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A GENERALIZED CLASS OF k-UNIFORMLY STARLIKE

FUNCTIONS INVOLVING WGH OPERATORS

(COMMUNICATED BY R.K. RAINA)

POONAM SHARMA

Abstract. In this paper, involving Wgh operators Wp
q ([α1]) and Wp

q ([α1 +
1]), a generalized class of k-uniformly starlike functions is defined. Some results

on coefficient inequalities, inclusion and convolution properties for functions
belonging to this class are derived. Our results generalize some of the previ-
ously obtained results as well as generate new ones.

1. Introduction

Let S denote the class of functions of the form:

f (z) = z +
∞∑

n=2

anz
n, (1.1)

which are univalent analytic in the open unit disk ∆ = {z ∈ C; |z| < 1}. Let S∗

and CV denote the subclasses of S whose members are, respectively, starlike and
convex in ∆.

Subclasses k-SP and k-UCV of S∗ and CV, respectively, are studied by Kanas
and Wísniowska in [13], [14] (see [12], [16]) which are defined as follows:

Definition 1.1. Let f ∈ S, and 0 ≤ k <∞. Then f ∈ k-SP if and only if

ℜ

(
zf

′
(z)

f(z)

)
> k

∣∣∣∣∣zf
′
(z)

f(z)
− 1

∣∣∣∣∣ . (1.2)

Definition 1.2. Let f ∈ S, and 0 ≤ k <∞. Then f ∈ k-UCV if and only if

ℜ

(
1 +

zf
′′
(z)

f ′(z)

)
> k

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ . (1.3)

By Alexander property, we have f ∈ k-UCV ⇔ zf
′ ∈ k-SP. Note that these

classes were introduced by Goodman [10] by giving a two-variable characterisation
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of 1-UCV. Rønning [20] and independently Ma and Minda [17] have given a more
applicable one-variable characterisation for this class.

Geometrically, the class k-SP (k-UCV) is described as the family of functions f

such that p(z) = zf
′
(z)

f(z) (1 + zf
′′
(z)

f ′ (z)
) is subordinate to the univalent functions pk

such that pk(∆) describe a conic region:

Ωk =
{
u+ iv : u > k

√
(u− 1)2 + v2

}
, (1.4)

with 1 ∈ Ωk. Some explicit form of extremal functions pk are given in [12].

For αi ∈ C
(

αi

Ai
̸= 0,−1,−2, ..., Ai > 0; i = 1, 2, ..., p

)
and

βi ∈ C
(

βi

Bi
̸= 0,−1,−2, ..., Bi > 0; i = 1, 2, ..., q

)
such that 1+

q∑
i=1

Bi−
p∑

i=1

Ai ≥ 0,

Wright’s generalized hypergeometric (Wgh) function pψq [z] [24] ([23]) is defined
by

pψq [z] = pψq

[
(αi, Ai)1,p
(βi, Bi)1,q

; z

]
=

∞∑
n=0

p∏
i=1

Γ (αi + nAi)

q∏
i=1

Γ (βi + nBi)

zn

n!
, (1.5)

which is analytic for bounded values of |z| . Involving Wgh function defined by (1.5)
with αi ̸= 0,−1,−2, ..., i = 1, 2, ..., p and βi ̸= 0,−1,−2, ..., i = 1, 2, ..., q, a linear
operator: Wp

q ([α1]) = Wp
q ((αi, Ai)1,p; (βi, Bi)1,q) : S → S is defined with the use

of convolution ∗ for f of the form (1.1) by

Wp
q([α1])f(z) = z

q∏
i=1

Γ (βi)

p∏
i=1

Γ (αi)
pψq

[
(αi, Ai)1,p
(βi, Bi)1,q

; z

]
∗ f(z) (1.6)

= z +
∞∑

n=2

an θn z
n, z ∈ ∆,

where

θn =

p∏
i=1

Γ(αi+(n−1)Ai)
Γ(αi)

q∏
i=1

Γ(βi+(n−1)Bi)
Γ(βi)

1

(n− 1)!
, n ≥ 2. (1.7)

Also, we get

Wp
q([α1 + 1])f(z) := z +

∞∑
n=2

(
1 +

(n− 1)A1

α1

)
an θn z

n. (1.8)

We call the operators Wp
q ([α1]) ,W

p
q([α1+1]) as the Wgh operators. Note that the

operator Wp
q ([α1]) was defined by Dziok and Raina in [6] and was used in several

works, see [1], [2], [4], [5], [6], [7], [18], [19], [22].
Taking Ai = 1 (i = 1, 2, .., p) and Bi = 1 (i = 1, 2, .., q) , Wgh operator Wp

q([α1])
reduces to the Dziok-Srivastava operator Fp

q([α1]) ([8]) which is defined for f ∈ S
by

Fp
q([α1])f(z) = z pFq [z] ∗ f(z),
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where pFq [z] is the generalized hypergeometric function:

pFq [z] = pFq (α1, . . . αp;β1, . . . βq; z)

=
∞∑

n=0

p∏
i=1

(αi)n

q∏
i=1

(βi)n

zn

n!
, p ≤ 1 + q.

The symbol (λ)n is the Pochhammer symbol. Operator F2
1([α1]) is called the Hohlov

operator [11], F2
1(α1, 1;β1) is the Carlson and Shaffer operator [3] and F2

1(1+λ, 1; 1)
is the Ruscheweyh derivative operator [21] which is defined for f ∈ S by

Dλf(z) =
z

(1− z)
1+λ

∗ f(z), λ > −1.

We define here a new class UC(k, [α1]) involving Wgh operators Wp
q([α1]) and

Wp
q([α1 + 1]):

Definition 1.3. Let Wgh operators Wp
q([α1]) and Wp

q([α1+1]) be defined by (1.6)
and (1.8), respectively, then for 0 ≤ k < ∞, a function f ∈ S is said to be in the
class UC(k, [α1]) if it satisfies

ℜ
(
Wp

q([α1 + 1])f(z)

Wp
q([α1])f(z)

)
> k

∣∣∣∣Wp
q([α1 + 1])f(z)

Wp
q([α1])f(z)

− 1

∣∣∣∣ . (1.9)

On taking p = q+1 and Ai = 1 (i = 1, 2, ..., p) , αi = βi = Bi = 1 (i = 1, 2, ..., q)
and if αq+1 = 1 + λ, λ > −1, class UC(k, [α1]) reduces to the class UK(λ, k) which
involve the Ruscheweyh derivative operators Dλ and Dλ+1 and is studied by Kanas
and Yaguchi [12]. Clearly, if p = q + 1 and αi = Ai = 1 (i = 1, 2, ..., p), βi = Bi =
1 (i = 1, 2, ..., q), then the class UC(k, [α1]) reduces to the class k-SP and also to

the class k-UCV if we replace f by zf
′
in (1.9).

The purpose of this paper is to find some results for the class UC(k, [α1]) which
is defined by using its subordinate condition. Coefficient inequalities, inclusion and
convolution properties for this class are derived with some of the consequent results.

2. Coefficient Inequalities

Theorem 2.1. Let Wp
q([α1]) be the Wgh operator defined by (1.6) with α1

A1
≥

1, and if for 0 ≤ k < ∞, the function f of the form (1.1) belongs to the class
UC(k, [α1]), then there exists a convex univalent function:

pk(z) =
Wp

q([α1 + 1])fk(z)

Wp
q([α1])fk(z)

, z ∈ ∆,

fk(z) = z + d2z
2 + d3z

3 + ... such that

|a2| ≤ |d2| , |a3| ≤ |d3| . (2.1)

Proof. Let f ∈ UC(k, [α1]), we get

p(z) ≺ pk(z), z ∈ ∆, (2.2)

where

p(z) =
Wp

q([α1 + 1])f(z)

Wp
q([α1])f(z)

= 1 + p1z + p2z
2 + ... (2.3)



76 P. SHARMA

and

pk(z) =
Wp

q([α1 + 1])fk(z)

Wp
q([α1])fk(z)

= 1 + P1z + P2z
2 + ...(Pj ≥ 0, j = 1, 2, ...). (2.4)

On writing the series expansions of Wp
q([α1])f(z),W

p
q([α1 + 1])f(z) and

Wp
q([α1])fk(z), W

p
q([α1 + 1])fk(z), equations (2.3) and (2.4) provide

(
1 + p1z + p2z

2 + ..
)(

z +

∞∑
n=2

an θn z
n

)
= z +

∞∑
n=2

(
1 + (n− 1)

A1

α1

)
an θn z

n

(2.5)
and(

1 + P1z + P2z
2 + ..

)(
z +

∞∑
n=2

dn θn z
n

)
= z +

∞∑
n=2

(
1 + (n− 1)

A1

α1

)
dn θn z

n.

(2.6)
Hence, from (2.5) and (2.6), we get the coefficient relations:

(m− 1)
A1

α1
am θm =

m−1∑
j=1

pj am−j θm−j ,m ≥ 2 (2.7)

and

(m− 1)
A1

α1
dm θm =

m−1∑
j=1

Pj dm−j θm−j ,m ≥ 2,

a1 = d1 = θ1 = 1. Hence, we obtain

A1

α1
θ2a2 = p1, 2

A1

α1
θ3a3 =

α1

A1
p21 + p2 (2.8)

and
A1

α1
θ2d2 = P1, 2

A1

α1
θ3d3 =

α1

A1
P 2
1 + P2. (2.9)

As Pj ≥ 0, j = 1, 2, .. , from (2.9), it is clear that θ2d2 and θ3d3 are also non-negative
real numbers. Further, with the use of subordination (2.2), we get p(z) = pk (w(z))

for some analytic function w with w(0) = 0 and |w(z)| < 1, z ∈ ∆. If w(z) = q(z)−1
q(z)+1 ,

where q(z) = 1 + q1z + q2z
2 + ..., with ℜ (q(z)) > 0, we write

p(z) = pk

(
q(z)− 1

q(z) + 1

)
.

On using their series expansions, we obtain

1 + p1z + p2z
2 + .. = 1 +

P1q1
2

z +

(
P1q2
2

− P1q
2
1

4
+
P2q

2
1

4

)
z2 + ... (2.10)

Thus, by (2.8), (2.9) and (2.10), we get∣∣∣∣A1

α1
θ2a2

∣∣∣∣ = |p1| =
∣∣∣∣P1q1

2

∣∣∣∣ ≤ |P1| =
∣∣∣∣A1

α1
θ2d2

∣∣∣∣ (2.11)

and ∣∣∣∣2A1

α1
θ3a3

∣∣∣∣ =

∣∣∣∣ (α1

A1
− 1

)
p21 + p2 + p21

∣∣∣∣
≤

(
α1

A1
− 1

)
P 2
1 + P2 + P 2

1 =

∣∣∣∣2A1

α1
θ3d3

∣∣∣∣ , (2.12)
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where we use the inequalities |qn| ≤ 2, n ≥ 1 and |p2| + |p1|2 ≤ P2 + P 2
1 ([15]).

Thus, inequalities (2.11) and (2.12) imply the desired result (2.1). This proves
Theorem 2.1. �

Theorem 2.2. Let Wp
q([α1]) be the Wgh operator defined by (1.6) with α1

A1
≥ 1,

if the function f of the form (1.1) belongs to the class UC(k, [α1]) for 0 ≤ k < ∞,
then there exists a convex univalent function:

pk(z) =
Wp

q([α1 + 1])fk(z)

Wp
q([α1])fk(z)

= 1 + P1z + P2z
2 + ...(Pj ≥ 0, j = 1, 2, ...),

such that ∣∣∣∣A1

α1
θn an

∣∣∣∣ ≤ P1

(
1 + α1

A1
P1

)
n−2

(n− 1)!
, n ≥ 2,

where θn is given by (1.7).

Proof. By induction, it is shown by Theorem 2.1 that result holds for n = 2. Let
the result be true for all j, 2 ≤ j ≤ n− 1. Thus, from coefficient relation (2.7) and
by Rogosinski result |pj | ≤ P1, j = 1, 2, .., we get

(n− 1)

∣∣∣∣A1

α1
an θn

∣∣∣∣ =

∣∣∣∣∣∣
n−1∑
j=1

pn−j aj θj

∣∣∣∣∣∣ , n ≥ 2

≤ P1 +
n−1∑
j=2

|pn−j | |aj θj |

≤ P1

1 + n−1∑
j=2

α1

A1
P1

(
1 + α1

A1
P1

)
j−2

(j − 1)!

 . (2.13)

We see that

1 +
n−1∑
j=2

α1

A1
P1

(
1 + α1

A1
P1

)
j−2

(j − 1)!

=
1

1!

(
1 +

α1

A1
P1

)
+

n−1∑
j=3

α1

A1
P1

(
1 + α1

A1
P1

)
j−2

(j − 1)!

=
1

2!

(
1 +

α1

A1
P1

)(
2 +

α1

A1
P1

)
+

n−1∑
j=4

α1

A1
P1

(
1 + α1

A1
P1

)
j−2

(j − 1)!

=
1

(n− 2)!

(
1 +

α1

A1
P1

)
n−2

.

Hence, (2.13) proves that the result is true for n also. Thus the result holds for any
n ≥ 2. This proves Theorem 2.2. �

Replacing f by zf
′
, we can obtain following result on the similar lines of the

proofs of Theorems 2.1 and 2.2:
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Theorem 2.3. Let Wp
q([α1]) be the Wgh operator defined by (1.6) with α1

A1
≥ 1,

and if for 0 ≤ k <∞, the function f of the form (1.1) satisfies

Wp
q([α1 + 1]) zf

′
(z)

Wp
q([α1]) zf

′(z)
≺

Wp
q([α1 + 1]) zf

′

k(z)

Wp
q([α1]) zf

′
k(z)

then for fk(z) = z + d2z
2 + d3z

3 + ... and for

Wp
q([α1 + 1]) zf

′

k(z)

Wp
q([α1]) zf

′
k(z)

= 1 + P1z + P2z
2 + ...(Pj ≥ 0, j = 1, 2, ...),

|a2| ≤ |d2| , |a3| ≤ |d3|
and ∣∣∣∣A1

α1
θn an

∣∣∣∣ ≤ P1

(
1 + α1

A1
P1

)
n−2

n!
, n ≥ 2, . (2.14)

where θn is given by (1.7).

Theorem 2.4. If for the function f of the form (1.1) and for 0 ≤ k <∞, θn given
by (1.7), the inequality

∞∑
n=2

{
(n− 1) (k + 1)

∣∣∣∣A1

α1

∣∣∣∣+ 1

}
|an θn| < 1 (2.15)

holds, then f ∈ UC(k, [α1]).

Proof. To prove f ∈ UC(k, [α1]), we have to show from the condition (1.9) that

S1 := k

∣∣∣∣Wp
q([α1 + 1])f(z)

Wp
q([α1])f(z)

− 1

∣∣∣∣−ℜ
(
Wp

q([α1 + 1])f(z)

Wp
q([α1])f(z)

− 1

)
< 1.

From (1.6) and (1.8), we get

S1 ≤ (k + 1)

∣∣∣∣Wp
q([α1 + 1])f(z)

Wp
q([α1])f(z)

− 1

∣∣∣∣
≤ (k + 1)


∞∑

n=2
(n− 1)

∣∣∣A1

α1
an θn

∣∣∣
1−

∞∑
n=2

|an θn|

 < 1,

if (2.15) holds. This proves Theorem 2.4. �

3. Inclusion Property

Theorem 3.1. Let Wp
q([α1]) be the Wgh operator defined by (1.6) with 0 < α1

A1
<

(k + 1), 0 ≤ k <∞. Then zf
′
(z) ∈ UC(k, [α1]) ⇒ f ∈ UC(k, [α1]).

Proof. Let zf
′
(z) ∈ UC(k, [α1]), then there exists a univalent convex function

pk(z), z ∈ ∆ describing the conic region Ωk defined by (1.4) such that

Wp
q([α1 + 1]) zf

′
(z)

Wp
q([α1]) zf

′(z)
≺ pk(z).

Set

p(z) =
Wp

q([α1 + 1])f(z)

Wp
q([α1])f(z)

. (3.1)
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Note that z
(
Wp

q([α1])f(z)
)′

= Wp
q([α1]) zf

′
(z). Hence, differentiation of (3.1)

provides

Wp
q([α1 + 1]) zf

′
(z)

Wp
q([α1 + 1]) f(z)

=
Wp

q([α1]) zf
′
(z)

Wp
q([α1]) f(z)

+
zp

′
(z)

p(z)

Using the identity:

Wp
q([α1]) zf

′
(z) =

α1

A1
Wp

q([α1 + 1]) f(z)−
(
α1

A1
− 1

)
Wp

q([α1]) f(z),

we get

Wp
q([α1 + 1]) zf

′
(z)

Wp
q([α1]) zf

′(z)
= p(z) +

zp
′
(z)

p(z) α1

A1
+
(
1− α1

A1

) ≺ pk(z).

Therefore, by using a well known Lemma of Eenigenburg, Miller, Mocanu and Read
[9], we get

p(z) ≺ pk(z),

provided that

ℜ
(
pk(z)

α1

A1
+

(
1− α1

A1

))
> 0.

Since, from the definition of Ωk, given by (1.4), we have ℜ (pk(z)) >
k

k+1 and hence,
by the hypothesis we get the result. �

Remark. Above result confirms that k-UCV ⊂ k-SP.

4. Convolution Property

Theorem 4.1. Let Wp
q([α1]) be the Wgh operator defined by (1.6), then for 0 ≤

k <∞, f ∈ UC(k, [α1]) if and only if

1

z

(
Ht ∗Wp

q([α1])f
)
(z) ̸= 0, z ∈ ∆, (4.1)

where

Ht(z) =
1

(1− C(t))

z

(1− z)

1−
(
1− A1

α1

)
z

(1− z)
− C(t)

 , z ∈ ∆ (4.2)

and C (t) = kt± i

√
t2 − (kt− 1)

2
, t ≥ 0, t2 − (kt− 1)

2 ≥ 0.

Proof. Let

p(z) =
Wp

q([α1 + 1])f(z)

Wp
q([α1])f(z)

, z ∈ ∆.

Since p(0) = 1, we have from the definition of conic region (1.4)

f ∈ UC(k, [α1]) ⇔ p(z) /∈ ∂Ωk , z ∈ ∆, (4.3)

where

∂Ωk =
{
u+ iv : u = k

√
(u− 1)2 + v2

}
. (4.4)

Note that ∂Ωk = C (t) = kt ± i

√
t2 − (kt− 1)

2
, for t ≥ 0, t2 − (kt− 1)

2 ≥ 0.

Thus, we have

1

z

(
Wp

q([α1 + 1])f(z)− C (t)Wp
q ([α1]) f(z)

(1− C(t))

)
̸= 0, (4.5)
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By series expansions of Wp
q([α1 + 1])f(z) and Wp

q([α1])f(z), given in (1.8) and
(1.6), we note that

Wp
q([α1 + 1])f(z) =

z
(
1−

(
1− A1

α1

)
z
)

(1− z)2
∗Wp

q ([α1]) f(z)

and

Wp
q ([α1]) f(z) =

z

(1− z)
∗Wp

q ([α1]) f(z).

Hence, by (4.5), we get

1

z

(
Ht ∗Wp

q([α1])f
)
(z)

=
1

z

 1

(1− C(t))

z
(
1−

(
1− A1

α1

)
z
)

(1− z)2
− C (t)

z

(1− z)

 ∗Wp
q([α1])f(z)

 ̸= 0.

Thus,

1

z

(
Ht ∗Wp

q([α1])f
)
(z) ̸= 0 ⇔ p(z) /∈ ∂Ωk ⇔ p(z) ∈ Ωk, z ∈ ∆.

This proves the convolution property. �

On taking p = q + 1 and αi = Ai = 1 (i = 1, 2, .., p) , βi = Bi = 1 (i = 1, 2, .., q) ,
in Theorem 4.1, we get following result for the class k-SP

Corollary 4.2. Let 0 ≤ k <∞, then f ∈ k-SP , if and only if

1

z
(Gt ∗ f) (z) ̸= 0, z ∈ ∆,

where

Gt(z) =
1

(1− C(t))

z

(1− z)

(
1

(1− z)
− C(t)

)
, z ∈ ∆,

C (t) = kt± i

√
t2 − (kt− 1)

2
, t ≥ 0, t2 − (kt− 1)

2 ≥ 0.

Note that for f, g ∈ S (
g ∗ zf

′
)
(z) =

(
zg

′
∗ f
)
(z).

Hence, on replacing f by zf
′
in Corollary 4.2, we get following result of Kanas and

Wísniowska [[14], Theorem 3.5, p. 336] for the class k-UCV.

Corollary 4.3. [14] Let 0 ≤ k <∞, then f ∈ k-UCV , if and only if

1

z

[
zG

′

t ∗ f(z)
]
̸= 0,

where

zG
′

t =
1

(1− C(t))

z

(1− z)
2

(
1 + z

1− z
− C(t)

)
, z ∈ ∆,

C (t) = kt± i

√
t2 − (kt− 1)

2
, t ≥ 0, t2 − (kt− 1)

2 ≥ 0.

Further, Theorem 4.1 yields following result of Kanas and Yaguchi [12]:
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Corollary 4.4. [12] Let 0 ≤ k <∞ and λ > −1, then f ∈ UK(λ, k) if and only if

1

z
(Rt ∗ f) (z) ̸= 0, (4.6)

where

Rt(z) =
z

(1− z)λ+2

(
1− C(t) z

C(t)− 1

)
and C (t) = kt± i

√
t2 − (kt− 1)

2
, t ≥ 0, t2 − (kt− 1)

2 ≥ 0.

Proof. Applying the argument similar to the argument applied in the proof of
Theorem 4.1, we get

f ∈ UK(λ, k) ⇔ 1

z

{
1

(1− C(t))

(
Dλ+1f(z)− C (t)Dλf(z)

)}
̸= 0.

Using the definition of Ruscheweyh derivative operators, we get

Dλ+1f(z)− C (t)Dλf(z) =

(
z

(1− z)λ+2
− C (t)

z

(1− z)λ+1

)
∗ f(z),

which proves the condition (4.6). �

Theorem 4.5. Let Wp
q([α1]) be the Wgh operator defined by (1.6) with α1

A1
≥ 1,

then for 0 < k <∞, f ∈ UC(k, [α1]) if and only if

1

z

(
Wp

q([α1])Ht ∗ f
)
(z) ̸= 0, z ∈ ∆, (4.7)

where for Ht(z) given by (4.2),

Wp
q([α1])Ht(z) = z +

∞∑
n=2

hn zn, z ∈ ∆,

|hn| ≤
{
1 +

(n− 1)A1

α1
(1 + k)

}
|θn| , n ≥ 2,

θn is given by (1.7).

Proof. Mentioning the proof of Theorem 4.1 and the convolution property:
(
Ht ∗Wp

q([α1])f
)
(z) =(

Wp
q([α1])Ht ∗ f

)
(z), we get

f ∈ UC(k, [α1]) ⇔
1

z

(
Wp

q([α1])Ht ∗ f
)
(z) ̸= 0, z ∈ ∆,

where the coefficient hn in the series expansion of Wp
q([α1])Ht(z) is given by

hn =

{(
α1

A1
− 1

)
+

C(t)− n

(C(t)− 1)

}
A1

α1
θn.

Hence, maximum of |hn| for each n ≥ 2, depends upon the maximum of
∣∣∣ C(t)−n
(C(t)−1)

∣∣∣ .
Since, ∣∣∣∣ C(t)− n

(C(t)− 1)

∣∣∣∣2 =

 C(t)− n(
C(t)− 1

)
( C(t)− n

(C(t)− 1)

)

= 1− 2k(n− 1)

t
+

(
n2 − 1

)
t2

:= s(t),
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which decreases in the interval
[

1
k+1 , t0

)
and increases in (t0,∞) with a minima at

t0 = n+1
k . But s( 1

k+1 ) = [n+ k(n− 1)]
2
> 1. Thus,

|hn| ≤
[(

α1

A1
− 1

)
+ n+ k(n− 1)

]
A1

α1
|θn| .

This proves the result of Theorem 4.5. �

Corollary 4.6. The function g(z) = z + Czn ∈ UC(k, [α1]) if and only if

|C| ≤ 1{
1 + (n−1)A1

α1
(1 + k)

}
|θn|

, n ≥ 2, (4.8)

θn is given by (1.7).

Proof. Let (4.8) holds. To prove the result by Theorem 4.5, we have to show

S2 :=
1

z

(
Wp

q([α1])Ht ∗ g
)
(z) ̸= 0, z ∈ ∆.

Since,

|S2| =
∣∣1 + hnC zn−1

∣∣ > 1− |hnC z| ≥ 1− |z| > 0, z ∈ ∆.

This proves g ∈ UC(k, [α1]). Conversely, let g ∈ UC(k, [α1]) and let

Wp
q([α1])H(z) = z +

∞∑
n=2

{
1 +

(n− 1)A1

α1
(1 + k)

}
|θn| zn.

Then

1

z

(
Wp

q([α1])H ∗ g
)
(z) = 1 +

{
1 +

(n− 1)A1

α1
(1 + k)

}
|θn| C zn−1, z ∈ ∆.

Thus, if

|C| > 1{
1 + (n−1)A1

α1
(1 + k)

}
|θn|

,

then there exists a point ζ ∈ ∆ such that 1
ζ

(
Wp

q([α1])H ∗ g
)
(ζ) = 0. This proves

that the inequality (4.8) must hold. �

5. Concluding Remark

It is noted that taking Ai = 1 (i = 1, 2, .., p) and Bi = 1 (i = 1, 2, .., q) , in our
results (obtained in previous Sections 2-4), similar results can also be derived for
Dziok-Srivastava operators Fp

q([α1]) and Fp
q([α1 + 1]) and for the special cases of

these operators discussed in Introduction. In fact, involving Ruscheweyh derivative
operators Dλf(z) and Dλ+1f(z), some of the results have been obtained by Kanas
and Yaguchi in [12]. Also, our results verify some of the results of Kanas and

Wísniowska [13] for the class k-SP and also for k-UCV [14] if f is replaced by zf
′
.
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