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OSCILLATION THEOREMS FOR DYNAMIC EQUATION ON

TIME SCALES

(COMMUNICATED BY HÜSEYIN BOR)

M. TAMER ŞENEL

Abstract. By using the generalized Riccati transformation and the inequality
technique, we establish a oscillation criterion for certain non-linear second-
order dynamic equations with damping on a time scale.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was in-
troduced by Stefan Hilger in his PhD thesis in 1988 in order to unify continuous and
discrete analysis (see [1]). Since Stefan Hilger formed the definition of derivatives
and integrals on time scales, several authors have expounded on various aspects
of the new theory, see the paper by Agarwal, Bohner, O’Regan, and Peterson [2],
Samir H. Saker, et.al [3] and the references cited [5]-[10]. A book on the subject
of time scales by Bohner and Peterson [4] summarizes and organizes much of time
scale calculus.

2. Some preliminaries

A time scale T is an arbitrary nonempty closed subset of the real numbers R.
Since we are interested in the oscillatory of solutions near infinity, we assume that
supT = ∞, and define the time scale interval [t0,∞)T by [t0,∞)T := [t0,∞) ∩ T .
We assume that T has the topology that it inherits from the standard topology on
the real numbers R. The forward and the backward jump operators on any time
scale T are defined by σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}.
A point t ∈ T, t > infT, is said to be left-dense if ρ(t) = t, right-dense if t < supT
and σ(t) = t, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The graininess
function ? for a time scale T is defined by µ(t) := σ(t)− t.
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For a function f : T → R the (delta) derivative is defined by

f△(t) =
f(σ(t))− f(t)

σ(t)− t

if f is continuous at t and t is right-scattered. A useful formula is

fσ = f(σ(t)) = f(t) + µ(t)f△(t).

We will use the product rule and the quotient rule for the derivative of the product
fg and the quotient f/g

(fg)△ = f∆g + fσg∆ = fg∆ + f∆gσ,

(
f

g

)∆

=
f∆g − fg∆

ggσ
.

The function f : T → R is called rd-continuous if it is continuous in right-dense
points and if the left-sided limits exist in left-dense points.
In this paper we shall study the oscillations of the following nonlinear second-order
dynamic equations with damping

(r(t)Ψ(x(t))x∆(t))∆ + p(t)(x∆(t))σ + q(t)(foxσ(t)) = 0 (2.1)

when Ψ(x(t)), p(t), q(t) and r(t) are positive rd-continuous functions.
We will use some of following assumptions:
(H1)f : R → R is such that f(u)/u ≥ K > 0, uf(u) > 0 for u ̸= 0 and some K > 0,
(H2)0 < c1 ≤ Ψ(v) ≤ c2 for all v,
(H3)

∫∞
t0

( 1
r(t)ce−p(t)

r(t)c

(t, t0))∆t = ∞ , some c > 0.

Our attention is restricted to those solutions of (2.1) which exist on some half-line
[tx,∞) and satisfy sup{|x(t)| : t > T} > 0 for any T ≥ tx . We assume the standing
hypothesis that (2.1) does possess such solutions. A solution x(t) of (2.1) is said to
be oscillatory if it is neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. The equation itself is called oscillatory if all its solutions are
oscillatory.

3. Main results

Theorem 3.1. Assume that (H1) − (H3) holds. Furthermore, assume that there
exist a positive real rd-functions differentiable functions z(t) such that

lim sup
t→∞

∫ t

t0

[
Kz(s)q(s)− c2r(s)A

2(s)

4z(s)

]
∆s = ∞ (3.1)

where

A(t) = z∆(t)− z(t)p(t)

c2rσ(t)
,

then every solution of (2.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (2.1). With-
out loss of generality, we may assume that x(t) > 0 for t ≥ t1 > t0. We shall consider
only this case, since in view of (H2), the proof of the case when x(t) is eventually
negative is similar. Now, we claim that x∆(t) has a fixed sign on the interval [t2,∞)
for some t2 ≥ t1. From (2.1), since q(t) > 0 and f(x(t)) > 0, we have

(r(t)Ψ(x(t))x∆(t))∆ + p(t)x∆σ

(t) = −q(t)f(xσ(t)) < 0,
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i.e.,

(r(t)Ψ(x(t))x∆(t))∆ + p(t)x∆σ

(t) < 0.

By setting y(t) = r(t)Ψ(x(t))x∆(t) , we immediately see that by (H2),

y∆(t) +
p(t)yσ(t)

rσ(t)c2
< 0

, which implies that

(
y(t)e p(t)

c2rσ(t)

)∆

< 0. Then y(t)e p(t)
c2rσ(t)

is decreasing and thus

y(t) is eventually of one sing. Then x∆(t) has a fixed sing for all sufficiently large
t and we have one of the following:
First, we consider x∆(t) ≥ 0 on [t2,∞) for some t2 ≥ t1. Then in view of (2.1) we
have

x(t) > 0, x∆(t) ≥ 0, (r(t)Ψ(x(t))x∆(t))∆ ≤ 0, t ≥ t2. (3.2)

Define the function w(t) by Riccati substitution

w(t) := z(t)
r(t)Ψ(x(t))x∆(t)

x(t)
, t ≥ t2 (3.3)

Then w(t) > 0 and satisfies

w∆(t) =

[
z∆(t)

x(t)

]∆
(r(t)Ψ(x(t))x∆(t))σ +

z(t)

x(t)
(r(t)Ψ(x(t))x∆(t))∆

In view of (2.1) and (3.2) we see that

w∆(t) = z∆(t)
(r(t)Ψ(x(t))x∆(t))σ

xσ(t)
− z(t)x∆(t)

x(t)xσ(t)
(r(t)Ψ(x(t))x∆(t))σ

− z(t)p(t)
(x∆(t))σ

x(t)
− z(t)q(t)

f(xσ(t))

x(t)
(3.4)

However from (3.2), (H1)− (H2) and

r(t)Ψ(x(t))x∆(t) ≥ (r(t)Ψ(x(t))x∆(t))σ, xσ(t) ≥ x(t),

we have

w∆(t) ≤ z∆(t)
wσ(t)

zσ(t)
− z(t)x∆(t)

(r(t)Ψ(x(t))x∆(t))σ
(wσ(t))2 − p(t)z(t)

(r(t)Ψ(x(t))x∆(t))σ

rσ(t)Ψσ(x(t))xσ(t)

− z(t)q(t)
f(xσ(t))

xσ(t)
(3.5)

w∆(t) ≤ −Kz(t)q(t) +A(t)
wσ(t)

zσ(t)
− z(t)

((wσ(t))2

c2(zσ(t))2r(t)
(3.6)

where

A(t) =

[
z∆(t)− z(t)p(t)

c2rσ(t)

]
.
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Then

w∆(t) ≤ −Kz(t)q(t) +
c2r(t)A

2(t)

4z(t)
−

[√
z(t)

c2r(t)

wσ(t)

zσ(t)
− A(t)

2

√
c2r(t)

z(t)

]2

≤ −
[
Kz(t)q(t)− c2r(t)A

2(t)

4z(t)

]
(3.7)

Integration from t3 to t, we obtain

w(t)− w(t3) ≤ −
∫ t

t3

[
Kz(s)q(s)− c2r(s)A

2(s)

4z(s)

]
∆s (3.8)

which yields∫ t

t3

[
Kz(s)q(s)− c2r(s)A

2(s)

4z(s)

]
∆s ≤ w(t3)− w(t) < w(t3),

for all large t. This is contrary to (3.1).
Next, we consider x∆(t) < 0 for t > t2 ≥ t1 .
Define the function u(t) = −r(t)Ψ(x(t))x∆(t). The from (2.1)and (H2)− (H3), we
have

u∆(t) +
p(t)

c1r(t)
u(t) ≥ 0 ⇒ u(t) ≥ u(t2)e −p(t)

c1r(t)

(t, t2),

Thus

x∆(t) ≤ −u(t2)

(
1

c2r(t)
e −p(t)

c1r(t)

(t, t2)

)
. (3.9)

Integrating (3.9 ) from t2 to t, we have

x(t)− x(t2) ≤ r(t2)Ψ(x(t2))x
∆(t2)

∫ t

t2

(
1

c2r(t)
e −p(t)

c1r(t)

(t, t2)

)
∆s.

Condition (H3) implies that x(t) is eventually negative, which is a contradiction.
The proof is complete. �

Corollary 3.2. Assume that (H1)− (H4) hold. If

lim sup
t→∞

∫ t

t0

[
Kq(s)− r(s)p2(s)

4c2(rσ(s))2

]
∆s = ∞ (3.10)

then every solution of (2.1) is oscillatory.

Corollary 3.3. Assume that (H1)− (H3) hold. If

lim sup
t→∞

∫ t

t0

[
Ksq(s)− c2r(s)

4s

(
1− sp(s)

c2rσ(s)

)2
]
∆s = ∞ (3.11)

then every solution of (2.1) is oscillatory.

Example 2.4. Consider the second order dynamic equation(
1

t
(
1

4
+ e−|x(t)|)x∆(t)

)∆

+
1

t2
(x∆(t))σ +

1

t
xσ = 0, t ≥ 1. (3.12)



OSCILLATION TEO. FOR S. ORDER DAMPED DYNAMIC EQU. ON TIME SCALES 105

The conditions (H1)− (H3) are satisfied. First let consider Corollary 3.2. Assume
that K=1, c2 = 5/4 and T = 2N = {t : t = 2k, k = N}. So we have σ(t) = 2t. It
remains to show condition (3.10), we have

lim sup
t→∞

∫ t

t0

[
Kq(s)− r(s)p2(s)

4c2(rσ(s))2

]
∆s = lim sup

t→∞

∫ t

1

[
1

s
− 4

5s

]
∆s = ∞.

Then, by Corollary 3.2, every solution of (3.12) oscillates. Now let consider Corol-
lary 3.3. Assume that K=1, c2 = 5/4 and T = Z. So we have σ(t) = t. From
condition (3.11),

lim sup
t→∞

∫ t

t0

[
Ksq(s)− c2r(s)

4s

(
1− sp(s)

c2rσ(s)

)2
]
∆s = lim sup

t→∞

∫ t

1

[
1− 1

2s2

]
∆s

=
∞∑
t=1

[
1− 1

2t2

]
= ∞,

then, by Corollary 3.3, every solution of (3.12) oscillates.
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