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VARIATIONAL ITERATION METHOD FOR EXACT SOLUTION

OF GAS DYNAMIC EQUATION USING HE’S POLYNOMIALS

(COMMUNICATED BY IOANNIS P. STAVROULAKIS)

M. MATINFAR, M. SAEIDY, M. MAHDAVI, M. REZAEI

Abstract. In this paper, we apply the variational iteration method using
He’s polynomials for finding the analytical solution of gas dynamic equation.
The proposed method is an elegant combination of He’s variational iteration
and the homotopy perturbation methods. The suggested algorithm is quite

efficient and is practically well suited for use in such problems. The proposed
iterative scheme finds the solution without any discretization, linearization or
restrictive assumptions. A clear advantage of this technique over the decom-
position method is that no calculation of Adomian’s polynomials is needed.

1. Introduction

Analytical methods that commonly use to solve nonlinear equations are very
restricted and numerical techniques are involving discretization of the variables
and give rise to rounding off errors. The basic motivation of this paper is to
apply the variational iteration method coupled with He’s polynomials (VIMHP)
[1, 2, 13, 14, 15] for finding the solution of gas dynamic equation . In this al-
gorithm, the correct functional is developed [3, 4, 8, 9, 10, 11] and the Lagrange
multipliers are calculated optimally via variational theory. The use of Lagrange
multipliers reduces the successive application of the integral operator and the cum-
bersome of huge computational work while still maintaining a very high level of
accuracy. Finally, the He’s polynomials are introduced in the correct functional
and the comparison of like powers of p gives solutions of various orders. The devel-
oped algorithm takes full advantage of He’s variational iteration and the homotopy
perturbation methods. It is worth mentioning that the VIMHP is applied with-
out any discretization, restrictive assumption or transformation and is free from
round off errors. Unlike the method of separation of variables that require ini-
tial and boundary conditions, the VIMHP provides an analytical solution by using
the initial conditions only. The proposed method work efficiently and the results
so far are very encouraging and reliable. The fact that VIMHP solves nonlinear
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problems without using Adomian’s polynomials can be considered as a clear ad-
vantage of this technique over the decomposition method. The proposed VIMHP
solves effectively, easily and accurately a large class of linear, nonlinear, partial,
deterministic or stochastic differential equations with approximate solutions which
converge very rapidly to accurate solutions. The main solution procedure is that
of the variational iteration method, while the homotopy perturbation method is
applied to deal with the nonlinear terms where He’s polynomials are used. In the
present paper, VIMHP is employed to solve the following equation[5]

∂u

∂t
+ 1/2

∂(u2)

∂x
= u(1− u) + g(x, t); 0 ≤ x ≤ 1, t > 0 (1.1)

2. Variational iteration method

For the purpose of illustration of the methodology to the proposed method, using
variational iteration method, we begin by considering a differential equation in the
formal form,

L[u(x, t)] +N [u(x, t)] = g(x, t), (2.1)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source inho-
mogeneous term. According to the variational iteration method, we can construct
a correction functional for (2.1) as follows;

un+1(x, t) = un(x, t) +

∫ t

0

λ {Lun(x, τ) +Nũn(x, τ)− g(x, τ)} dτ, n ≥ 0,

where λ is a general Lagrangian multiplier [12], which can be identified optimally
via the variational theory, the subscript n denotes the nth order approximation,
and ũn is considered as a restricted variation [10, 12] i.e., δũn = 0. Therefore,
we first determine the Lagrange multiplier λ that will be identified optimally via
integration by parts. The successive approximations un(x, t), n ≥ 0 of the solution
u(x, t) will be readily obtained upon using the obtained Lagrange multiplier and by
using any selective function u0. Consequently, the exact solution may be obtained
by using

u(x, t) = lim
n→∞

un(x, t).

3. Homotopy perturbation method

In this section to illustrate the basic ideas of this method, we consider the fol-
lowing equation :

L[u(x, t)] +N [u(x, t)] = g(x, t), r ∈ Ω, (3.1)

with the boundary condition of:

B(u,
∂u

∂n
) = 0, r ∈ Γ, (3.2)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source
inhomogeneous term, B is a boundary operator and Γ is the boundary of the
domain Ω. Homotopy perturbation structure is shown as follows:

H(v, p) = (1− p) ∗ [L(v)− L(u0)] + p [L(u) +N(u)− g(x, t)] = 0, (3.3)
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In Eq.(3.3), p ∈ [0, 1] is an embedding parameter and is the first approximation
that satisfies the boundary conditions. We can assume that the solution of Eq.
(3.3) can be written as a power series in p, as following:

v = v0 + p v1 + p2v2 + . . . , (3.4)

The comparisons of like powers of p give solutions of various orders and the best
approximation is:

u = lim
p−→1

v = v0 + v1 + v2 + . . . . (3.5)

The convergence of series (3.5) is discussed in [7]. The method considers the

nonlinear term N [u] as

N [u] =
+∞∑
i=0

piHi = H0 + pH1 + p2H2 + · · ·

where Hn’s are the so-called He’s polynomials [1], which can be calculated by using
the formula

Hn(u0, u1, · · · , un) =
1

n!

∂n

∂pn

(
N

(
n∑

i=0

piui

))
p=0

, n = 0, 1, 2, · · ·

4. Variational Iteration Method Using He’s Polynomials (VIMHP)

To illustrate the basic idea of the variational homotopy perturbation method,
we consider the following general differential equation:

L[u(x, t)] +N [u(x, t)] = g(x, t), (4.1)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source
inhomogeneous term. According to section (2) we can construct a correct functional
as follows:

un+1(x, t) = un(x, t) +

∫ t

0

λ {Lun(x, τ) +Nũn(x, τ)− g(x, τ)} dτ, n ≥ 0, (4.2)

Now, we apply the homotopy perturbation method,

∞∑
n=0

pnvn(x, t) = u0(x, t) + p

∫ t

0

λ

[ ∞∑
n=0

pn(L(vn(x, τ)) +N(vn(x, τ))− g(x, τ)

]
dτ.

which is the variational homotopy perturbation method.

5. Applications

In order to assess the advantages and the accuracy of VIMHP for solving non-
linear equations,we will consider the following two examples. For the sake of com-
parison, we take the same examples as used in [5].
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5.1. Homogeneous gas Dynamic equation. To apply the VIMHP, first we
rewrite Eq. (1.1) with g(x, t) = 0 in the following form

L[u(x, t)] +N [u(x, t)] = 0, (5.1)

where the notations Lu = ∂u
∂t , Nu = 1/2∂(u2)

∂x − u + u2, symbolize the linear and
nonlinear terms, respectively. The correction functional for Eq. (5.1) reads

un+1(x, t) = un(x, t) +

∫ t

0

λ(τ)

{
∂

∂τ
(un(x, τ)) +N(ũn(x, τ))

}
dτ, n ≥ 0, (5.2)

Taking variation with respect to the independent variable un, noticing that δN(ũn) =
0,

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(τ)

{
∂

∂τ
(un(x, τ)) +N(ũn(x, τ))

}
dτ

= δun(x, t) + [λ(τ)δun(x, τ)]τ=t −
∫ t

0

λ′(τ)δun(x, τ) dτ = 0,

This yields the stationary conditions

1 + λ(τ) = 0, (5.3)

[λ′(τ)]τ=t = 0. (5.4)

Eq. (5.3) is called Lagrange-Euler equation, and Eq. (5.4) natural boundary con-
dition. The Lagrange multiplier can be identified as λ = −1, and the following
variational homotopy perturbation formula can be obtained:

∞∑
n=0

pnvn = u0(x, t)− p

∫ t

0

[
∂

∂t
(

∞∑
n=0

pnvn) + (
∞∑

n=0

pnvn)
∂

∂x
(

∞∑
n=0

pnvn)

− (
∞∑

n=0

pnvn) + (
∞∑

n=0

pnvn)
2

]
dτ, n ≥ 0, (5.5)

We start with an initial approximation u0(x, t) = e−x and by comparing the coef-
ficient of like powers of p, we can obtain directly the other components as

p0 : v0(x, t) = e−x,

p1 : v1(x, t) = te−x,

p2 : v2(x, t) =
t2

2
e−x, (5.6)

p3 : v3(x, t) =
t3

3!
e−x,

...

This gives the exact solution of (5.1) by

u(x, t) = v0 + v1 + v2 + · · · = e−x

(
1 + t+

t2

2
+

t3

3!
+ · · ·

)
= et−x, (5.7)

obtained upon using the Taylor expansion for et. Which is exactly the same as ob-
tained by Adomain decomposition method [5] and homotopy perturbation method
[6].
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5.2. Inhomogeneous gas Dynamic equation. Now we rewrite Eq. (1.1) in the
following form

L[u(x, t)] +N [u(x, t)] = −et−x, (5.8)

where the notations Lu = ∂u
∂t , Nu = 1/2∂(u2)

∂x − u + u2, symbolize the linear and
nonlinear terms, respectively. The correction functional for Eq. (5.8) reads

un+1(x, t) = un(x, t) +

∫ t

0

λ(τ)

{
∂

∂τ
(un(x, τ)) +N(ũn(x, τ) + eτ−x)

}
dτ, n ≥ 0,

(5.9)
Taking variation with respect to the independent variable un, noticing that δN(ũn) =
0,

δun+1(x, t) = δun(x, t) + δ

∫ t

0

λ(τ)

{
∂

∂τ
(un(x, τ)) +N(ũn(x, τ) + eτ−x)

}
dτ

= δun(x, t) + [λ(τ)δun(x, τ)]τ=t −
∫ t

0

λ′(τ)δun(x, τ) dτ = 0,

This yields the stationary conditions

1 + λ(τ) = 0, (5.10)

[λ′(τ)]τ=t = 0. (5.11)

Eq. (5.10) is called Lagrange-Euler equation, and Eq. (5.11) natural boundary
condition. The Lagrange multiplier can be identified as λ = −1, and the following
variational homotopy perturbation formula can be obtained:

∞∑
n=0

pnvv = u0(x, t)− p

∫ t

0

[
∂

∂t
(

∞∑
n=0

pnvn) + (
∞∑

n=0

pnvn)
∂

∂x
(

∞∑
n=0

pnvn)

− (
∞∑

n=0

pnvn) + (
∞∑

n=0

pnvn)
2 + eτ−x

]
dτ, n ≥ 0, (5.12)

We start with an initial approximation u0(x, t) = 1 − e−x and by comparing the
coefficient of like powers of p, we can obtain directly the other components as

p0 : v0(x, t) = 1− e−x,

p1 : v1(x, t) = −et−x + e−x,

pn : vn(x, t) = 0, n ≥ 2 (5.13)

This gives the exact solution of (5.8) by

u(x, t) = v0 + v1 + v2 + · · · = 1− e−x − et−x + e−x +0+0+ · · · = 1− et−x, (5.14)

Which is exactly the same as obtained by Adomain decomposition method [5] and
homotopy perturbation method [6].

6. Conclusion

In this paper, we applied the He’s variational iteration method coupled with
He’s polynomials (VIMHP) by combining the traditional variational iteration and
the homotopy perturbation methods for finding the analytical solution of gas dy-
namic equation. The proposed method is employed without using linearization,
discretization or restrictive assumptions. It may be concluded that the variational
iteration method using He’s polynomials is very powerful and efficient in finding
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the analytical solutions for a wide class of boundary value problems. The method
gives more realistic series solutions that converge very rapidly in physical problems.
The fact that the VIMHP solves nonlinear problems without using the Adomian’s
polynomials is a clear advantage of this technique over the decomposition method.
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