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COMMON FIXED POINT THEOREMS VIA w-DISTANCE

(COMMUNICATED BY DENNY H. LEUNG)

SUSHANTA KUMAR MOHANTA

Abstract. We prove some common fixed point theorems with the help of

the notion of w-distance in a metric space. Our results will improve and
supplement some results of [1] and [6].

1. Introduction

Metric fixed point theory is playing an increasing role in mathematics because of
its wide range of applications in applied mathematics and sciences. Over the past
two decades a considerable amount of research work for the development of fixed
point theory have executed by several authors. In 1996, Kada et.al.[1] introduced
the concept of w-distance in a metric space and studied some fixed point theorems.
The aim of this paper is to obtain some common fixed point results by using the
notion of w-distance in a metric space. Our results generalize some results of [1]
and [6].

Now, we recall some basic definitions which will be needed in the sequel. Through-
out this paper we denote by N the set of all positive integers.

Definition 1.1. [1] Let (X, d) be a metric space. Then a function p : X × X →
[0,∞) is called a w-distance on X if the following conditions are satisfied:

(i) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(ii) for any x ∈ X, p(x, .) : X → [0,∞) is lower semicontinuous;

(iii) for any ϵ > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply

d(x, y) ≤ ϵ.

Example 1.1. [5] If X = { 1
n : n ∈ N} ∪ {0}. For each x, y ∈ X, d(x, y) =

x + y if x ̸= y and d(x, y) = 0 if x = y is a metric on X. Moreover, by defining
p(x, y) = y, p is a w-distance on (X, d).
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Definition 1.2. Let (X, d) be a metric space. A mapping T : X → X is said to
be expansive if there exists a real constant c > 1 satisfying d(T (x), T (y)) ≥ cd(x, y)
for all x, y ∈ X.

2. Main Results

Before presenting our results we recall the following lemma due to O. Kada
et. al.[1] that will play a crucial role in this section.

Lemma 2.1. Let (X, d) be a metric space and let p be a w-distance on X. Let (xn)
and (yn) be sequences in X, let (αn) and (βn) be sequences in [0,∞) converging to
0, and let x, y, z ∈ X. Then the following hold:
(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N , then y = z. In particular, if

p(x, y) = 0 and p(x, z) = 0, then y = z;

(ii) if p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N , then (yn) converges to z;
(iii) if p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy
sequence;
(iv) if p(y, xn) ≤ αn for any n ∈ N , then (xn) is a Cauchy sequence.

Theorem 2.1. Let p be a w-distance on a complete metric space (X, d). Let T1, T2

be mappings from X into itself. Suppose that there exists r ∈ [0, 1) such that

max { p(T1(x), T2T1(x)), p(T2(x), T1T2(x))} ≤ rmin { p(x, T1(x)), p(x, T2(x))}
(2.1)

for every x ∈ X and that

inf {p(x, y) +min {p(x, T1(x)), p(x, T2(x))} : x ∈ X} > 0 (2.2)

for every y ∈ X with y is not a common fixed point of T1 and T2. Then there
exists z ∈ X such that z = T1(z) = T2(z). Moreover, if v = T1(v) = T2(v), then
p(v, v) = 0.

Proof. Let u0 ∈ X be arbitrary and define a sequence (un) by

un = T1(un−1), if n is odd

= T2(un−1), if n is even.

Then if n ∈ N is odd, we have

p(un, un+1) = p(T1(un−1), T2(un))

= p(T1(un−1), T2T1(un−1))

≤ max {p(T1(un−1), T2T1(un−1)), p(T2(un−1), T1T2(un−1))}
≤ rmin {p(un−1, T1(un−1)), p(un−1, T2(un−1))} , by (2.1)

≤ r p(un−1, T1(un−1))

= r p(un−1, un).
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If n is even, then by (2.1), we have

p(un, un+1) = p(T2(un−1), T1(un))

= p(T2(un−1), T1T2(un−1))

≤ max {p(T2(un−1), T1T2(un−1)), p(T1(un−1), T2T1(un−1))}
≤ rmin {p(un−1, T2(un−1)), p(un−1, T1(un−1))}
≤ r p(un−1, T2(un−1))

= r p(un−1, un).

Thus for any positive integer n, it must be the case that

p(un, un+1) ≤ r p(un−1, un). (2.3)

By repeated application of (2.3), we obtain

p(un, un+1) ≤ rn p(u0, u1).

So, if m > n, then

p(un, um) ≤ p(un, un+1) + p(un+1, un+2) + · · ·+ p(um−1, um)

≤
[
rn + rn+1 + · · ·+ rm−1

]
p(u0, u1)

≤ rn

1− r
p(u0, u1).

By Lemma 2.1(iii), (un) is a Cauchy sequence in X. Since X is complete, (un)
converges to some point z ∈ X. Let n ∈ N be fixed. Then since (um) converges to
z and p(un, .) is lower semicontinuous, we have

p(un, z) ≤ lim
m→∞

inf p(un, um) ≤ rn

1− r
p(u0, u1).

Assume that z is not a common fixed point of T1 and T2. Then by hypothesis

0 < inf { p(x, z) +min { p(x, T1(x)), p(x, T2(x))} : x ∈ X}
≤ inf { p(un, z) +min { p(un, T1(un)), p(un, T2(un))} : n ∈ N}

≤ inf

{
rn

1− r
p(u0, u1) + p(un, un+1) : n ∈ N

}
≤ inf

{
rn

1− r
p(u0, u1) + rn p(u0, u1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = T1(z) = T2(z).

If v = T1(v) = T2(v) for some v ∈ X, then

p(v, v) = max { p(T1(v), T2T1(v)), p(T2(v), T1T2(v))}
≤ rmin { p(v, T1(v)), p(v, T2(v))}
= rmin { p(v, v), p(v, v)}
= r p(v, v)

which gives that, p(v, v) = 0. �
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The following Corollary is the result [1, Theorem 4].

Corollary 2.1. Let X be a complete metric space, let p be a w-distance on X and
let T be a mapping from X into itself. Suppose that there exists r ∈ [0, 1) such that

p(T (x), T 2(x)) ≤ r p(x, T (x))

for every x ∈ X and that

inf {p(x, y) + p(x, T (x)) : x ∈ X} > 0

for every y ∈ X with y ̸= T (y). Then there exists z ∈ X such that z = T (z).
Moreover, if v = T (v), then p(v, v) = 0.

Proof. Taking T1 = T2 = T in Theorem 2.1, the conclusion of the Corollary follows.
So Corollary 2.1 can be treated as a special case of Theorem 2.1. �

We now supplement Theorem 2.1 by examination of conditions (2.1) and (2.2)
in respect of their independence. We furnish Examples 2.1 and 2.2 below to show
that these two conditions are independent in the sense that Theorem 2.1 shall fall
through by dropping one in favour of the other.

Example 2.1. Take X = { 0 } ∪
{

1
2n : n ≥ 1

}
, which is a complete metric space

with usual metric d of reals. Define T : X → X by T (0) = 1
2 and T

(
1
2n

)
= 1

2n+1

for n ≥ 1. Clearly, T has got no fixed point in X. It is easy to check that
d(T (x), T 2(x)) ≤ 1

2 d(x, T (x)) for all x ∈ X. Thus condition (2.1) holds for
T1 = T2 = T . However, T (y) ̸= y for all y ∈ X and so

inf {d(x, y) + d(x, T (x)) : x, y ∈ X with y ̸= T (y)}

= inf {d(x, y) + d(x, T (x)) : x, y ∈ X}
= 0.

Thus, condition (2.2) is not satisfied for T1 = T2 = T . We note that Theorem 2.1
is invalid without condition (2.2).

Example 2.2. Take X = [2,∞) ∪ {0, 1}, which is a complete metric space with
usual metric d of reals. Define T : X → X where

T (x) = 0, for x ∈ (X \ {0})
= 1, for x = 0.

Clearly, T possesses no fixed point in X.
Now,

inf {d(x, y) + d(x, T (x)) : x, y ∈ X with y ̸= T (y)}

= inf {d(x, y) + d(x, T (x)) : x, y ∈ X}
> 0.

Thus, condition (2.2) is satisfied for T1 = T2 = T . But, for x = 0, we find that
d(T (x), T 2(x)) = 1 > r d(x, T (x)) for any r ∈ [0, 1). So, condition (2.1) does not
hold for T1 = T2 = T . In this case we observe that Theorem 2.1 does not work
without condition (2.1).
Note :In examples above we treat d as a w-distance on X in reference to Theorem
2.1.
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Theorem 2.2. Let p be a w-distance on a complete metric space (X, d). Let T1, T2

be mappings from X onto itself. Suppose that there exists r > 1 such that

min { p(T2T1(x), T1(x)), p(T1T2(x), T2(x))} ≥ rmax { p(T1(x), x), p(T2(x), x)}
(2.4)

for every x ∈ X and that

inf {p(x, y) +min { p(T1(x), x), p(T2(x), x)} : x ∈ X} > 0 (2.5)

for every y ∈ X with y is not a common fixed point of T1 and T2. Then there
exists z ∈ X such that z = T1(z) = T2(z). Moreover, if v = T1(v) = T2(v), then
p(v, v) = 0.

Proof. Let u0 ∈ X be arbitrary. Since T1 is onto, there is an element u1 satisfying
u1 ∈ T−1

1 (u0). Since T2 is also onto, there is an element u2 satisfying u2 ∈ T−1
2 (u1).

Proceeding in the same way, we can find u2n+1 ∈ T−1
1 (u2n) and u2n+2 ∈ T−1

2 (u2n+1)
for n = 1, 2, 3, · · ·.
Therefore, u2n = T1(u2n+1) and u2n+1 = T2(u2n+2) for n = 0, 1, 2, · · ·.

If n = 2m, then using (2.4)

p(un−1, un) = p(u2m−1, u2m)

= p(T2(u2m), T1(u2m+1))

= p(T2T1(u2m+1), T1(u2m+1))

≥ min {p(T2T1(u2m+1), T1(u2m+1)), p(T1T2(u2m+1), T2(u2m+1))}
≥ rmax {p(T1(u2m+1), u2m+1), p(T2(u2m+1), u2m+1)}
≥ r p(T1(u2m+1), u2m+1)

= r p(u2m, u2m+1)

= r p(un, un+1).

If n = 2m+ 1, then by (2.4), we have

p(un−1, un) = p(u2m, u2m+1)

= p(T1(u2m+1), T2(u2m+2))

= p(T1T2(u2m+2), T2(u2m+2))

≥ min {p(T2T1(u2m+2), T1(u2m+2)), p(T1T2(u2m+2), T2(u2m+2))}
≥ rmax {p(T1(u2m+2), u2m+2), p(T2(u2m+2), u2m+2)}
≥ r p(T2(u2m+2), u2m+2)

= r p(u2m+1, u2m+2)

= r p(un, un+1).

Thus for any positive integer n, it must be the case that

p(un−1, un) ≥ r p(un, un+1)

which implies that,

p(un, un+1) ≤
1

r
p(un−1, un) ≤ · · · ≤

(
1

r

)n

p(u0, u1). (2.6)

Let α = 1
r , then 0 < α < 1 since r > 1.
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Now, (2.6) becomes
p(un, un+1) ≤ αn p(u0, u1).

So, if m > n, then

p(un, um) ≤ p(un, un+1) + p(un+1, un+2) + · · ·+ p(um−1, um)

≤
[
αn + αn+1 + · · ·+ αm−1

]
p(u0, u1)

≤ αn

1− α
p(u0, u1).

By Lemma 2.1(iii), (un) is a Cauchy sequence in X. Since X is complete, (un)
converges to some point z ∈ X. Let n ∈ N be fixed. Then since (um) converges to
z and p(un, .) is lower semicontinuous, we have

p(un, z) ≤ lim
m→∞

inf p(un, um) ≤ αn

1− α
p(u0, u1).

Assume that z is not a common fixed point of T1 and T2. Then by hypothesis

0 < inf { p(x, z) +min { p(T1(x), x), p(T2(x), x)} : x ∈ X}
≤ inf { p(un, z) +min { p(T1(un), un), p(T2(un), un)} : n ∈ N}

≤ inf

{
αn

1− α
p(u0, u1) + p(un−1, un) : n ∈ N

}
≤ inf

{
αn

1− α
p(u0, u1) + αn−1 p(u0, u1) : n ∈ N

}
= 0

which is a contradiction. Therefore, z = T1(z) = T2(z).

If v = T1(v) = T2(v) for some v ∈ X, then

p(v, v) = min { p(T2T1(v), T1(v)), p(T1T2(v), T2(v))}
≥ rmax { p(T1(v), v), p(T2(v), v)}
= rmax { p(v, v), p(v, v)}
= r p(v, v)

which gives that, p(v, v) = 0. �
Corollary 2.2. Let p be a w-distance on a complete metric space (X, d) and let
T : X → X be an onto mapping. Suppose that there exists r > 1 such that

p(T 2(x), T (x)) ≥ rp(T (x), x) (2.7)

for every x ∈ X and that

inf{p(x, y) + p(T (x), x) : x ∈ X} > 0 (2.8)

for every y ∈ X with y ̸= T (y). Then T has a fixed point in X. Moreover, if
v = T (v), then p(v, v) = 0.

Proof. Taking T1 = T2 = T in Theorem 2.2, we have the desired result. �



188 SUSHANTA KUMAR MOHANTA

The following Corollary is the result [6, Theorem 4].

Corollary 2.3. Let (X, d) be a complete metric space and T be a mapping of X
into itself. If there is a real number r with r > 1 satisfying

d(T 2(x), T (x)) ≥ rd(T (x), x)

for each x ∈ X, and T is onto continuous, then T has a fixed point.

Proof. We treat d as a w-distance on X. Then d satisfies condition (2.7) of Corol-
lary 2.2.

Assume that there exists y ∈ X with y ̸= T (y) and

inf{d(x, y) + d(T (x), x) : x ∈ X} = 0.

Then there exists a sequence (xn) such that

lim
n→∞

{d(xn, y) + d(T (xn), xn)} = 0.

So, we have d(xn, y) → 0 and d(T (xn), xn) → 0 as n → ∞.
Now,

d(T (xn), y) ≤ d(T (xn), xn) + d(xn, y) → 0 as n → ∞.

Since T is continuous, we have

T (y) = T
(
lim

n→∞
xn

)
= lim

n→∞
T (xn) = y.

This is a contradiction. Hence if y ̸= T (y), then

inf{d(x, y) + d(T (x), x) : x ∈ X} > 0,

which is condition (2.8) of Corollary 2.2.
By Corollary 2.2, there exists z ∈ X such that z = T (z). �

As an application of Corollary 2.2, we have the following result [6, Theorem 3].

Corollary 2.4. Let (X, d) be a complete metric space and T be a mapping of X
into itself. If there is a real number r with r > 1 satisfying

d(T (x), T (y)) ≥ rmin{d(x, T (x)), d(T (y), y), d(x, y)} (2.9)

for any x, y ∈ X, and T is onto continuous, then T has a fixed point.

Proof. We treat d as a w-distance on X. Replacing y by T (x) in (2.9), we obtain

d(T (x), T 2(x)) ≥ rmin{d(x, T (x)), d(T 2(x), T (x)), d(x, T (x))} (2.10)

for all x ∈ X.
Without loss of generality, we may assume that T (x) ̸= T 2(x). For, otherwise, T
has a fixed point.
Since r > 1, it follows from (2.10) that

d(T 2(x), T (x)) ≥ rd(T (x), x)

for every x ∈ X.
By the argument similar to that used in Corollary 2.3, we can prove that, if y ̸=
T (y), then

inf{d(x, y) + d(T (x), x) : x ∈ X} > 0,

which is condition (2.8) of Corollary 2.2.
So, Corollary 2.2 applies to obtain a fixed point of T . �
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Remark 2.1. The class of mappings satisfying condition (2.9) is strictly larger
than the class of all expansive mappings.
For, if T : X → X is expansive, then there exists r > 1 such that

d(T (x), T (y)) ≥ r d(x, y) ≥ r min {d(x, T (x)), d(T (y), y), d(x, y)}
for all x, y ∈ X. On the otherhand, the identity mapping satisfies condition (2.9)
but it is not expansive.
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