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GLOBAL SOLVABILITY AND MANN ITERATION METHOD

WITH ERROR FOR A THIRD ORDER NONLINEAR NEUTRAL

DELAY DIFFERENTIAL EQUATION

(COMMUNICATED BY AGACIK ZAFER)

MIN LIU, ZHENYU GUO

Abstract. This paper intends to investigate the existence of uncountably
many bounded positive solutions of a third order nonlinear neutral delay dif-
ferential equation

d

dt

{
r1(t)

d

dt

[
r2(t)

d

dt

(
x(t)− f(t, x(t− σ))

)]}
+

d

dt

[
r1(t)

d

dt
g(t, x(p(t)))

]
+

d

dt
h(t, x(q(t))) = l(t, x(η(t))), t ≥ t0

in the following bounded closed and convex set

Ω(a, b) =
{
x(t) ∈ C([t0,+∞),R) : a(t) ≤ x(t) ≤ b(t), ∀t ≥ t0

}
,

where σ > 0, r1, r2, a, b ∈ C([t0,+∞),R+), f, g, h, l ∈ C([t0,+∞)×R,R), p, q, η ∈
C([t0,+∞), [t0,+∞)). By using the Krasnoselskii fixed point theorem, the
Schauder fixed point theorem, the Sadovskii fixed point theorem and the Ba-
nach contraction principle, four existence results of uncountably many bounded
positive solutions of the differential equation are established. Moreover, a per-

turbed Mann iteration method with error is constructed for approximating
the solution of the third order differential equation, and the convergence and
stability of the iterative sequence generated by the algorithm are discussed.

1. Introduction and preliminaries

In recent years, it undergoes a rapid development for the theory of neutral delay
differential equations and systems, especially for the existence of nonoscillatory
solutions of second-order and higher order neutral delay differential equations, refer
to [1, 3-5, 9-11, 13-16] and the references therein.

In 2005, Zhang, Feng, Yan and Song [15] studied the existence of nonoscilla-
tory solutions of the first-order neutral delay differential equations with variable
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coefficients and delays

d

dt

[
x(t) + p(t)x(t− τ)

]
+Q1(t)x(t− σ1)−Q2(t)x(t− σ2) = 0, t ≥ t0, (1.1)

where p ∈ C([t0,+∞),R), τ > 0, σ1, σ2 ≥ 0 and Q1, Q2 ∈ C([t0,+∞),R+) with∫ +∞
t0

Qi(s)ds < +∞ for i ∈ {1, 2}, and

d

dt

[
x(t)+p(t)x(t−τ)

]
+

m∑
i=1

Ai(t)x(t−σi)−
n∑

i=m+1

Ai(t)x(t−σi) = 0, t ≥ t0, (1.2)

d

dt

[
x(t) + p(t)x(t− τ)

]
+

n∑
i=1

Bi(t)x(t− σi) = 0, t ≥ t0, (1.3)

where p,Bi ∈ C([t0,+∞),R), τ > 0, σi ≥ 0, Ai ∈ C([t0,+∞),R+) with
∫ +∞
t0

Ai(s)ds <

+∞ and
∫ +∞
t0

|Bi(s)|ds < +∞ for i ∈ {1, 2, . . . , n}.
In 2005, Lin [10] got some sufficient conditions for oscillation and nonoscillation

for the second-order nonlinear neutral differential equation

d2

dt2

[
x(t)− p(t)x(t− τ)

]
+ q(t)f(x(t− σ)) = 0, t ≥ 0, (1.4)

where τ, σ > 0, p, q ∈ C([0,+∞),R), f ∈ C(R,R) with q(t) ≥ 0 and xf(x) > 0 for
t ∈ R, x ∈ R/{0}.

In 2007, Islam and Raffoul [5] employed Krasnoselskii fixed point theorem and
the Banach contraction principle to discuss the existence of periodic solutions of
the nonlinear neutral system of differential equations of the form

d

dt
x(t) = A(t)x(t) +

d

dt
Q(t, x(t− g(t))) +G(t, x(t), x(t− g(t))), (1.5)

where A(t) is a nonsingular n × n matrix, Q ∈ C(R × Rn,Rn), G ∈ C(R × Rn ×
Rn,Rn).

In 2007, Zhou [14] used Krasnoselskii fixed point theorem to study the existence
of nonoscillatory soluions of the following second-order nonlinear neutral differential
equation

d

dt

[
r(t)

d

dt
(x(t) + p(t)x(t− τ))

]
+

m∑
i=1

Qi(t)fi(x(t− σi)) = 0, t ≥ t0, (1.6)

where m ≥ 1 is an integer, τ > 0, σi ≥ 0, r, p,Qi ∈ C([t0,+∞),R) and fi ∈ C(R,R)
for i ∈ {1, 2, . . . ,m}.

However, the works on Eqs.(1.1)-(1.6) listed above and others are all concerning
the existence of single nonoscillatory solution or at most infinitely many nonoscil-
latory solutions. As far as we are concerned, the existence of uncountably many
nonoscillatory solutions of Eqs.(1.1)-(1.6) and other differential equations or sys-
tems has received much less attention until now.

In this paper, we are concerned with the following third order nonlinear neutral
delay differential equation:

d

dt

{
r1(t)

d

dt

[
r2(t)

d

dt

(
x(t)− f(t, x(t− σ))

)]}
+

d

dt

[
r1(t)

d

dt
g(t, x(p(t)))

]
+

d

dt
h(t, x(q(t))) = l(t, x(η(t))), t ≥ t0,

(1.7)
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where σ > 0, r1, r2 ∈ C([t0,+∞),R+), f, g, h, l ∈ C([t0,+∞) × R,R), p, q, η ∈
C([t0,+∞), [t0,+∞)) with

lim
t→+∞

p(t) = lim
t→+∞

q(t) = lim
t→+∞

η(t) = +∞.

By applying the Krasnoselskii fixed point theorem, the Schauder fixed point
theorem, the Sadovskii fixed point theorem and the Banach contraction principle,
we obtain four existence results of uncountably many bounded positive solutions
of Eq.(1.7). Furthermore, we construct a perturbed Mann iteration algorithm for
approximating the solution of Eq.(1.7) and discuss the convergence and stability of
the iterative sequence.

Throughout this paper, put I = [t0,+∞) and C(I,R) denote the Banach space
of all continuous and bounded functions x(t) on I with norm ∥x∥ = supt∈I |x(t)|.
For any a, b ∈ C(I,R+), set a = supt∈I a(t), a = inft∈I a(t), b = supt∈I b(t), b =
inft∈I b(t) and

Ω(a, b) =
{
x(t) ∈ C(I,R) : a(t) ≤ x(t) ≤ b(t), ∀t ∈ I

}
.

Obviously, Ω(a, b) is a bounded closed and convex subset of C(I,R). For any
D ⊆ Ω(a, b) and t ∈ I, let

D(t) = sup
{
|x(t)− y(t)| : x(t), y(t) ∈ D

}
;

diamD = sup{∥x− y∥ : x, y ∈ D}.

It’s assumed in the sequel that there exist functions a, b, c, d, α, β, γ, λ, τ, ζ ∈
C(I,R+) with a(t) < b(t) for t ∈ I and φ : R+ → R+ satisfying

(i)
∫ +∞
t0

max
{

α(s)
r2(s)

, β(s)
r1(s)

, γ(s), 1
r1(s)

, 1
r2(s)

}
ds < +∞;

(ii) |f(t, u)| ≤ c(t), ∀t ∈ I, u ∈ [a, b];
(iii) |f(t, u)− f(t, v)| ≤ d(t)|u− v|, ∀t ∈ I, u, v ∈ [a, b];
(iv) |g(t, u)| ≤ α(t), |h(t, u)| ≤ β(t), |l(t, u)| ≤ γ(t), ∀t ∈ I, u ∈ [a, b];

(v)
∫ +∞
t0

max
{

sα(s)
r2(s)

, β(s)
r1(s)

, γ(s), 1
r1(s)

, s
r2(s)

}
ds < +∞;

(vi)
|f(t, x(t− σ))− f(t, y(t− σ))|

+

∫ +∞

t

|g(s, x(p(s)))− g(s, y(p(s)))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

|h(u, x(q(u)))− h(u, y(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

|l(v, x(η(v)))− l(v, y(η(v)))|
r2(s)r1(u)

dvduds

≤ φ(D(t)), ∀D ⊆ Ω(a, b), x, y ∈ D, t ∈ I;

(vii) |g(t, u)− g(t, v)| ≤ λ(t)|u− v|, |h(t, u)− h(t, v)| ≤ τ(t)|u− v|,
|l(t, u)− l(t, v)| ≤ ζ(t)|u− v|, ∀t ∈ I, u, v ∈ [a, b];

(viii)
∫ +∞
t0

max
{

λ(s)
r2(s)

, τ(s)
r1(s)

, ζ(s), 1
r1(s)

, 1
r2(s)

}
ds < +∞.

By a solution of Eq.(1.7), we mean a function x such that for some t1 ≥ t0,
x ∈ C([t1−σ,+∞),R), x(t)−f(t, x(t−σ)) is 3 times continuously differentiable on
[t1,+∞), g(t, x(p(t))) is 2 times continuously differentiable on [t1,+∞), h(t, x(q(t)))
is continuously differentiable on [t1,+∞) and Eq.(1.7) holds for t ≥ t1.

The following four lemmas play significant roles in this paper.
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Lemma 1.1. (Krasnoselskii Fixed Point Theorem [2]) Let D be a nonempty bounded
closed convex subset of a Banach space X and S,Q : D → X satisfy Sx+Qy ∈ D
for each x, y ∈ D. If Q is a contraction mapping and S is a completely continuous
mapping, then the equation Sx+Qx = x has at least one solution in D.

Lemma 1.2. (Schauder Fixed Point Theorem [2]) Let D be a nonempty closed
convex subset of a Banach space X. Let S : D → D be a continuous mapping such
that SD is a relatively compact subset of X. Then S has at least one fixed point in
D.

Lemma 1.3. (Sadovskii Fixed Point Theorem [12]) Let D be a nonempty bounded
closed convex subset of a Banach space X and S : D → D be a continuous con-
densing mapping. Then S has at least one fixed point in D.

Lemma 1.4. (Banach contraction principle) Let D be a closed subset of a com-
pletely metric space X and S : D → D be a contraction on D. Then S has at least
one fixed point in D.

2. Existence of uncountably many bounded positive solutions

In this section, we demonstrate the existence of uncountably many bounded
positive solutions of Eq.(1.7). Let

c = sup
t∈I

c(t) and d = sup
t∈I

d(t).

Theorem 2.1. Let a, b ∈ C(I,R+) with a < b and (i)-(iv) hold. If d ∈ (0, 1) and

c < b−a
2 , then Eq.(1.7) possesses uncountably many bounded positive solutions in

Ω(a, b).

Proof. Set L ∈ (a+c, b−c). According to (i), we deduce that there exists T ≥ t0+σ
large enough satisfying∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

< min
{
b− c− L,L− c− a

}
.

(2.1)
Define two mappings QL, SL : Ω(a, b) → C(I,R) by

(QLx)(t) =

{
L+ f(t, x(t− σ)), t ≥ T

(QLx)(T ), t0 ≤ t < T

(SLx)(t) =


∫ +∞
t

g(s,x(p(s)))
r2(s)

ds−
∫ +∞
t

∫ +∞
s

h(u,x(q(u)))
r2(s)r1(u)

duds

−
∫ +∞
t

∫ +∞
s

∫ +∞
u

l(v,x(η(v)))
r2(s)r1(u)

dvduds, t ≥ T

(SLx)(T ), t0 ≤ t < T

(2.2)

for x ∈ Ω(a, b) and t ∈ I.
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Firstly, we prove QLx + SLy ∈ Ω(a, b) for all x, y ∈ Ω(a, b). Due to (ii), (iv),
(2.1) and (2.2), we get that for each x, y ∈ Ω(a, b) and t ≥ T ,

(QLx+ SLy)(t)

≤ L+ c(t) +

∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

≤ L+ c+ (b− c− L)

≤ b(t)

(2.3)

and

(QLx+ SLy)(t)

≥ L− c(t)−
[ ∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
≥ L− c− (L− c− a)

≥ a(t).

(2.4)

It follows from (2.3) and (2.4) that QLΩ(a, b) + SLΩ(a, b) ⊆ Ω(a, b).
Secondly, we demonstrate that QL is a contraction mapping. According to (2.2)

and (iii), we derive that

|(QLx)(t)− (QLy)(t)| = |f(t, x(t− σ))− f(t, y(t− σ))|
≤ d(t)|x(t− σ)− y(t− σ)|
≤ d∥x− y∥, ∀x, y ∈ Ω(a, b), t ≥ T,

which infers that

∥QLx−QLy∥ ≤ d∥x− y∥, ∀x, y ∈ Ω(a, b).

That is, QL is a contraction mapping by d ∈ (0, 1).
Thirdly, we show that SL is completely continuous. Now we demonstrate SL is

continuous in Ω(a, b). Let x0 ∈ Ω(a, b) and {xk}k≥0 ⊂ Ω(a, b) with xk → x0 as
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k → +∞. (2.2) yields that

∥SLxk − SLx0∥
= sup

t∈I
|(SLxk)(t)− (SLx0)(t)|

≤ sup
t≥T

{∫ +∞

t

|g(s, xk(p(s)))− g(s, x0(p(s)))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

|h(u, xk(q(u)))− h(u, x0(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

|l(v, xk(η(v)))− l(v, x0(η(v)))|
r2(s)r1(u)

dvduds

}
≤
∫ +∞

T

|g(s, xk(p(s)))− g(s, x0(p(s)))|
r2(s)

ds

+

∫ +∞

T

∫ +∞

s

|h(u, xk(q(u)))− h(u, x0(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

|l(v, xk(η(v)))− l(v, x0(η(v)))|
r2(s)r1(u)

dvduds.

(2.5)

Note that
|g(s, xk(p(s)))− g(s, x0(p(s)))| ≤ 2α(s),

|h(u, xk(q(u)))− h(u, x0(q(u)))| ≤ 2β(u),

|l(v, xk(η(v)))− l(v, x0(η(v)))| ≤ 2γ(v),

(2.6)

|g(s, xk(p(s)))− g(s, x0(p(s)))| → 0,

|h(u, xk(q(u)))− h(u, x0(q(u)))| → 0,

|l(v, xk(η(v)))− l(v, x0(η(v)))| → 0

(2.7)

as k → +∞ and s, u, v ∈ [T,+∞). It follows from (2.5), (2.6), (2.7) and Lebesgue
dominated convergence theorem that ∥SLxk−SLx0∥ → 0 as k → +∞. Hence SL is
continuous in Ω(a, b). Now we prove that SLΩ(a, b) is relatively compact. In view
of (i), (iv) and (2.2), we deduce that

∥SLx∥ = sup
t∈I

|(SLx)(t)|

≤
∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds, ∀x ∈ Ω(a, b).

That is, SLΩ(a, b) is uniformly bounded. For the equicontinuity of SLΩ(a, b) on I,
according to Levitans result [6], it suffices to prove that for any given ϵ > 0, I can
be decomposed into finite subintervals in such a way that on each subinterval all
functions of the family have change of amplitude less than ϵ. Let ϵ > 0. By (i),
there exists T∗ > T such that∫ +∞

T∗

α(s)

r2(s)
ds+

∫ +∞

T∗

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T∗

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds <

ϵ

2
.

(2.8)
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It follows from (iv), (2.2) and (2.8) that for all x ∈ Ω(a, b) and t2 ≥ t1 ≥ T∗,

|(SLx)(t1)− (SLx)(t2)| ≤ |(SLx)(t1)|+ |(SLx)(t2)|

≤
∫ +∞

t1

α(s)

r2(s)
ds+

∫ +∞

t1

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t1

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

+

∫ +∞

t2

α(s)

r2(s)
ds+

∫ +∞

t2

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t2

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

≤ 2

[ ∫ +∞

T∗

α(s)

r2(s)
ds+

∫ +∞

T∗

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T∗

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
< ϵ;

For each x ∈ Ω(a, b) and T ≤ t1 ≤ t2 ≤ T∗, by (iv) and (2.2), we infer that

|(SLx)(t1)− (SLx)(t2)|

≤
∫ t2

t1

α(s)

r2(s)
ds+

∫ t2

t1

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ t2

t1

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

≤ M |t1 − t2|,

(2.9)

where

M = max
T≤s≤T∗

{
α(s)

r2(s)
+

∫ +∞

s

β(u)

r2(s)r1(u)
du+

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvdu

}
.

(2.9) implies that there exists δ = ϵ
1+M > 0 such that |(SLx)(t1) − (SLx)(t2)| < ϵ

for any t1, t2 ∈ [T, T∗] with |t1 − t2| < δ and x ∈ Ω(a, b);
For x ∈ Ω(a, b), t0 ≤ t1 ≤ t2 ≤ T , due to (2.2), we achieve that

|(SLx)(t1)− (SLx)(t2)| = 0.

Hence Lemma 1.1 ensures that there exists x ∈ Ω(a, b) with QLx+ SLx = x. It is
easy to see that x is a bounded positive solution of Eq.(1.7).

Finally, we investigate that Eq.(1.7) possesses uncountably many bounded pos-
itive solutions. Let L1, L2 ∈ (a + c, b − c) and L1 ̸= L2. For each j ∈ {1, 2}, we
choose a constant Tj > t0 + σ and two mappings QLj and SLj satisfying (2.1) and
(2.2), where L and T are replaced by Lj and Tj , respectively, and∫ +∞

T3

α(s)

r2(s)
ds+

∫ +∞

T3

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T3

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds <

|L1 − L2|
2

(2.10)
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for some T3 > max{T1, T2}. Obviously, the mappings QL1 + SL1 and QL2 + SL2

have the fixed points x, y ∈ Ω(a, b), respectively. That is, x and y are bounded
positive solutions of Eq.(1.7) in Ω(a, b). In order to show that Eq.(1.7) possesses
uncountably many bounded positive solutions in Ω(a, b), we need only to prove that
x ̸= y. Indeed, by (2.2) we gain that for t ≥ T3,

x(t) = L1 + f(t, x(t− σ)) +

∫ +∞

t

g(s, x(p(s)))

r2(s)
ds

−
∫ +∞

t

∫ +∞

s

h(u, x(q(u)))

r2(s)r1(u)
duds−

∫ +∞

t

∫ +∞

s

∫ +∞

u

l(v, x(η(v)))

r2(s)r1(u)
dvduds

and

y(t) = L2 + f(t, y(t− σ)) +

∫ +∞

t

g(s, y(p(s)))

r2(s)
ds

−
∫ +∞

t

∫ +∞

s

h(u, y(q(u)))

r2(s)r1(u)
duds−

∫ +∞

t

∫ +∞

s

∫ +∞

u

l(v, y(η(v)))

r2(s)r1(u)
dvduds,

which together with (iv) and (2.10) yield that∣∣x(t)− y(t)− (f(t, x(t− σ))− f(t, y(t− σ)))
∣∣

≥ |L1 − L2| − 2

[ ∫ +∞

T3

α(s)

r2(s)
ds+

∫ +∞

T3

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T3

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
> 0, ∀t ≥ T3,

that is, x ̸= y. This completes the proof. �

Theorem 2.2. Let a, b ∈ C(I,R+) with a < b and (iv) and (v) hold. Then Eq.(1.7)
with f(t, u) = u possesses uncountably many bounded positive solutions in Ω(a, b).

Proof. Due to (v), there exists M0 > 0 such that

max
{∫ +∞

t0

β(u)

r1(u)
du,

∫ +∞

t0

∫ +∞

t0

γ(v)

r1(u)
dvdu

}
< M0.

By the known result([2]), we gain that∫ +∞

t0

sα(s)

r2(s)
ds < +∞,

∫ +∞

t0

s

r2(s)
ds < +∞

are equivalent to

+∞∑
j=0

∫ +∞

t0+jσ

α(s)

r2(s)
ds < +∞,

+∞∑
j=0

∫ +∞

t0+jσ

1

r2(s)
ds < +∞
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respectively. Hence

+∞∑
j=0

[ ∫ +∞

t0+jσ

α(s)

r2(s)
ds+

∫ +∞

t0+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t0+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
<

+∞∑
j=0

[ ∫ +∞

t0+jσ

α(s)

r2(s)
ds+

∫ +∞

t0+jσ

∫ +∞

t0

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t0+jσ

∫ +∞

t0

∫ +∞

t0

γ(v)

r2(s)r1(u)
dvduds

]
<

+∞∑
j=0

[ ∫ +∞

t0+jσ

α(s)

r2(s)
ds+ 2M0

∫ +∞

t0+jσ

1

r2(s)
ds

]
< +∞.

Let L ∈ (a, b). According to the above inequalities, we deduce that there exists
T ≥ t0 + σ sufficiently large satisfying

+∞∑
j=1

[ ∫ +∞

T+jσ

α(s)

r2(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
< min{b− L,L− a}.

(2.11)

Define a mapping QL : Ω(a, b) → C(I,R) by

(QLx)(t) =


L−

∑+∞
j=1

[ ∫ +∞
t+jσ

g(s,x(p(s)))
r2(s)

ds−
∫ +∞
t+jσ

∫ +∞
s

h(u,x(q(u)))
r2(s)r1(u)

duds

−
∫ +∞
t+jσ

∫ +∞
s

∫ +∞
u

l(v,x(η(v)))
r2(s)r1(u)

dvduds

]
, t ≥ T

(QLx)(T ), t0 ≤ t < T.

(2.12)
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First of all, we prove QLx ∈ Ω(a, b) for all x ∈ Ω(a, b). Due to (iv) and (2.12),
we derive that for each x ∈ Ω(a, b),

(QLx)(t)

≤ L+

+∞∑
j=1

[∫ +∞

T+jσ

α(s)

r2(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
≤ L+ (b− L)

≤ b(t), t ≥ T,

(QLx)(t)

≥ L−
+∞∑
j=1

[∫ +∞

T+jσ

α(s)

r2(s)
ds+

∫ +∞

T+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
≥ L− (L− a)

≥ a(t), t ≥ T.

Therefore, QLΩ(a, b) ⊆ Ω(a, b).
Next, we demonstrate that QL is completely continuous. It’s claimed that QL

is continuous. Indeed, let x0 ∈ Ω(a, b) and {xk}k≥0 ⊂ Ω(a, b) with xk → x0 as
k → +∞. (2.12) yields that

∥QLxk −QLx0∥
= sup

t∈I
|(QLxk)(t)− (QLx0)(t)|

≤ sup
t∈I

{+∞∑
j=1

[ ∫ +∞

t+jσ

|g(s, xk(p(s)))− g(s, x0(p(s)))|
r2(s)

ds

+

∫ +∞

t+jσ

∫ +∞

s

|h(u, xk(q(u)))− h(u, x0(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

|l(v, xk(η(v)))− l(v, x0(η(v)))|
r2(s)r1(u)

dvduds

]}
≤

+∞∑
j=1

[ ∫ +∞

T+jσ

|g(s, xk(p(s)))− g(s, x0(p(s)))|
r2(s)

ds

+

∫ +∞

T+jσ

∫ +∞

s

|h(u, xk(q(u)))− h(u, x0(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

T+jσ

∫ +∞

s

∫ +∞

u

|l(v, xk(η(v)))− l(v, x0(η(v)))|
r2(s)r1(u)

dvduds

]
.

(2.13)

In light of (2.6), (2.7), (2.13) and Lebesgue dominated convergence theorem, we
infer that ∥QLxk − QLx0∥ → 0 as k → +∞, which means that QL is continuous.
Now we show QLΩ(a, b) is relatively compact. On account of QLΩ(a, b) ⊆ Ω(a, b),
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QL is uniformly bounded. Because of (v) and for any ϵ > 0, choose T∗ > T large
enough such that

+∞∑
j=1

[ ∫ +∞

T∗+jσ

α(s)

r2(s)
ds+

∫ +∞

T∗+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T∗+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
<

ϵ

2
.

(2.14)

By (2.12) and (2.14), for x ∈ Ω(a, b), t2 ≥ t1 ≥ T∗, we have

|(QLx)(t1)− (QLx)(t2)|

≤
+∞∑
j=1

[ ∫ +∞

t1+jσ

α(s)

r2(s)
ds+

∫ +∞

t1+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t1+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
+

+∞∑
j=1

[ ∫ +∞

t2+jσ

α(s)

r2(s)
ds+

∫ +∞

t2+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

t2+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
< ϵ;
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For T ≤ t1 ≤ t2 ≤ T∗, choose a sufficiently large integer w ≥ 1 satisfying T+jσ ≥ T∗
with j ≥ w. For x ∈ Ω(a, b), we get that

|(QLx)(t1)− (QLx)(t2)|

≤
+∞∑
j=1

[ ∫ t2+jσ

t1+jσ

α(s)

r2(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
=

w∑
j=1

[ ∫ t2+jσ

t1+jσ

α(s)

r2(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
+

+∞∑
j=w+1

[ ∫ t2+jσ

t1+jσ

α(s)

r2(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
≤

w∑
j=1

[ ∫ t2+jσ

t1+jσ

α(s)

r2(s)
ds+

∫ t2+jσ

t1+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ t2+jσ

t1+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
+

+∞∑
j=1

[ ∫ +∞

T∗+jσ

α(s)

r2(s)
ds+

∫ +∞

T∗+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T∗+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
< W |t1 − t2|+

ϵ

2
,

where

W = max
T+σ≤s≤T∗+wσ

{
w∑

j=1

[
α(s)

r2(s)
+

∫ +∞

s

β(u)

r2(s)r1(u)
du

+

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvdu

]}
,

which implies that there exists δ = ϵ
2(1+W ) > 0 such that |(QLx)(t1)−(QLx)(t2)| <

ϵ for any t1, t2 ∈ [T, T∗] with |t1 − t2| < δ and x ∈ Ω(a, b);
For x ∈ Ω(a, b), t0 ≤ t1 ≤ t2 ≤ T , it follows from (2.12) that

|(QLx)(t1)− (QLx)(t2)| = 0.



GLOBAL SOLVABILITY AND MANN ITERATION METHOD 265

Thus Lemma 1.2 ensures that there exists x ∈ Ω(a, b) with QLx = x. That is,

x(t) =


L−

∑+∞
j=1

[ ∫ +∞
t+jσ

g(s,x(p(s)))
r2(s)

ds−
∫ +∞
t+jσ

∫ +∞
s

h(u,x(q(u)))
r2(s)r1(u)

duds

−
∫ +∞
t+jσ

∫ +∞
s

∫ +∞
u

l(v,x(η(v)))
r2(s)r1(u)

dvduds

]
, t ≥ T

x(T ), t0 ≤ t < T.

It follows that for t ≥ T ,

x(t)− x(t− σ) =

∫ +∞

t

g(s, x(p(s)))

r2(s)
ds−

∫ +∞

t

∫ +∞

s

h(u, x(q(u)))

r2(s)r1(u)
duds

−
∫ +∞

t

∫ +∞

s

∫ +∞

u

l(v, x(η(v)))

r2(s)r1(u)
dvduds.

It’s easy to verify that x is a bounded positive solution of Eq.(1.7).
Finally, we investigate that Eq.(1.7) possesses uncountably many bounded posi-

tive solutions. Let L1, L2 ∈ (a+ c, b− c) with L1 ̸= L2. For each j ∈ {1, 2}, choose
a constant Tj > t0 + σ and a mapping QLj to satisfy (2.11) and (2.12), where L
and T are replaced by Lj and Tj , respectively, and

+∞∑
j=1

[ ∫ +∞

T3+jσ

α(s)

r2(s)
ds+

∫ +∞

T3+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T3+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
<

|L1 − L2|
2

.

(2.15)

for some T3 > max{T1, T2}. Obviously, the mappings QL1 and QL2 have the fixed
points x, y ∈ Ω(a, b), respectively. That is, x and y are bounded positive solutions
of Eq.(1.7). Next we need only to prove that x ̸= y. As a matter of fact, by (2.12)
we get that for t ≥ T3,

x(t) = L1 −
+∞∑
j=1

[ ∫ +∞

t+jσ

g(s, x(p(s)))

r2(s)
ds−

∫ +∞

t+jσ

∫ +∞

s

h(u, x(q(u)))

r2(s)r1(u)
duds

−
∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

l(v, x(η(v)))

r2(s)r1(u)
dvduds

]
,

y(t) = L2 −
+∞∑
j=1

[ ∫ +∞

t+jσ

g(s, y(p(s)))

r2(s)
ds−

∫ +∞

t+jσ

∫ +∞

s

h(u, y(q(u)))

r2(s)r1(u)
duds

−
∫ +∞

t+jσ

∫ +∞

s

∫ +∞

u

l(v, y(η(v)))

r2(s)r1(u)
dvduds

]
,

which together with (iv) and (2.15) yield that∣∣x(t)− y(t)
∣∣ ≥ |L1 − L2| − 2

+∞∑
j=1

[ ∫ +∞

T3+jσ

α(s)

r2(s)
ds+

∫ +∞

T3+jσ

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T3+jσ

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

]
> 0, ∀t ≥ T3,

that is, x ̸= y. This completes the proof. �
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Theorem 2.3. Let a, b ∈ C(I,R+) with a < b and (i), (ii), (iv) and (vi) hold.

If c < b−a
2 and φ is nondecreasing with φ(t+) < t for each t > 0, then Eq.(1.7)

possesses uncountably many bounded positive solutions in Ω(a, b).

Proof. Put L ∈ (a + c, b − c). In view of (i), there exists T ≥ t0 + σ sufficiently
large satisfying (2.1). Define a mapping QL : Ω(a, b) → C(I,R) by

(QLx)(t) =


L+ f(t, x(t− σ)) +

∫ +∞
t

g(s,x(p(s)))
r2(s)

ds−
∫ +∞
t

∫ +∞
s

h(u,x(q(u)))
r2(s)r1(u)

duds

−
∫ +∞
t

∫ +∞
s

∫ +∞
u

l(v,x(η(v)))
r2(s)r1(u)

dvduds, t ≥ T

(QLx)(T ), t0 ≤ t < T.

(2.16)
Firstly, we assure that QLx ∈ Ω(a, b) for all x ∈ Ω(a, b). In terms of (ii), (iv),

(2.1) and (2.16), we infer that for each x ∈ Ω(a, b),

(QLx)(t)

≤ L+ c(t) +

(∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

)
≤ L+ c+ (b− c− L)

≤ b(t), t ≥ T,

(2.17)

(QLx)(t)

≥ L− c(t)−

(∫ +∞

T

α(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

β(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

γ(v)

r2(s)r1(u)
dvduds

)
≥ L− c− (L− c− a)

≥ a(t), t ≥ T.

(2.18)

Thus QLΩ(a, b) ⊆ Ω(a, b).
Secondly, we claim that

lim
t→0+

φ(t) = 0 = φ(0). (2.19)

Because φ : R+ → R+ is nondecreasing and nonnegative, we deduce that

0 ≤ φ(0) ≤ φ(t) ≤ φ(s), ∀s > t > 0,

which together with φ(t+) < t for each t > 0 ensures that

0 ≤ φ(0) ≤ φ(t) ≤ lim
s→t+

φ(s) = φ(t+) < t, ∀t > 0.

Letting t → 0+ in the above inequalities, we get that (2.19) holds.
Thirdly, we prove that QL is continuous. Let x0 ∈ Ω(a, b) and {xk}k≥0 ⊂ Ω(a, b)

with xk → x0 as k → +∞. Let Dk = {xk, x0} for k ≥ 1. It follows from (vi), (2.16)
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and (2.19) that

∥QLxk −QLx0∥ = sup
t∈I

|(QLxk)(t)− (QLx0)(t)|

≤ sup
t≥T

[
|f(t, xk(t− σ))− f(t, x0(t− σ))|

+

∫ +∞

t

|g(s, xk(p(s)))− g(s, x0(p(s)))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

|h(u, xk(q(u)))− h(u, x0(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

|l(v, xk(η(v)))− l(v, x0(η(v)))|
r2(s)r1(u)

dvduds

]
≤ sup

t≥T
φ(Dk(t))

= sup
t≥T

φ
(
|xk(t)− x0(t)|

)
≤ φ(∥xk − x0∥)
→ 0 as k → +∞.

Thereupon, QL is continuous in Ω(a, b).
Lastly, we demonstrate that QL is a condensing mapping. Let ϵ > 0. For any

nonempty subset D of Ω(a, b) with α(D) > 0, where α denotes the Kuratowski
measure of noncompactness, there exist finitely many subsets D1, D2, . . . , Dn of
Ω(a, b) such that

D ⊆
n∪

m=1

Dm, diamDm ≤ α(D) + ϵ, ∀m ∈ {1, 2, . . . , n}. (2.20)

It follows from (vi) and (2.16) that for any x, y ∈ Dm, m ∈ {1, 2, . . . , n},

∥QLx−QLy∥ = sup
t∈I

|(QLx)(t)− (QLy)(t)|

≤ sup
t≥T

[
|f(t, x(t− σ))− f(t, y(t− σ))|

+

∫ +∞

t

|g(s, x(p(s)))− g(s, y(p(s)))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

|h(u, x(q(u)))− h(u, y(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

|l(v, x(η(v)))− l(v, y(η(v)))|
r2(s)r1(u)

dvduds

]
≤ sup

t≥T
φ(Dm(t))

≤ φ(diamDm),

which means that

diam(QLDm) ≤ φ(diamDm), ∀m ∈ {1, 2, . . . , n}. (2.21)
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According to (2.20) and (2.21), we derive that

α(QLD) ≤ α(
n∪

m=1

QLDm) = max
1≤m≤n

{α(QLDm)}

≤ max
1≤m≤n

diam(QLDm) ≤ max
1≤m≤n

φ(diamDm)

≤ φ(α(D) + ϵ).

Setting ϵ → 0 in the above inequality, we gain that

α(QLD) ≤ φ(α(D) + 0) < α(D),

which implies that QL is condensing. Lemma 1.3 ensures that there exists x ∈
Ω(a, b) with QLx = x, which is also a solution of Eq.(1.7). The rest of the proof is
similar to that of Theorem 2.1. This completes the proof. �

Theorem 2.4. Let a, b ∈ C(I,R+) with a < b and (i)-(iv), (vii) and (viii) hold. If

c < b−a
2 and d ∈ (0, 1), then Eq.(1.7) possesses uncountably many bounded positive

solutions in Ω(a, b).

Proof. Put L ∈ (a + c, b − c). Due to (i) and (viii), we derive that there exists
T ≥ t0 + σ large enough satisfying (2.1) and

∫ +∞

T

λ(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

τ(u)

r2(s)r1(u)
duds+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζ(v)

r2(s)r1(u)
dvduds

<
1− d

2
.

(2.22)
Define a mapping QL : Ω(a, b) → C(I,R) by (2.16). Just as (2.17) and (2.18), we
can demonstrate that QL is a self-mapping on Ω(a, b) by (ii), (iv) and (2.1).
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We now investigate that QL is a contraction mapping. According to (iii), (vii)
and (2.22), we get that

|(QLx)(t)− (QLy)(t)|

≤ |f(t, x(t− σ))− f(t, y(t− σ))|+
∫ +∞

t

|g(s, x(p(s)))− g(s, y(p(s)))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

|h(u, x(q(u)))− h(u, y(q(u)))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

|l(v, x(η(v)))− l(v, y(η(v)))|
r2(s)r1(u)

dvduds

≤ d(t)|x(t− σ)− y(t− σ)|+
∫ +∞

t

λ(s)|x(p(s))− y(p(s))|
r2(s)

ds

+

∫ +∞

t

∫ +∞

s

τ(u)|x(q(u))− y(q(u))|
r2(s)r1(u)

duds

+

∫ +∞

t

∫ +∞

s

∫ +∞

u

ζ(v)|x(η(v))− y(η(v))|
r2(s)r1(u)

dvduds

≤
(
d+

∫ +∞

T

λ(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

τ(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζ(v)

r2(s)r1(u)
dvduds

)
∥x− y∥

<
1 + d

2
∥x− y∥, t ≥ T,

which infers that ∥QLx − QLy∥ < 1+d
2 ∥x − y∥ for any x, y ∈ Ω(a, b). Clearly, QL

is a contraction mapping by d ∈ (0, 1). Consequently, QL has a unique fixed point
x ∈ Ω(a, b), which is a bounded positive solution of Eq.(1.7). The rest of the proof
is similar to that of Theorem 2.1 and is omitted. This completes the proof. �

3. Algorithm and convergence

In this section, a perturbed Mann iteration method with error is constructed for
approximating the solution of the third order nonlinear neutral delay differential
equation (1.7), and the convergence and stability of the iterative sequence generated
by the algorithm are discussed.

Lemma 3.1. ([7]) Let {an}n≥0, {bn}n≥0, {cn}n≥0 be nonnegative sequences satis-
fying

an+1 ≤ (1− λn)an + λnbn + cn, ∀n ≥ 0,

where

{λn}∞n=0 ⊂ [0, 1],
∞∑

n=0

λn = +∞,
∞∑

n=0

cn < +∞, lim
n→∞

bn = 0.

Then limn→∞ an = 0.

Definition 3.2. ([8])??Let n ≥ 0, T be a self-mapping of H,x0 ∈ H, xn+1 =
f(T, xn) be an iteration procedure which yields a sequence of points {xn}n≥0 ⊂ H,
where f is a continuous mapping. Suppose that {x ∈ H : Tx = x} ̸= ∅ and {xn}n≥0

converges to a fixed point x∗ of T . Let {un}n≥0 ⊂ H,En = ∥un+1 − f(T, un)∥. If
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limn→∞ En = 0 implies that limn→∞ un = x∗, then the iteration procedure defined
by xn+1 = f(T, xn) is said to be T−stable or stable with respect to T .

Algorithm 3.3. Let σ, r1, r2, f, g, h, l, p, q, η be same as those in Theorem 2.4. For
any x0(t) ∈ C(I,R), define an iterative sequence {xn(t)}n≥0 on I by

xn+1(t) =(1− an)xn(t) + an(QLxn)(t) + anen(t), ∀n ≥ 0, (3.1)

where QL is the same as in (2.16), {en(t)}n≥0 ⊂ C(I,R) is a sequence introduced
to take into account possible inexact computation which satisfies

lim
n→∞

∥en∥ = 0,

and the sequence {an}n≥0 satisfies the following condition

0 < a ≤ an ≤ 1, ∀n ≥ 0,

where a is a constant. Let {zn(t)}n≥0 ⊂ C(I,R) be any sequence and define εn for
n ≥ 0 by

εn =
∥∥zn+1 −

[
(1− an)zn + an(QLzn) + anen

]∥∥. (3.2)

Theorem 3.4. Let all conditions of Theorem 2.4 hold. Then
(1) the iterative sequence {xn(t)}n≥0 generated by Algorithm 3.3 converges to a

solution x(t) relative to L of Eq.(1.7),
(2) for any sequence {zn(t)}n≥0 ⊂ C(I,R), limn→∞ zn(t) = x(t) if and only if

limn→∞ εn = 0, where εn is defined by Algorithm 3.3.

Proof. First to prove (1). It follows from Theorem 2.4 that Eq.(1.7) has a solution
x(t) ⊂ C(I,R) relative to L. Consequently,

x(t) =(1− an)x(t) + an(QLx)(t). (3.3)

By (2.22) and for t ∈ I,

∥xn+1 − x∥

≤(1− an)∥xn − x∥+ an

{
d(t)∥xn − x∥

+

∫ +∞

T

λ(s)∥xn − x∥
r2(s)

ds+

∫ +∞

T

∫ +∞

s

τ(u)∥xn − x∥
r2(s)r1(u)

duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζ(v)∥xn − x∥
r2(s)r1(u)

dvduds

}
+ an∥en∥

≤
{
1− an

[
1−

(
d+

∫ +∞

T

λ(s)

r2(s)
ds+

∫ +∞

T

∫ +∞

s

τ(u)

r2(s)r1(u)
duds

+

∫ +∞

T

∫ +∞

s

∫ +∞

u

ζ(v)

r2(s)r1(u)
dvduds

)]}
∥xn − x∥+ an∥en∥

≤(1− 1− d

2
an)∥xn − x∥+ 1− d

2
an

∥en∥
1−d
2

, ∀n ≥ 0,

(3.4)

which means that xn(t) → x(t) as n → ∞ by Algorithm 3.3 and Lemma 3.1.
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Now to prove (2). Using (3.2) and (3.3), similar to the proof of (3.4), we deduce
that

∥zn+1 − x∥ ≤∥zn+1 − [(1− an)zn + an(QLzn) + anen]∥
+ ∥(1− an)zn + an(QLzn) + anen − x∥

≤(1− 1− d

2
an)∥zn − x∥+ 1− d

2
an

∥en∥+ ϵn
a

1−d
2

, ∀n ≥ 0.

(3.5)

Suppose that limn→∞ εn = 0. By (3.5), Algorithm 3.3 and Lemma 3.1, we get that
zn(t) → x(t) as n → ∞. Conversely, suppose that zn(t) → x(t) as n → ∞. In view
of (3.2), we infer that

εn ≤ ∥zn+1 − x∥+ ∥(1− an)zn + an(QLzn) + anen − x∥

≤ ∥zn+1 − x∥+ (1− 1− d

2
an)∥zn − x∥+ an∥en∥

≤ ∥zn+1 − x∥+ ∥zn − x∥+ ∥en∥, ∀n ≥ 0.

Hence, limn→∞ εn = 0. This completes the proof. �

4. Examples

In this section, two examples are given to illustrate how to apply the above
results.

Example 4.1. Consider the following third order nonlinear neutral delay differen-
tial equation:

d

dt

{
t3

d

dt

[
t2

d

dt

(
x(t)− sin2 t

x(t− σ) + 1

)]}
+

d

dt

[
t3

d

dt

x(et)

t

]
+

d

dt
[tx(t2)] =

1

t2 + x(
√
t)
, t ≥ t0 = 1,

(4.1)

where

σ > 0, r1(t) = t3, r2(t) = t2, f(t, u) =
sin2 t

u+ 1
, g(t, u) =

u

t
,

h(t, u) = tu, l(t, u) =
1

t2 + u
, p(t) = et, q(t) = t2, η(t) =

√
t.

(4.2)

Choose a(t) = 2 + sin t, b(t) = 6 + cos t. Then, a = 1, a = 3, b = 5, b = 7. We can
take

c(t) =
sin2 t

2
, d(t) =

sin2 t

4
, α(t) =

7

t
, β(t) = 7t, γ(t) =

1

t2 + 1
. (4.3)

It is easy to verify that the conditions of Theorem 2.1 are satisfied. Therefore
Theorem 2.1 ensures that (4.1) has uncountably many bounded positive solutions in
Ω(2 + sin t, 6 + cos t).

Example 4.2. Consider the following third order nonlinear neutral delay differen-
tial equation:

d

dt

{
t4

d

dt

[
t3

d

dt

(
x(t)− x(t− σ)

)]}
+

d

dt

[
t4

d

dt

√
x(2t)

t

]
+

d

dt
[t2 cosx(2 + ln t)] =

sinx(1 + arctan t)

t3
, t ≥ t0 = 2,

(4.4)
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where

σ > 0, r1(t) = t4, r2(t) = t3, g(t, u) =

√
u

t
, h(t, u) = t2 cosu,

l(t, u) =
sinu

t3
, p(t) = 2t, q(t) = 2 + ln t, η(t) = 1 + arctan t.

(4.5)

Choose a(t) ≡ 1, b(t) ≡ 4. We can take

α(t) =
2

t
, β(t) = t2, γ(t) =

1

t3
. (4.6)

It can be verified that the assumptions of Theorem 2.2 are fulfilled. It follows from
Theorem 2.2 that (4.3) has uncountably many bounded positive solutions in Ω(1, 4).
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