HYPOCYCLOID OF $n+1$ CUSPS HARMONIC FUNCTION

(COMMUNICATED BY INDRAJIT LAHIRI)
TOSHIO HAYAMI AND SHIGEYOSHI OWA

Abstract

For a harmonic function $h(z)=f(z)+\overline{g(z)}$ in the open unit disk \mathbb{U} with holomorphic functions $f(z)$ and $g(z)$ satisfying $g^{\prime}(z)=z^{n-1} f^{\prime}(z)$ ($n=2,3,4, \cdots$), a sufficient condition on $f(z)$ for $h(z)$ to be univalent in \mathbb{U} and the image of \mathbb{U} by $h(z)$ to be a hypocycloid of $n+1$ cusps are discussed.

1. Introduction

For holomorphic functions $f(z)$ and $g(z)$ in a simply connected domain \mathbb{D}, a complex-valued harmonic function $h(z)$ is given by $h(z)=f(z)+\overline{g(z)}$. The theory and applications of harmonic mappings are discussed by Duren [1]. Mocanu [3] has shown the following result for the univalence of harmonic functions.
Theorem 1.1. Let $f(z)$ and $g(z)$ be holomorphic functions in a domain \mathbb{D}. If the
 $h(z)=f(z)+\overline{g(z)}$ is univalent and sense preserving in \mathbb{D}.

In fact, considering the harmonic function

$$
h(z)=f(z)+\overline{g(z)}=z+\frac{1}{n} \bar{z}^{n} \quad(n=2,3,4, \cdots)
$$

for all $z \in \mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, it is clear that $f(z)=z$ is convex, $\left|g^{\prime}(z)\right|<\left|f^{\prime}(z)\right|$ $(z \in \mathbb{U})$ and $h(z)$ is univalent and sense preserving in \mathbb{U}. For this harmonic function $h(z)$ and

$$
D h(z)=z \frac{\partial h(z)}{\partial z}-\bar{z} \frac{\partial h(z)}{\partial \bar{z}}
$$

it follows that

$$
\begin{aligned}
\operatorname{Re}\left(\frac{D h(z)}{h(z)}\right) & =\operatorname{Re}\left(\frac{r e^{i t}-r^{n} e^{-i n t}}{r e^{i t}+\frac{r^{n}}{n} e^{-i n t}}\right) \quad\left(z=r e^{i t}\right) \\
& \geqq \frac{n\left(1-r^{n-1}\right)}{n+r^{n-1}}>0
\end{aligned}
$$

[^0]which shows that $h(z)$ is also starlike in \mathbb{U} (see, [2]). Furthermore, $h(z)$ maps \mathbb{U} onto the region inside a hypocycloid of $n+1$ cusps (for detail, [1, p. 115]).

This work is motivated by the following theorem due to Mocanu (4].
Theorem 1.2. Let $f(z)$ be holomorphic in the closed unit disk $\overline{\mathbb{U}}$, with $f^{\prime}(z) \neq 0$ for $z \in \overline{\mathbb{U}}$ and let

$$
F(t)=3 t+2 \arg \left(f^{\prime}\left(e^{i t}\right)\right) \quad(-\pi \leqq t \leqq \pi)
$$

If for each $k \in K=\{0, \pm 1, \pm 2\}$ the equation

$$
F(t)=2 k \pi
$$

has at most a single root in $[-\pi, \pi]$ and for all $k \in K$ there exist three such roots in $[-\pi, \pi]$, then the harmonic function $h(z)=f(z)+\overline{g(z)}$, with $g^{\prime}(z)=z f^{\prime}(z)$ is univalent in \mathbb{U}, sense preserving and the image of \mathbb{U} by $h(z)$ is a "three-cornered hat" domain.

We obtain an extension result of the above theorem for the following generalized class of harmonic functions $h(z)$ in \mathbb{U} of the form

$$
h(z)=f(z)+\overline{g(z)}
$$

where $f(z)$ and $g(z)$ are holomorphic functions in \mathbb{U} and satisfy $g^{\prime}(z)=z^{n-1} f^{\prime}(z)$ $(n=2,3,4, \cdots)$. This shows that the harmonic function $h(z)$ is well defined if a holomorphic function $f(z)$ in \mathbb{U} is given.

2. Main Result

Our first result is contained in
Theorem 2.1. Let $f(z)$ be holomorphic in the closed unit disk $\overline{\mathbb{U}}$, with $f^{\prime}(z) \neq 0$ for $z \in \overline{\mathbb{U}}$ and let

$$
\begin{equation*}
F(t)=(n+1) t+2 \arg \left(f^{\prime}\left(e^{i t}\right)\right) \quad(-\pi \leqq t<\pi), \quad n=2,3,4, \cdots \tag{2.1}
\end{equation*}
$$

If for each $k \in K=\left\{0, \pm 1, \pm 2, \cdots, \pm\left[\frac{n+3}{2}\right]\right\}$ where [] denotes the Gauss symbol, the equation

$$
\begin{equation*}
F(t)=2 k \pi \tag{2.2}
\end{equation*}
$$

has at most a single root in $[-\pi, \pi)$ and for any $k \in K$ there exist exactly $(n+1)$ such roots in $[-\pi, \pi)$, then the harmonic function

$$
h(z)=f(z)+\overline{g(z)}
$$

with $g^{\prime}(z)=z^{n-1} f^{\prime}(z)$ is univalent in \mathbb{U}, sense preserving and the image of \mathbb{U} by $h(z)$ is a hypocycloid of $n+1$ cusps.

Proof. Let us define the function $w(t)$ by

$$
w(t)=h\left(e^{i t}\right)=f\left(e^{i t}\right)+\overline{g\left(e^{i t}\right)} \quad\left(z=e^{i t}\right)
$$

Supposing that

$$
w^{\prime}(t)=i\left(z f^{\prime}(z)-\bar{z} \overline{g^{\prime}(z)}\right)=i\left(z f^{\prime}(z)-\bar{z}^{n} \overline{f^{\prime}(z)}\right)=0
$$

then we need the equation

$$
z^{n+1} \frac{f^{\prime}(z)}{\overline{f^{\prime}(z)}}=1
$$

Therefore, it follows that

$$
\left|z^{n+1} \overline{\overline{f^{\prime}(z)}}\right|=1 \quad \text { and } \quad \arg \left(z^{n+1} \frac{f^{\prime}(z)}{\overline{f^{\prime}(z)}}\right)=2 k \pi
$$

that is, that

$$
(n+1) t+2 \arg \left(f^{\prime}\left(e^{i t}\right)\right)=2 k \pi \quad(-\pi \leqq t<\pi)
$$

for $z=e^{i t}$ which gives us the equation (2.2). By the assumption of the theorem, there exist $(n+1)$ distinct roots on the unit circle $|z|=1$ and they divide the unit circle onto $(n+1)$ arcs.

Since $g^{\prime \prime}(z)=(n-1) z^{n-2} f^{\prime}(z)+z^{n-1} f^{\prime \prime}(z)$, we have

$$
\begin{aligned}
w^{\prime \prime}(t) & =-\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)+\bar{z} \overline{g^{\prime}(z)}+\bar{z}^{2} \overline{g^{\prime \prime}(z)}\right) \\
& =-\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)+n \bar{z}^{n} \overline{f^{\prime}(z)}+\bar{z}^{n+1} \overline{f^{\prime \prime}(z)}\right)
\end{aligned}
$$

and therefore, we obtain that

$$
\begin{aligned}
& w^{\prime \prime}(t) \overline{w^{\prime}(t)}=-\left(z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)+n \bar{z}^{n} \overline{f^{\prime}(z)}+\bar{z}^{n+1} \overline{f^{\prime \prime}(z)}\right)(-i)\left(\bar{z} \overline{f^{\prime}(z)}-z^{n} f^{\prime}(z)\right) \\
& =i\left(-(n-1)\left|f^{\prime}(z)\right|^{2}+z \overline{f^{\prime}(z)} f^{\prime \prime}(z)-\overline{z \overline{f^{\prime}(z)} f^{\prime \prime}(z)}-z^{n+1} f^{\prime}(z)^{2}+\overline{z^{n+1} f^{\prime}(z)^{2}}\right. \\
& \left.+(n-1) \bar{z}^{n+1}{\overline{f^{\prime}(z)}}^{2}-z^{n+2} f^{\prime}(z) f^{\prime \prime}(z)+\overline{z^{n+2} f^{\prime}(z) f^{\prime \prime}(z)}\right) \\
& =i\left((n-1)\left(\bar{z}^{n+1}{\overline{f^{\prime}(z)}}^{2}-\left|f^{\prime}(z)\right|^{2}\right)\right. \\
& \left.+2 i \operatorname{Im}\left(z \overline{f^{\prime}(z)} f^{\prime \prime}(z)-z^{n+1} f^{\prime}(z)^{2}-z^{n+2} f^{\prime}(z) f^{\prime \prime}(z)\right)\right) .
\end{aligned}
$$

This implies that

$$
\operatorname{Im}\left(w^{\prime \prime}(t) \overline{w^{\prime}(t)}\right)=(n-1)\left|f^{\prime}(z)\right|^{2}\left[\operatorname{Re}\left(z^{n+1}\left(\frac{f^{\prime}(z)}{\left|f^{\prime}(z)\right|}\right)^{2}-1\right)\right] \leqq 0
$$

Thus, we derive

$$
\operatorname{Im}\left(\frac{w^{\prime \prime}(t)}{w^{\prime}(t)}\right)=\frac{1}{\left|w^{\prime}(t)\right|^{2}} \operatorname{Im}\left(w^{\prime \prime}(t) \overline{w^{\prime}(t)}\right) \leqq 0
$$

This shows that the image by $w(t)$ is concave. By the help of a simple geometrical observation, we know that the image of the unit circle, as a union of the $(n+1)$ concave arcs, is a simple curve. Namely, $h(z)$ is univalent and the domain $h(\mathbb{U})$ is a hypocycloid of $n+1$ cusps.

3. Some illustrative examples and image domains

In this section, we enumerate several illustrative examples and the image domains for the harmonic functions $h(z)=f(z)+\overline{g(z)}$ satisfying the condition of Theorem 2.1.

Example 3.1. Let $f(z)=z$. Then, we immediately obtain

$$
h(z)=f(z)+\overline{g(z)}=z+\frac{1}{n} \bar{z}^{n}
$$

and the equation (2.2) becomes

$$
(n+1) t=2 k \pi \quad\left(k=0, \pm 1, \pm 2, \cdots, \pm\left[\frac{n+3}{2}\right]\right)
$$

which has at most a single root in $[-\pi, \pi)$ and for any k, just $(n+1)$ roots in $[-\pi, \pi)$. Hence, $h(z)$ is univalent in \mathbb{U} and $h(\mathbb{U})$ is a hypocycloid of $n+1$ cusps. For example, setting $n=4$, the following hypocycloid of five cusps as the image of \mathbb{U} by the harmonic function

$$
h(z)=z+\frac{1}{4} \bar{z}^{4}
$$

is obtained.

The image of \mathbb{U} by $h(z)=z+\frac{1}{4} \bar{z}^{4}$.

Remark. The inequality $F^{\prime}(t) \geqq 0$, with $F(t)$ defined by (2.1), is equivalent to

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geqq-\frac{n-1}{2} \quad\left(z=e^{i t}\right) \tag{3.1}
\end{equation*}
$$

Noting the above, we derive
Example 3.2. Let $f(z)=z+\frac{p}{m} z^{m}(m=2,3,4, \cdots)$. Then, the equation (3.1) becomes

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=m-(m-1) \operatorname{Re}\left(\frac{1}{1+p z^{m-1}}\right) \geqq-\frac{n-1}{2}
$$

and the function $F(t)$ given by (2.1) satisfies

$$
F(-\pi)=-(n+1) \pi \quad \text { and } \quad F(\pi)=(n+1) \pi
$$

Therefore, if we take $-\frac{n+1}{n+2 m-1} \leqq p \leqq \frac{n+1}{n+2 m-1}$, then the conditions of Theorem 2.1 are satisfied, so that the harmonic function

$$
h(z)=z+\frac{p}{m} z^{m}+\frac{1}{n} \bar{z}^{n}+\frac{p}{n+m-1} \bar{z}^{n+m-1}
$$

is univalent in \mathbb{U} and $h(\mathbb{U})$ is a hypocycloid of $n+1$ cusps. In particular, considering $h(z)$ with $n=7, m=2$ and $p=\frac{8}{15}$, the following hypocycloid of eight cusps as the image of \mathbb{U} by the harmonic function

$$
h(z)=z+\frac{4}{15} z^{2}+\frac{1}{7} \bar{z}^{7}+\frac{1}{15} \bar{z}^{8}
$$

is obtained.

The image of \mathbb{U} by $h(z)=z+\frac{4}{15} z^{2}+\frac{1}{7} \bar{z}^{7}+\frac{1}{15} \bar{z}^{8}$.

4. A PROBLEM FOR HARMONIC FUNCTIONS

A problem related to the elementary transform of harmonic functions is the following.
Problem 4.1. For each holomorphic function $f(z)$ in certain domain with $f(0)=$ $f^{\prime}(0)-1=0$, can we find the largest domain \mathbb{D}_{c}, such that the harmonic function $h_{c}(z)=f_{c}(z)+\overline{g_{c}(z)}$, where $f_{c}(z)=\frac{1}{c} f(c z)$, with $g_{c}^{\prime}(z)=z^{n-1} f_{c}^{\prime}(z)$, is univalent for all $c \in \mathbb{D}_{c}$?

Let $c=r e^{i \theta}$ and

$$
F(t, r, \theta)=(n+1) t+2 \arg \left(f^{\prime}\left(r e^{i(t+\theta)}\right)\right)
$$

for $z=e^{i t}(-\pi \leqq t<\pi)$. Then, the boundary of the domain \mathbb{D}_{c} is obtained by the elimination of t from the system

$$
\left\{\begin{array}{l}
F(t, r, \theta)=2 k \pi \quad\left(k=0, \pm 1, \pm 2, \cdots, \pm\left[\frac{n+3}{2}\right]\right) \\
\frac{\partial F(t, r, \theta)}{\partial t}=0
\end{array}\right.
$$

where [] is the Gauss symbol.
For example, we consider this problem for the case $f(z)=e^{z}-1$. Then, we know that

$$
f_{c}(z)=\frac{e^{c z}-1}{c} \quad\left(c=r e^{i \theta}\right)
$$

and the equation (2.2) implies that

$$
(n+1) t+2 r \sin (t+\theta)=2 k \pi
$$

Differentiating the both sides with respect to t, we have that

$$
(n+1)+2 r \cos (t+\theta)=0
$$

or

$$
t+\theta=\cos ^{-1}\left(\frac{-(n+1)}{2 r}\right)=\pi-\cos ^{-1}\left(\frac{n+1}{2 r}\right)
$$

which means that

$$
t=-\frac{2 r}{n+1} \sin \left(\pi-\cos ^{-1}\left(\frac{n+1}{2}\right)\right)+\frac{2 k \pi}{n+1} .
$$

This gives us that

$$
\begin{equation*}
\theta=\frac{2 r}{n+1} \sin \left(\pi-\cos ^{-1}\left(\frac{n+1}{2 r}\right)\right)-\cos ^{-1}\left(\frac{n+1}{2 r}\right)+\pi-\frac{2 k \pi}{n+1} . \tag{4.1}
\end{equation*}
$$

Further, we have that

$$
\max _{k, t} r^{2}=\frac{1}{4}\left\{\left(4\left[\frac{n+3}{2}\right] \pi+(n+1) \pi\right)^{2}+(n+1)^{2}\right\}
$$

and

$$
\min _{k, t} r^{2}=\frac{(n+1)^{2}}{4}
$$

Letting Γ be the boundary of the domain \mathbb{D}_{c}, we have that the polar equations of Γ are given by

$$
\Gamma=\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

where r and θ satisfy the condition (4.1) with

$$
\begin{cases}k=0, \pm 1, \pm 2, \cdots, \pm l & (n=2 l) \\ k=0, \pm 1, \pm 2, \cdots, \pm l,-(l+1) & (n=2 l+1)\end{cases}
$$

Remark. Γ has a form of $(n+1)$-valently clover.
Example 4.1. For the case $n=3$, the harmonic function

$$
h_{c}(z)=\left(\frac{e^{c z}-1}{c}\right)-\overline{\frac{1}{c}\left(\frac{2}{c^{2}}\left(1-e^{c z}\right)+\frac{2}{c} z e^{c z}-z^{2} e^{c z}\right)}
$$

is univalent in \mathbb{U} where c is in the domain \mathbb{D}_{c} as follows:

Acknowledgments. We express our sincere thanks to the referees for their valuable suggestions and comments for improving this paper.

References

[1] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
[2] P. T. Mocanu, Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica (Cluj) 22(1980), 77-83.
[3] P. T. Mocanu, Sufficient conditions of univalency for complex functions in the class C^{1}, Rev. d'Anal. Numeér. et de Théorie Approx. 10(1981), 75-81.
[4] P. T. Mocanu, Three-cornered hat harmonic functions, Complex Var. Elliptic Equ. 54(2009), 1079-1084.

Toshio Hayami
School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337,
Japan
E-mail address: ha_ya_to112@hotmail.com
Shigeyoshi Owa
Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
E-mail address: owa@math.kindai.ac.jp

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Harmonic function; univalent function; hypocycloid of $n+1$ cusps.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted Jul 29, 2010. Published August 8, 2011.

