STABILITY OF A QUARTIC AND ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION

(COMMUNICATED BY IOANNIS STAVROULAKIS)

M. ARUNKUMAR, K. RAVI AND M.J. RASSIAS

Abstract

In this paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability of a quartic functional equation $$
\begin{align*} & g(2 x+y+z)+g(2 x+y-z)+g(2 x-y+z)+g(-2 x+y+z)+16 g(y)+16 g(z) \\ & \quad=8[g(x+y)+g(x-y)+g(x+z)+g(x-z)]+2[g(y+z)+g(y-z)]+32 g(x) \tag{1} \end{align*}
$$

The above equation (1) is modified and its Hyers-Ulam-Aoki-Rassias stability for the following quartic functional equation
$f(2 x+y+z)+f(2 x+y-z)+f(2 x-y+z)+f(-2 x+y+z)+f(2 y)+f(2 z)$ $=8[f(x+y)+f(x-y)+f(x+z)+f(x-z)]+2[f(y+z)+f(y-z)]+32 f(x)$
for all $x, y, z \in X$ with $x \perp y, y \perp z$ and $z \perp x$ is discussed in orthogonality space in the sense of Rätz.

1. INTRODUCTION AND PRELIMINARIES

In 1940, S.M. Ulam [30] posed the stability problem. In 1941, D.H. Hyers [12] gave a partial answer to the question of Ulam. In 1950, Aoki [5] generalized the Hyers theorem for additive mappings. In 1978, Th.M. Rassias [22] proved a further generalization of Hyers theorem for linear mappings by considering an unbounded Cauchy difference for sum of powers of norms $\epsilon\left(\left\|\left.x\right|^{p}+\right\| y \|^{p}\right)$.

The result of Th.M. Rassias influenced the development stability theory and now it is called the Hyers-Ulam-Rassias stability for functional equations. Following the spirit of the innovative approach of Th.M. Rassias, a similar stability theorem was proved by J.M. Rassias $[19,20]$ in which he replaced the term $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{p}$ (product of norms). Later this stability result is called the Ulam-Gavruta-Rassias stability of functional equations (see [27]).

[^0]All the above stability results are further generalized by P. Gavruta [9] in 1994 considering the control function as function of variables $\phi(x, y)$ and he proved the following theorem.

Theorem 1.1. [9] Let $(G,+)$ be an Abelian group, $(X,\|\cdot\|)$ be a Banach space and $\phi: G \times G \rightarrow[0, \infty)$ be a mapping such that

$$
\begin{equation*}
\Phi(x, y)=\sum_{k=0}^{\infty} 2^{-k} \phi\left(2^{k} x, 2^{k} y\right)<\infty \tag{1.1}
\end{equation*}
$$

If a function $f: G \rightarrow E$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \phi(x, y) \tag{1.2}
\end{equation*}
$$

for any $x, y \in G$, then there exists a unique additive function $T: G \rightarrow E$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{2} \Phi(x, x) \tag{1.3}
\end{equation*}
$$

for all x in G. If moreover $f(t x)$ is continuous in t for each fixed $x \in G$, then T is linear.

This result is called Generalized Hyers - Ulam - Aoki - Rassias stability of functional equation $f(x+y)=f(x)+f(y)$. Very recently J.M. Rassias [27] introduced a new concept on stability called JMRassias Mixed type product-sum of powers of norms stability. This stability result is called JMRassias stability for functional equations.

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.4}
\end{equation*}
$$

is said to be quadratic functional equation because the quadratic function $f(x)=$ $a x^{2}$ is a solution of the functional equation (1.4). It is well known that a function f is a solution of (1.4) if and only if there exists a unique symmetric biadditive function B such that $f(x)=B(x, x)$ for all x (see [16]). The biadditive function B is given by

$$
B(x, y)=\frac{1}{4}[f(x+y)+f(x-y)]
$$

In Section 2, authors investigate the general solution and the generalized Hyers-Ulam-Aoki-Rassias stability of a quartic functional equation (1). Also in Section 3, the Hyers-Ulam-Aoki-Rassias stability of the modified orthogonally quartic functional equation (2) for all $x, y, z \in X$ with $x \perp y, y \perp z$ and $z \perp x$ in the sense of Rätz is discussed.

2. GENERAL SOLUTION AND STABILITY OF THE FUNCTIONAL EQUATION (2.3)

The quartic functional equation

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+6 f(x)=4[f(x+y)+f(x-y)+6 f(y)] \tag{2.1}
\end{equation*}
$$

was first introduced by J.M. Rassias [21], who solved its Ulam stability problem. Later P.K. Sahoo and J.K. Chung [28], S.H. Lee et al., [17] remodified J.M. Rassias's equation and obtained its general solution.

The general solution of the generalized quartic functional equation

$$
\begin{equation*}
f(a x+b y)+f(a x-b y)=(a b)^{2}[f(x+y)+f(x-y)]+2\left(b^{2}-a^{2}\right)\left[b^{2} f(y)-a^{2} f(x)\right] \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathbb{R}, a \neq b$, and $a, b \neq 0, \pm 1$ using Fréchet functional equation was discussed in [29]. Very recently the generalized Hyers-Ulam-Aoki-Rassias stability for a 3 dimensional quartic functional equation

$$
\begin{align*}
& g(2 x+y+z)+g(2 x+y-z)+g(2 x-y+z)+g(-2 x+y+z)+16 g(y)+16 g(z) \\
& \quad=8[g(x+y)+g(x-y)+g(x+z)+g(x-z)]+2[g(y+z)+g(y-z)]+32 g(x) \tag{2.3}
\end{align*}
$$

in fuzzy normed space was discussed by M. Arunkumar [7].
2.1. GENERAL SOLUTION OF THE FUNCTIONAL EQUATION (2.3). In this section, the authors discussed the general solution of the functional equation (2.3) by considering X and Y are real vector spaces.

Theorem 2.1. If $g: X \rightarrow Y$ satisfies the functional equation (2.3) then there exists a a unique symmetric multi - additive function $Q: X \times X \times X \times X \rightarrow Y$ such that $g(x)=Q(x, x, x, x)$ for all $x \in X$.

Proof. Letting $x=y=z=0$ in (2.3), we get $f(0)=0$. Replacing (x, y) by $(0,0)$, we obtain

$$
\begin{equation*}
g(-z)=g(z) \tag{2.4}
\end{equation*}
$$

for all $z \in X$. Again replacing (y, z) by $(0,0)$ and $(x, 0)$ respectively, we get

$$
\begin{equation*}
g(2 x)=16 g(x) \quad \text { and } \quad g(3 x)=81 g(x) \tag{2.5}
\end{equation*}
$$

for all $x \in X$. In general for any positive integer n, we obtain

$$
g(n x)=n^{4} g(x)
$$

for all $x \in X$. Letting $z=0$ in (2.3) and using (2.4), (2.5), we arrive

$$
\begin{equation*}
g(2 x+y)+g(2 x-y)=4[g(x+y)+g(x-y)]+24 g(x)-6 g(y) \tag{2.6}
\end{equation*}
$$

for all $x, y, z \in X$. By Theorem 2.1 of [17], there exist a unique symmetric multi additive function $Q: X \times X \times X \times X \rightarrow Y$ such that $g(x)=Q(x, x, x, x)$ for all $x \in X$.

2.2. GENERALIZED HYERS - ULAM - AOKI - RASSIAS STABILITY OF THE FUNCTIONL EQUATION (2.3).

In this section, let X be a normed space and Y be a Banach space. Define a difference operator $D g: X \times X \times X \rightarrow Y$ by

$$
\begin{aligned}
D g(x, y, z)= & g(2 x+y+z)+g(2 x+y-z)+g(2 x-y+z)+g(-2 x+y+z) \\
& +16 g(y)+16 g(z)-8[g(x+y)+g(x-y)+g(x+z)+g(x-z)] \\
& -2[g(y+z)+g(y-z)]-32 g(x)
\end{aligned}
$$

for all $x, y, z \in X$ and investigate its generalized Hyers - Ulam - Aoki - Rassias stability of the functional equation (2.3).

Theorem 2.2. Let $j \in\{-1,1\}$. Let $\alpha: X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha\left(4^{n j} x, 4^{n j} y, 4^{n j} z\right)}{4^{4 n j}}=0 \quad \text { and } \quad \sum_{n=0}^{\infty} \frac{\alpha\left(4^{n j} x, 4^{n j} y, 4^{n j} z\right)}{4^{4 n j}} \text { converges } \tag{2.7}
\end{equation*}
$$

for all $x, y, z \in X$ and let $g: X \rightarrow Y$ be a function satisfies the inequality

$$
\begin{equation*}
\|D g(x, y, z)\| \leq \alpha(x, y, z) \tag{2.8}
\end{equation*}
$$

for all $x, y, z \in X$. Then there exists a unique quartic function $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|g(x)-Q(x)\| \leq \frac{1}{4^{4}} \sum_{k=0}^{\infty} \frac{\beta\left(4^{k j} x\right)}{4^{4 k j}} \tag{2.9}
\end{equation*}
$$

where

$$
\beta\left(4^{k j} x\right)=\alpha\left(4^{k j} x, 4^{k j} y, 4^{k j} z\right)+4 \alpha\left(4^{k j} x, 0,0\right)
$$

for all $x \in X$. The mapping $Q(x)$ is defined by

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{g\left(4^{n j} x\right)}{4^{4 n j}} \tag{2.10}
\end{equation*}
$$

for all $x \in X$.
Proof. Assume $j=1$. Replacing (x, y, z) by (x, x, x) in (2.8), we get

$$
\begin{equation*}
\|g(4 x)-16 g(2 x)\| \leq \alpha(x, x, x) \tag{2.11}
\end{equation*}
$$

for all $x \in X$. Again replacing (x, y, z) by $(x, 0,0)$ in (2.8), we obtain

$$
\begin{equation*}
\|4 g(2 x)-64 g(x)\| \leq \alpha(x, 0,0) \tag{2.12}
\end{equation*}
$$

for all $x \in X$. From (2.11) and (2.12), we arrive

$$
\begin{align*}
\|g(4 x)-256 g(x)\| & =\|g(4 x)-16 g(2 x)+16 g(2 x)-256 g(x)\| \\
& \leq\|g(4 x)-16 g(2 x)\|+4\|4 g(2 x)-64 g(x)\| \\
& \leq \alpha(x, x, x)+4 \alpha(x, 0,0) \tag{2.13}
\end{align*}
$$

for all $x \in X$. Hence from (2.13), we get

$$
\begin{equation*}
\left\|\frac{g(4 x)}{4^{4}}-g(x)\right\| \leq \frac{1}{4^{4}}[\alpha(x, x, x)+4 \alpha(x, 0,0)] \tag{2.14}
\end{equation*}
$$

for all $x \in X$. Hence it follows from (2.14), we obtain

$$
\begin{equation*}
\left\|\frac{g(4 x)}{4^{4}}-g(x)\right\| \leq \frac{\beta(x)}{4^{4}} \tag{2.15}
\end{equation*}
$$

where

$$
\beta(x)=\alpha(x, x, x)+4 \alpha(x, 0,0)
$$

for all $x \in X$. Now replacing x by $4 x$ and dividing by 4^{4} in (2.15), we get

$$
\begin{equation*}
\left\|\frac{g\left(4^{2} x\right)}{4^{8}}-\frac{g(4 x)}{4^{4}}\right\| \leq \frac{\beta(4 x)}{4^{8}} \tag{2.16}
\end{equation*}
$$

for all $x \in X$. From (2.15) and (2.16), we arrive

$$
\begin{align*}
\left\|\frac{g\left(4^{2} x\right)}{4^{8}}-g(x)\right\| & \leq\left\|\frac{g\left(4^{2} x\right)}{4^{8}}-\frac{g(4 x)}{4^{4}}\right\|+\left\|\frac{g(4 x)}{4^{4}}-g(x)\right\| \\
& \leq \frac{1}{4^{4}}\left[\beta(x)+\frac{\beta(4 x)}{4^{4}}\right] \tag{2.17}
\end{align*}
$$

for all $x \in X$. In general for any positive integer n, we get

$$
\begin{align*}
\left\|\frac{g\left(4^{n} x\right)}{4^{4 n}}-g(x)\right\| & \leq \frac{1}{4^{4}} \sum_{k=0}^{n-1} \frac{\beta\left(4^{k} x\right)}{4^{4 k}} \tag{2.18}\\
& \leq \frac{1}{4^{4}} \sum_{k=0}^{\infty} \frac{\beta\left(4^{k} x\right)}{4^{4 k}}
\end{align*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{\frac{g\left(4^{n} x\right)}{4^{4 n}}\right\}$, replace x by $4^{m} x$ and divided by $4^{4 m}$ in (2.18), for any $m, n>0$, we arrive

$$
\begin{align*}
\left\|\frac{g\left(4^{n+m} x\right)}{4^{4(n+m)}}-\frac{g\left(4^{m} x\right)}{4^{4 m}}\right\| & =\frac{1}{4^{4 m}}\left\|\frac{g\left(4^{n} 4^{m} x\right)}{4^{4 n}}-g\left(4^{m} x\right)\right\| \\
& \leq \frac{1}{4^{4}} \sum_{k=0}^{\infty} \frac{\beta\left(4^{k+m} x\right)}{4^{4(k+m)}} \\
& \rightarrow 0 \text { as } m \rightarrow \infty \tag{2.19}
\end{align*}
$$

for all $x \in X$. Hence the sequence $\left\{\frac{g\left(4^{n} x\right)}{4^{4 n}}\right\}$ is Cauchy sequence. Since Y is complete, there exists a mapping $Q: X \rightarrow Y$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{g\left(4^{n} x\right)}{4^{4 n}} \forall x \in X
$$

Letting $n \rightarrow \infty$ in (2.18) we see that (2.9) holds for all $x \in X$. To prove Q satisfies (2.3), replacing (x, y, z) by $\left(4^{n} x, 4^{n} y, 4^{n} z\right)$ and divided by $4^{4 n}$ in (2.8), we arrive

$$
\begin{aligned}
& \frac{1}{4^{4 n}} \| g\left(4^{n}(2 x+y+z)\right)+g\left(4^{n}(2 x+y-z)\right)+g\left(4^{n}(2 x-y+z)\right)+g\left(4^{n}(-2 x+y+z)\right) \\
& +16 g\left(4^{n} y\right)+16 g\left(4^{n} z\right)-8\left[g\left(4^{n}(x+y)\right)+g\left(4^{n}(x-y)\right)+g\left(4^{n}(x+z)\right)+g\left(4^{n}(x-z)\right)\right] \\
& \quad-2\left[g\left(4^{n}(y+z)\right)+g\left(4^{n}(y-z)\right)\right]-32 g\left(4^{n} x\right) \| \leq \frac{1}{4^{4 n}} \alpha\left(4^{n} x, 4^{n} y, 4^{n} z\right)
\end{aligned}
$$

for all $x, y, z \in X$. Letting $n \rightarrow \infty$ and in the above inequality we see that

$$
\begin{aligned}
& Q(2 x+y+z)+Q(2 x+y-z)+Q(2 x-y+z)+Q(-2 x+y+z)+16 Q(y)+16 Q(z) \\
& \quad=8[Q(x+y)+Q(x-y)+Q(x+z)+Q(x-z)]+2[Q(y+z)+Q(y-z)]+32 Q(x)
\end{aligned}
$$

Hence Q satisfies (2.3) for all $x, y, z \in X$. To prove Q is unique, let $R(x)$ be another quartic mapping satisfying (2.3) and (2.9), we arrive

$$
\begin{aligned}
\|Q(x)-R(x)\| & =\frac{1}{4^{4 n}}\left\|Q\left(4^{n} x\right)-R\left(4^{n} x\right)\right\| \\
& \leq \frac{1}{4^{4 n}}\left\{\left\|Q\left(4^{n} x\right)-g\left(4^{n} x\right)\right\|+\left\|g\left(4^{n} x\right)-R\left(4^{n} x\right)\right\|\right\} \\
& \leq \frac{2}{4^{4}} \sum_{k=0}^{\infty} \frac{\beta\left(4^{k+n} x\right)}{4^{4(k+n)}} \\
& \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Hence Q is unique.
For $j=-1$, we can prove the similar stability result. This completes the proof of the theorem.

The following corollary is a immediate consequence of Theorems 3.1 concerning the stability of (2.3).

Corollary 2.3. Let λ and s be nonnegative real numbers. If a function $g: X \rightarrow Y$ satisfies the inequality

$$
\|D g(x, y, z)\| \leq \begin{cases}\lambda, & s<4 \text { or } s>4 \tag{2.20}\\ \lambda\left\{\|x\|^{s}+\|y\|^{s}+\|z\|^{s}\right\}, & s<\frac{4}{3} \text { or } s>\frac{4}{3} \\ \lambda\|x\|^{s}\|y\|^{s}\|z\|^{s}, & s<\frac{4}{3} \text { or } s>\frac{4}{3}\end{cases}
$$

for all $x, y, z \in X$. Then there exists a unique quartic function $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq\left\{\begin{array}{l}
\frac{\lambda}{255}, \tag{2.21}\\
\frac{7 \lambda\|x\|^{s}}{\left|4^{4}-4^{s}\right|}, \\
\frac{\lambda\|x\|^{3 s}}{\left|4^{4}-4^{3 s}\right|} \\
\frac{8 \lambda\|x\|^{3 s}}{\left|4^{4}-4^{3 s \mid}\right|}
\end{array}\right.
$$

for all $x \in X$.

3. STABILITY OF ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION (2)

Now, we introduce some basic concepts of orthogonality and orthogonality normed spaces.

Definition 3.1. [11] A vector space X is called an orthogonality vector space if there is a relation $x \perp y$ on X such that
(i) $x \perp 0,0 \perp x$ for all $x \in X$;
(ii) if $x \perp y$ and $x, y \neq 0$, then x, y are linearly independent;
(iii) $x \perp y, a x \perp b y$ for all $a, b \in \mathbb{R}$;
(iv) if P is a two-dimensional subspace of X; then
(a) for every $x \in P$ there exists $0 \neq y \in P$ such that $x \perp y$;
(b) there exists vectors $x, y \neq 0$ such that $x \perp y$ and $x+y \perp x-y$.

Any vector space can be made into an orthogonality vector space if we define $x \perp 0,0 \perp x$ for all x and for non zero vector x, y define $x \perp y$ iff x, y are linearly independent. The relation \perp is called symmetric if $x \perp y$ implies that $y \perp x$ for all $x, y \in X$. The pair (x, \perp) is called an orthogonality space. It becomes orthogonality normed space when the orthogonality space is equipped with a norm.

The orthogonal Cauchy functional equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y), x \perp y \tag{3.1}
\end{equation*}
$$

in which \perp is an abstract orthogonally was first investigated by S. Gudder and D. Strawther [11]. R. Ger and J. Sikorska discussed the orthogonal stability of the equation (3.1) in [10].

Definition 3.2. Let X be an orthogonality space and Y be a real Banach space. A mapping $f: X \rightarrow Y$ is called orthogonally quadratic if it satisfies the so called orthogonally Euler-Lagrange quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ with $x \perp y$. The orthogonality Hilbert space for the orthogonally quadratic functional equation (3.2) was first investigated by F. Vajzovic [31].
C.G. Park [18] proved the orthogonality quartic functional equation (2.1) where \perp is the orthogonality in the sense of Rätz [26].

Here after, let (A, \perp) denote an orthogonality normed space with norm $\|\cdot\|_{A}$ and $\left(B,\|\cdot\|_{B}\right)$ is a Banach space. We define

$$
\begin{aligned}
D f(x, y, z)= & f(2 x+y+z)+f(2 x+y-z)+f(2 x-y+z)+f(-2 x+y+z) \\
+ & f(2 y)+f(2 z)-8[f(x+y)+f(x-y)+f(x+z)+f(x-z)] \\
& -2[f(y+z)+f(y-z)]-32 f(x)
\end{aligned}
$$

for all $x, y, z \in X$ with $x \perp y, y \perp z$ and $z \perp x$ in the sense of Ratz.

3.1. HYERS - ULAM - AOKI - RASSIAS STABILITY OF MODIFIED ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION (2).

In this section, we present the Hyers - Ulam - Aoki - Rassias stability of the functional equation (2) involving sum of powers of norms.

Theorem 3.3. Let μ and $s(s<4)$ be nonnegative real numbers. Let $f: A \rightarrow B$ be a mapping fulfilling

$$
\begin{equation*}
\|D f(x, y, z)\|_{B} \leq \mu\left\{\|x\|_{A}^{s}+\|y\|_{A}^{s}+\|z\|_{A}^{s}\right\} \tag{3.3}
\end{equation*}
$$

for all $x, y, z \in A$, with $x \perp y, y \perp z$ and $z \perp x$. Then there exists a unique orthogonally quartic mapping $Q: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(y)-Q(y)\|_{B} \leq \frac{\mu}{16-2^{s}}\|y\|_{A}^{s} \tag{3.4}
\end{equation*}
$$

for all $y \in A$. The function $Q(y)$ is defined by

$$
\begin{equation*}
Q(y)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} y\right)}{16^{n}} \tag{3.5}
\end{equation*}
$$

for all $y \in A$.
Proof. Replacing (x, y, z) by $(0,0,0)$ in (3.3), we get $f(0)=0$. Setting (x, y, z) by $(0, y, 0)$ in (3.3), we obtain

$$
\begin{equation*}
\|f(2 y)-16 f(y)\|_{B} \leq \mu\|y\|_{A}^{s} \tag{3.6}
\end{equation*}
$$

for all $y \in A$. Since $y \perp 0$, we have

$$
\begin{equation*}
\left\|\frac{f(2 y)}{16}-f(y)\right\|_{B} \leq \frac{\mu}{16}\|y\|_{A}^{s} \tag{3.7}
\end{equation*}
$$

for all $y \in A$. Now replacing y by $2 y$ and dividing by 16 in (3.7) and summing resulting inequality with (3.7), we arrive

$$
\begin{equation*}
\left\|\frac{f\left(2^{2} y\right)}{16^{2}}-f(y)\right\|_{B} \leq \frac{\mu}{16}\left\{1+\frac{2^{s}}{16}\right\}\|y\|_{A}^{s} \tag{3.8}
\end{equation*}
$$

for all $y \in A$. In general, using induction on a positive integer n, we obtain that

$$
\begin{align*}
\left\|\frac{f\left(2^{n} y\right)}{16^{n}}-f(y)\right\|_{B} & \leq \frac{\mu}{16} \sum_{k=0}^{n-1}\left(\frac{2^{s}}{16}\right)^{k}\|y\|_{A}^{s} \tag{3.9}\\
& \leq \frac{\mu}{16} \sum_{k=0}^{\infty}\left(\frac{2^{s}}{16}\right)^{k}\|y\|_{A}^{s}
\end{align*}
$$

for all $y \in A$. In order to prove the convergence of the sequence $\left\{f\left(2^{n} y\right) / 16^{n}\right\}$, replace y by $2^{m} y$ and divide by 16^{m} in (3.9), for any $n, m>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(2^{n} 2^{m} y\right)}{16^{(n+m)}}-\frac{f\left(2^{m} y\right)}{16^{m}}\right\|_{B} & =\frac{1}{16^{m}}\left\|\frac{f\left(2^{n} 2^{m} y\right)}{16^{n}}-f\left(2^{m} y\right)\right\|_{B} \\
& \leq \frac{1}{16^{m}} \frac{\mu}{16} \sum_{k=0}^{n-1}\left(\frac{2^{s}}{16}\right)^{k}\left\|2^{m} y\right\|_{A}^{s} \\
& \leq \frac{\mu}{16} \sum_{k=0}^{\infty}\left(\frac{2^{s}}{16}\right)^{k+m}\|y\|_{A}^{s} \tag{3.10}
\end{align*}
$$

As $s<4$, the right hand side of (3.10) tends to 0 as $m \rightarrow \infty$ for all $y \in A$. Thus $\left\{f\left(2^{n} y\right) / 16^{n}\right\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $Q: A \rightarrow B$ such that

$$
Q(y)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} y\right)}{16^{n}} \quad \forall y \in A
$$

In order to prove Q is unique and it satisfies the (2), the proof is similar to that of Theorem 3.1. This completes the proof of the theorem.

Theorem 3.4. Let μ and $s(s>4)$ be nonnegative real numbers. Let $f: A \rightarrow B$ be a mapping satisfying (3.3) for all $x, y, z \in A$, with $x \perp y, y \perp z$ and $z \perp x$. Then there exists a unique orthogonally quartic mapping $Q: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(y)-Q(y)\|_{B} \leq \frac{\mu}{2^{s}-16}\|y\|_{A}^{s} \tag{3.11}
\end{equation*}
$$

for all $y \in A$. The function $Q(y)$ is defined by

$$
\begin{equation*}
Q(y)=\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{y}{2^{n}}\right) \tag{3.12}
\end{equation*}
$$

for all $y \in A$.
Proof. Replacing y by $\frac{y}{2}$ in (3.6), the rest of the proof is similar to that of Theorem 4.1.

3.2. JMRASSIAS STABILITY OF (2).

In this section, we investigate the JMRassias mixed type product - sum of powers of norms stability of the functional equation (2).

Theorem 3.5. Let $f: A \rightarrow B$ be a mapping satisfying the inequality

$$
\begin{equation*}
\|D f(x, y, z)\|_{B} \leq \mu\left(\|x\|_{A}^{s}\|y\|_{A}^{s}\|z\|_{A}^{s}+\left\{\|x\|_{A}^{3 s}+\|y\|_{A}^{3 s}+\|z\|_{A}^{3 s}\right\}\right) \tag{3.13}
\end{equation*}
$$

for all $x, y, z \in A$, with $x \perp y, y \perp z$ and $z \perp x$ where μ and s are constants with, $\mu, s>0$ and $s<\frac{4}{3}$. Then the limit

$$
\begin{equation*}
Q(y)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} y\right)}{16^{n}} \tag{3.14}
\end{equation*}
$$

exists for all $y \in A$ and $Q: A \rightarrow B$ is the unique orthogonally quartic mapping such that

$$
\begin{equation*}
\|f(y)-Q(y)\|_{B} \leq \frac{\mu}{16-2^{3 s}}\|y\|_{A}^{3 s} \tag{3.15}
\end{equation*}
$$

for all $y \in A$.
Proof. Letting (x, y, z) by $(0,0,0)$ in (3.13), we get $f(0)=0$. Again substituting (x, y, z) by $(0, y, 0)$ in (3.13), we obtain

$$
\begin{equation*}
\left\|\frac{f(2 y)}{16}-f(y)\right\|_{B} \leq \frac{\mu}{16}\|y\|_{A}^{3 s} \tag{3.16}
\end{equation*}
$$

for all $y \in A$. Now replacing y by $2 y$ and dividing by 16 in (3.16) and summing resulting inequality with (3.16), we arrive

$$
\begin{equation*}
\left\|\frac{f\left(2^{2} y\right)}{16^{2}}-f(y)\right\|_{B} \leq \frac{\mu}{16}\left\{1+\frac{2^{3 s}}{16}\right\}\|y\|_{A}^{3 s} \tag{3.17}
\end{equation*}
$$

for all $y \in A$. Using induction on a positive integer n, we obtain that

$$
\begin{align*}
\left\|\frac{f\left(2^{n} y\right)}{16^{n}}-f(y)\right\|_{B} & \leq \frac{\mu}{16} \sum_{k=0}^{n-1}\left(\frac{2^{3 s}}{16}\right)^{k}\|y\|_{A}^{3 s} \tag{3.18}\\
& \leq \frac{\mu}{16} \sum_{k=0}^{\infty}\left(\frac{2^{3 s}}{16}\right)^{k}\|y\|_{A}^{3 s}
\end{align*}
$$

for all $y \in A$. In order to prove the convergence of the sequence $\left\{f\left(2^{n} y\right) / 16^{n}\right\}$, replace y by $2^{m} y$ and divide by 16^{m} in (3.18), for any $n, m>0$, we obtain

$$
\begin{align*}
\left\|\frac{f\left(2^{n} 2^{m} y\right)}{16^{(n+m)}}-\frac{f\left(2^{m} y\right)}{16^{m}}\right\|_{B} & =\frac{1}{16^{m}}\left\|\frac{f\left(2^{n} 2^{m} y\right)}{16^{n}}-f\left(2^{m} y\right)\right\|_{B} \\
& \leq \frac{\mu}{16} \sum_{k=0}^{n-1}\left(\frac{2^{3 s}}{16}\right)^{k+m}\|y\|_{A}^{3 s} \\
& \leq \frac{\mu}{16} \sum_{k=0}^{\infty} \frac{1}{2^{(4-3 s)(k+m)}}\|y\|_{A}^{3 s} \tag{3.19}
\end{align*}
$$

As $s<\frac{4}{3}$, the right hand side of (3.19) tends to 0 as $m \rightarrow \infty$ for all $y \in A$. Thus $\left\{f\left(2^{n} y\right) / 16^{n}\right\}$ is a Cauchy sequence. Since B is complete, there exists a mapping $Q: A \rightarrow B$ such that

$$
Q(y)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} y\right)}{16^{n}} \quad \forall y \in E .
$$

Letting $n \rightarrow \infty$ in (3.18), we arrive the formula (3.15) for all $y \in A$. To show that Q is unique and it satisfies (2), the rest of the proof is similar to that of Theorem 3.1

Theorem 3.6. Let $f: A \rightarrow B$ be a mapping satisfying the inequality (3.13) for all $x, y, z \in A$, with $x \perp y, y \perp z$ and $z \perp x$, where μ and s are constants with $\mu, s>0$ and $s>\frac{4}{3}$. Then the limit

$$
\begin{equation*}
Q(y)=\lim _{n \rightarrow \infty} 16^{n} f\left(\frac{y}{2^{n}}\right) \tag{3.20}
\end{equation*}
$$

exists for all $y \in A$ and $Q: A \rightarrow B$ is the unique quartic mapping such that

$$
\begin{equation*}
\|f(y)-Q(y)\|_{B} \leq \frac{\mu}{2^{3 s}-16}\|y\|_{A}^{3 s} \tag{3.21}
\end{equation*}
$$

for all $y \in A$.
Proof. Replacing y by $\frac{y}{2}$ in (3.16), the proof is similar to that of Theorem 5.1.
Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] J. Alonso and C. Benitez, Orthogonality in normed linear spaces: survey I. Main properties, Extracta Math. 3, (1988), 1-15.
[3] J. Alonso and C. Benitez, Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math. 4, (1989), 121-131.
[4] M. Amyari, M.S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77 (2006) 1-9.
[5] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[6] M. Arunkumar, Stability of a functional equation in dq-normed space, International Journal of pure and Applied Mathematics (Accepted).
[7] M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, International Journal of Mathematical Sciences (Submitted).
[8] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[9] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431-436.
[10] R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43, (1995), 143-151.
[11] S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58, 1995, 427-436.
[12] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
[13] D.H. Hyers, G. Isac, TH.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.
[14] K. W. Jun and H. M. Kim, The Generalized Hyers-Ulam-Rassias Stability of a Cubic Functional Equation, J. Math. Anal. Appl., 274 (2002), 867-878.
[15] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[16] Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27, No.3-4, (1995), 368-372.
[17] S. H. Lee, S. M. Im and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307 (2005), 387-394.
[18] C. G. Park On the stability of the orthogonally quartic functional, Bull. Iranian Math. Soc., Vol 3(1) (2005), 63-70.
[19] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
[20] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, Bull. Sc. Math, 108, (1984) 445-446.
[21] J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glasnik Mathematicki., 34(54) no.2, (1999), 243-252.
[22] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
[23] Th.M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy HyersUlam stability, Proc. Amer. Math. Soc. 114 (1992), 989?993.
[24] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta. Appl. Math. 62 (2000), 23-130.
[25] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
[26] J. Rätz, On orthogonally additive mappings, Aequationes Math., 28 (1985), 35-49.
[27] K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
[28] P. K. Sahoo and J. K. Chung, On the general solution of a quartic functional equation, Bull. Korean. Math. Soc., $40(4)$ (2003), 565-576.
[29] E. Thandapani, K. Ravi and M. Arunkumar, On The Solution of the Generalized Quartic Functional Equation, Far East Journal of Applied Mathematics, Vol 24, No. 3, 2006, 297-312.
[30] S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
[31] F. Vajzovic, Uber das Funktional H mit der Eigenschaft: $(x, y)=0 \Rightarrow H(x+y)+H(x-y)=$ $2 H(x)+2 H(y)$, Glasnik Mat. Ser. III $2(22),(1967), 73-81$.
M. Arunkumar

Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.

E-mail address: annarun2002@yahoo.co.in
K. RAVI

Department of Mathematics, Sacred Heart College, Tirupattur - 635 601, TamilNadu, India.

E-mail address: shckravi@yahoo.co.in

M.J. Rassias

Department of Statistics, Mathematics Building, University of Glasgow, 15 University
Gardens, Glasgow G12 8QW, Scotland, UK.
E-mail address: s.rassias@stats.gla.ac.uk

[^0]: 2000 Mathematics Subject Classification. 39B52, 39B82, 47H10.
 Key words and phrases. Quartic functional equation; Generalized Hyers-Ulam-Rassias stability; orthogonality space.
 © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted February 25, 2010. Published May 6, 2011.

