal.,

Appl., to appear.
[6] J. Sándor, On certain new inequalities for trigonometric and hyperbolic functions, submitted.
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