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EXISTENCE RESULTS FOR THREE-POINT

BOUNDARY VALUE PROBLEMS FOR SECOND ORDER

IMPULSIVE DIFFERENTIAL EQUATIONS

(COMMUNICATED BY FIORALBA CAKONI)

MUSTAPHA LAKRIB AND RAHMA GUEN

Abstract. In this paper, under weak conditions on the impulse functions,
we prove existence results for three-point boundary value problems for second
order impulsive differential equations. The approach is based on fixed point
theorems.

1. Introduction

The purpose of this paper is to establish existence of solutions for the following
problem

x′′(t) + f(t, x(t), x′(t)) = 0, a.e. t ∈ J := [0, 1], t ̸= t1, (1.1)

∆x(t1) = I1(x(t1), x
′(t1)), ∆x′(t1) = I2(x(t1), x

′(t1)), (1.2)

x(0) = 0, x(1) = αx(η), (1.3)

where the function f : J × Rn × Rn → Rn and the impulse functions I1, I2 :
Rn × Rn → Rn are given, the impulsive moment t1 is such that 0 < t1 < 1,
∆x(t1) = x(t+1 )− x(t−1 ), ∆x

′(t1) = x′(t+1 )− x′(t−1 ) and α ∈ R, 0 < η < 1 are such
that αη ̸= 1.

We note that we could consider three-point boundary value problems for second
order impulsive differential equations with an arbitrary finite number of impulses.
However, for clarity and brevity, we restrict our attention to the case of one impulse.
In addition, the difference between the theory of one or an arbitrary finite number
of impulses is quite minimal.

Impulsive differential equations are important mathematical tools for providing a
better understanding of many real-world models. Relative to the theory of impulsive
differential equations and its applications, we refer the interested reader to [14] and
references therein, and the monographs [1, 12, 16].
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In the literature, many existence results for impulsive differential equations are
proved under restrictive conditions on the impulse functions (see for instance [2,
3, 4, 5, 7, 8, 9, 13, 18]). In references [10] and [11], the first author proved some
existence results under weak conditions on the impulse functions. Here, we give
some existence results of solutions for the initial value problem (1.1)-(1.3) using
some fixed points theorems. In our main results (Theorem 3.1 and Theorem 3.2),
only the continuity of the impulse functions, I1 and I2, is required. The proofs are
based on the following well-known fixed points theorems.

Theorem 1.1 (Schaefer Fixed Point Theorem [17]). Let E be a normed space and
let Γ : E → E be a completely continuous map, that is, it is a continuous mapping
which is relatively compact on each bounded subset of E. If the set E = {x ∈ E :
λx = Γx for some λ > 1} is bounded, then Γ has a fixed point.

Theorem 1.2 (Sadovskii Fixed Point Theorem [15]). Let E be a Banach space
and let Γ : E → E be a completely continuous map. If Γ(B) ⊂ B for a nonempty
closed, convex and bounded set B of E, then Γ has a fixed point in B.

Theorem 1.3 (Banach Fixed Point Theorem [6]). Let E be a Banach space and let
Γ : E → E be a contraction map, that is, for all x, y ∈ E, |Γ(x)−Γ(y)| ≤ L|x− y|,
with L < 1, then Γ has a unique fixed point.

The paper is formulated as follows. In Section 2, some definitions and lemmas
are given and hypotheses on data f , I1 and I2 are stated. In Section 3, we establish
our existence theorems for the initial value problem (1.1)-(1.3).

2. Preliminaries

Let L1(J,Rn) be the Banach space of measurable functions x : J → Rn which
are Lebesgue integrable, normed by

∥x∥L1 =

∫ 1

0

|x(t)|dt, x ∈ L1(J,Rn).

By PC(J,Rn) we denote the Banach space of functions x : J → Rn which are
continuous at t ̸= t1, left continuous at t = t1 and right-hand limit at t = t1 exists,
equipped with the norm

∥x∥ = sup{|x(t)| : t ∈ J}, x ∈ PC(J,Rn).

In a similar fashion to above, we define PC1(J,Rn) as the Banach space of
functions x : J → Rn, x ∈ PC(J,Rn), which are continuously differentiable at
t ̸= t1, with x′ left continuous at t = t1 and right-hand limit at t = t1 exists,
equipped with the norm

∥x∥0 = max{∥x∥, ∥x′∥}, x ∈ PC1(J,Rn).

A function x ∈ PC1(J,Rn) is called a solution of (1.1)-(1.3) if x satisfies the dif-
ferential equation (1.1) almost everywhere on J \{t1} and the conditions (1.2)-(1.3).

To establish our main results, we need the following assumptions for the initial
value problem (1.1)-(1.3).

(H1) The function f : J × Rn × Rn → Rn is Carathéodory, that is,
(i) for every x, y ∈ Rn, the function f(·, x, y) : J → Rn is measurable,
(ii) for almost every t ∈ J , the function f(t, ·, ·) : Rn × Rn → Rn is

continuous.
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(H2) There exist functions p, q, r ∈ L1(J,R+) such that

|f(t, x, y)| ≤ p(t)|x|+ q(t)|y|+ r(t) for almost every t ∈ J and all x, y ∈ Rn.

(H2)∗ There exist a function q ∈ L1(J,R+) and a continuous nondecreasing func-
tion ψ : R+ → R+ such that

|f(t, x, y)| ≤ q(t)ψ(max{|x|, |y|}) for almost every t ∈ J and all x, y ∈ Rn.

(H3) The impulse functions I1, I2 : Rn × Rn → Rn are continuous.

Let us now give some lemmas which are needed in the sequel.

Lemma 2.1. Let a, b, α ∈ R. Suppose that 0 < t1 < η < 1, αη ̸= 1 and f : J → Rn

is in L1(J,Rn). Then the boundary value problem

x′′(t) + f(t) = 0, a.e. t ∈ J := [0, 1], t ̸= t1, (2.1)

∆x(t1) = a, ∆x′(t1) = b, (2.2)

x(0) = 0, x(1) = αx(η) (2.3)

has a unique solution

x(t) =

∫ 1

0

G(t, s)f(s)ds+ aV (t) + bW (t), t ∈ J, (2.4)

where

G(t, s) =



s
(1− t) + α(t− η)

1− αη
, s ≤ min{t, η}

t
(1− s) + α(s− η)

1− αη
, t ≤ s ≤ η,

s(1− t) + αη(t− s)

1− αη
, η ≤ s ≤ t,

t
(1− s)

1− αη
, s ≥ max{t, η},

(t, s) ∈ J × J, (2.5)

V (t) =
(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
, t ∈ J, (2.6)

and

W (t) = −(1−H(t− t1))t−
(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1, t ∈ J. (2.7)

Remark. The function H : R → {0, 1} in (2.6) and (2.7) is the Heaviside function
which is defined by H(s) = 0 if s ≤ 0 and H(s) = 1 if s > 0.

Proof. Without boundary value conditions (2.3), problem (2.1)-(2.2) has solutions
in the form

x(t) = A+Bt−
∫ t

0

(t− s)f(s)ds+H(t− t1)b(t− t1) +H(t− t1)a.

By the boundary conditions (2.3) and standard calculation we get A = 0 and

B =

∫ 1

0

1− s

1− αη
f(s)ds−

∫ η

0

α(η − s)

1− αη
f(s)ds− (1− t1) + α(t1 − η)

1− αη
b− 1− α

1− αη
a
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so that

x(t) = −
∫ t

0

(t− s)f(s)ds+ t

∫ 1

0

(1− s)

1− αη
f(s)ds− t

∫ η

0

α(η − s)

1− αη
f(s)ds

+
(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
a

−
{
(1−H(t− t1))t+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1

}
b.

(2.8)

Now, if t ≤ η, (2.8) can be rewritten as

x(t) = − tα

1− αη

{∫ t

0

(η − s)f(s)ds+

∫ η

t

(η − s)f(s)ds

}
+

t

1− αη

{∫ t

0

(1− s)f(s)ds+

∫ η

t

(1− s)f(s)ds+

∫ 1

η

(1− s)f(s)ds

}
−
∫ t

0

(t− s)f(s)ds+
(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
a

−
{
(1−H(t− t1))t+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1

}
b

=

∫ 1

η

t
1− s

1− αη
f(s)ds+

∫ η

t

t
(1− s) + α(s− η)

1− αη
f(s)ds

+

∫ t

0

s
(1− t) + α(t− η)

1− αη
f(s)ds+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
a

−
{
(1−H(t− t1))t+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1

}
b.

Similarly, if η ≤ t, (2.8) can be expressed

x(t) = −
∫ η

0

(t− s)f(s)ds−
∫ t

η

(t− s)f(s)ds− tα

1− αη

∫ η

0

(η − s)f(s)ds

+
t

1− αη

{∫ η

0

(1− s)f(s)ds+

∫ t

η

(1− s)f(s)ds+

∫ 1

t

(1− s)f(s)ds

}
+
(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
a

−
{
(1−H(t− t1))t+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1

}
b

=

∫ η

0

s
(1− t) + α(t− η)

1− αη
f(s)ds+

∫ t

η

s(1− t) + αη(t− s)

1− αη
f(s)ds

+

∫ 1

t

t(1− s)

1− αη
f(s)ds+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
a

−
{
(1−H(t− t1))t+

(H(t− t1)− t) + α(t− ηH(t− t1))

1− αη
t1

}
b.

The lemma is proved. �
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In view of Lemma 2.1 a useful operator will now be introduced so that fixed
points of the operator will be solutions of the initial value problem (1.1)-(1.3).

Lemma 2.2. Consider the initial value problem (1.1)-(1.3). Suppose that the func-
tion f : J ×Rn ×Rn → Rn satisfies conditions (H1) and (H2) or (H1) and (H2)∗,
and the impulse functions I1, I2 : Rn × Rn → Rn satisfy condition (H3). Consider
the operator Γ : PC1(J,Rn) → PC1(J,Rn) defined, for x ∈ PC1(J,R) and t ∈ J ,
by

(Γx)(t) =

∫ 1

0

G(t, s)f(s, x(s), x′(s))ds

+V (t)I1(x(t1), x
′(t1)) +W (t)I2(x(t1), x

′(t1)),

(2.9)

where G, V and W are given in (2.5)-(2.7), with 0 < t1 < η < 1 and αη ̸= 1.
If x is a fixed point of Γ, then x is a solution of problem (1.1)-(1.3).

Proof. Let x ∈ PC1(J,Rn) be a fixed point of Γ. To prove that x satisfies the
problem (1.1)-(1.3), just differentiate

x(t) =

∫ 1

0

G(t, s)f(s, x(s), x′(s))ds+ V (t)I1(x(t1), x
′(t1)) +W (t)I2(x(t1), x

′(t1))

to obtain (1.1) and also show that (1.2)-(1.3) hold by direct computation. �

The result below is needed to prove our main theorems (Theorem 3.1 and The-
orem 3.2).

Lemma 2.3. Suppose that the function f : J ×Rn ×Rn → Rn satisfies conditions
(H1) and (H2) or (H1) and (H2)∗, and the impulse functions I1, I2 : Rn×Rn → Rn

satisfy condition (H3). Then the operator Γ : PC1(J,Rn) → PC1(J,Rn) given by
(2.9) is completely continuous.

Proof. This follows in a standard step-by-step process and so omitted. �

Remark. In the rest of this paper, M0, M1, V0 and W0 are the constants defined
by

M0 := sup
(t,s)∈J×J

|G(t, s)|, M1 := sup
(t,s)∈J×J

|∂G
∂t

(t, s)|,

V0 := sup
t∈J

|V (t)|, V1 := sup
t∈J

|V ′(t)|,

W0 := sup
t∈J

|W (t)| and W1 := sup
t∈J

|W ′(t)|,

where G, V and W are given in (2.5)-(2.7), with 0 < t1 < η < 1 and αη ̸= 1.

3. Existence results

In this section we state and prove our existence results for problem (1.1)-(1.3).

Theorem 3.1. Assume that (H1), (H2) and (H3) hold. Further if

M0∥q∥L1 < 1, M1∥q∥L1 < 1 and M0∥p∥L1

[
1 +

M1∥q∥L1

1−M1∥q∥L1

]
< 1, (3.1)

then the initial value problem (1.1)-(1.3) has a solution on J .
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Proof. We will apply Theorem 1.1 to obtain the existence of a solution for x = Γx,
where Γ : PC1(J,Rn) → PC1(J,Rn) is given by (2.9).

Note that, by Lemma 2.3, Γ is a completely continuous operator. Then it suffices
to verify that all possible solutions of the family of problems

λx = Γx, λ > 1 (3.2)

are bounded a priori in PC1(J,Rn) by a constant independent of λ.
Let x be a solution to (3.2) and let λ > 1 be such that λx = Γx. Then x|[0,t1]

satisfies, for each t ∈ [0, t1],

x(t) = λ−1

(∫ 1

0

G(t, s)f(s, x(s), x′(s))ds

)
.

It is straightforward to verify that

|x(t)| ≤M0

(∫ 1

0

[p(s) sup
u∈[0,t1]

|x(u)|+ q(s) sup
u∈[0,t1]

|x′(u)|+ r(s)]ds

)
. (3.3)

Introduce the constants ξ = sup{|x(s)| : s ∈ [0, t1]} and ξ = sup{|x′(s)| : s ∈ [0, t1]}
in (3.3) to obtain

|x(t)| ≤M0(∥p∥L1ξ + ∥q∥L1ξ + ∥r∥L1)

from which we deduce that

ξ ≤M0(∥p∥L1ξ + ∥q∥L1ξ + ∥r∥L1). (3.4)

In the other hand, x|[0,t1] is such that, for each t ∈ [0, t1],

x′(t) = λ−1

(∫ 1

0

∂G

∂t
(t, s)f(s, x(s), x′(s))ds

)
.

It is easy to verify that

|x′(t)| ≤M1

(∫ 1

0

[p(s) sup
u∈[0,t1]

|x(u)|+ q(s) sup
u∈[0,t1]

|x′(u)|+ r(s)]ds

)
≤M1

(
∥p∥L1ξ + ∥q∥L1ξ + ∥r∥L1

)
from which we get

ξ ≤M1

(
∥p∥L1ξ + ∥q∥L1ξ + ∥r∥L1

)
and this gives

ξ ≤ M1 (∥p∥L1ξ + ∥r∥L1)

(1−M1∥q∥L1)
. (3.5)

Replace (3.5) into (3.4) to obtain after some calculation

ξ ≤
M0

(
1 +

M1∥q∥L1

1−M1∥q∥L1

)
∥r∥L1

1−M0∥p∥L1

(
1 +

M1∥q∥L1

1−M1∥q∥L1

) := ξ1

then, from (3.5), we get

ξ ≤ M1 (∥p∥L1ξ1 + ∥r∥L1)

(1−M1∥q∥L1)
:= ξ1. (3.6)
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Now, consider x|J . It satisfies, for each t ∈ J ,

x(t) = λ−1
(∫ 1

0

G(t, s)f(s, x(s), x′(s))ds

+V (t)I1(x(t1), x
′(t1)) +W (t)I2(x(t1), x

′(t1))
)
.

Therefore,

|x(t)| ≤M0

(∫ 1

0

[p(s) sup
u∈[0,1]

|x(u)|+ q(s) sup
u∈[0,1]

|x′(u)|+ r(s)]ds

)
+V0 sup

|u|≤ξ1,|v|≤ξ1

|I1(u, v)|+W0 sup
|u|≤ξ1,|v|≤ξ1

|I2(u, v)|.
(3.7)

Denote ρ = sup{|x(t)| : t ∈ J}, ρ = sup{|x′(t)| : t ∈ J}, I1 = sup{|I1(u, v)| : |u| ≤
ξ1, |v| ≤ ξ1} and I2 = sup{|I2(u, v)| : |u| ≤ ξ1, |v| ≤ ξ1}. From (3.7) we obtain

|x(t)| ≤M0(∥p∥L1ρ+ ∥q∥L1ρ+ ∥r∥L1) + V0I1 +W0I2

from which we get

ρ ≤M0(∥p∥L1ρ+ ∥q∥L1ρ+ ∥r∥L1) + V0I1 +W0I2. (3.8)

In the other hand, x|J is such that, for each t ∈ J ,

x′(t) = λ−1
(∫ 1

0

∂G

∂t
(t, s)f(s, x(s), x′(s))ds

+V ′(t)I1(x(t1), x
′(t1)) +W ′(t)I2(x(t1), x

′(t1))
)

from which one can get

ρ ≤M1(∥p∥L1ρ+ ∥q∥L1ρ+ ∥r∥L1) + V1I1 +W1I2

and then

ρ ≤ M1(∥p∥L1ρ+ ∥r∥L1) + V1I1 +W1I2
1−M1∥q∥L1

. (3.9)

Replace (3.9) into (3.8) and compute to obtain

ρ ≤
M0

(
1 +

M1∥q∥L1

1−M1∥q∥L1

)
∥r∥L1 +M0

V1I1+W1I2

1−M1∥q∥L1
+ V0I1 +W0I2

1−M0∥p∥L1

(
1 +

M1∥q∥L1

1−M1∥q∥L1

) := ρ1 (3.10)

and then, from (3.9), we get

ρ ≤ M1(∥p∥L1ρ1 + ∥r∥L1) + V1I1 +W1I2
1−M1∥q∥L1

:= ρ1. (3.11)

Hence, there exists a constant ϱ = max{ρ1, ρ1} such that

∥x∥0 = max{sup
t∈J

|x(t)|, sup
t∈J

|x′(t)|} ≤ ϱ.

This finish to show that all possible solutions of (3.2) are bounded in PC1(J,Rn)
by the constant ϱ.

As a result the conclusion of Theorem 1.1 holds and consequently the initial
value problem (1.1)-(1.3) has a solution x on J . This completes the proof. �



THREE-POINT IMPULSIVE BOUNDARY VALUE PROBLEMS 113

If hypothesis (H2) and condition (3.1) in Theorem 3.5 are replaced by hypothesis
(H2)∗ and condition (3.12) below, we obtain a new existence result. This result is
not a consequence of Theorem 3.5.

Theorem 3.2. Under conditions (H1), (H2)∗ and (H3), the initial value problem
(1.1)-(1.3) has a solution on J , provided that the function ψ in (H2)∗ satisfies

M0∥q∥L1 lim inf
r→+∞

ψ(r)

r

+V0 lim inf
r→+∞

sup
|u|,|v|≤r

|I1(u, v)|

r
+W0 lim inf

r→+∞

sup
|u|,|v|≤r

|I2(u, v)|

r
< 1.

(3.12)

Proof. We claim that there exists r > 0 such that Γ(Br) ⊆ Br where the operator Γ
is defined by (2.9) and Br is the closed ball in PC1(J,Rn) with center 0 and radius
r. If this property is false, then for each r > 0 there exist xr ∈ Br and tr ∈ J such
that |(Γxr)(tr)| > r. From this it follows that

r < |(Γxr)(tr)|

=
∣∣∣ ∫ 1

0

G(tr, s)f(s, xr(s), xr ′(s))ds

+ V (t)I1(x
r(t1), x

r ′(t1)) +W (t)I2(x
r(t1), x

r ′(t1))
∣∣∣

≤M0

∫ 1

0

q(s)ψ(max{|xr(s)|, |xr ′(s)|})ds

+ V0I1(x
r(t1), x

r ′(t1)) +W0I2(x
r(t1), x

r ′(t1))

≤M0∥q∥L1ψ(r) + V0 sup
|u|,|v|≤r

|I1(u, v)|+W0 sup
|u|,|v|≤r

|I2(u, v)|.

Hence, we obtain

1 ≤M0∥q∥L1 lim inf
r→+∞

ψ(r)

r

+ V0 lim inf
r→+∞

sup
|u|,|v|≤r

|I1(u, v)|

r
+W0 lim inf

r→+∞

sup
|u|,|v|≤r

|I2(u, v)|

r
,

which contradicts (3.12).
Let r > 0 be such that Γ : Br → Br. By Lemma 2.3, Γ is completely continuous,

and from Theorem 1.2 we conclude that the initial value problem (1.1)-(1.3) has a
solution x on J . The proof is finished. �

From the proof of Theorem 3.2, we immediately obtain the following corollaries.

Corollary 3.3. Assume that (H1) and (H2)∗ hold. In addition, assume that the
following condition is satisfied.

(H3)∗ The impulse functions I1, I2 : Rn×Rn → Rn are continuous and there exist
constants ai, bi ∈ R+, i = 1, 2, 3, such that |I1(x, y)| ≤ a1|x| + a2|y| + a3
and |I2(x, y)| ≤ b1|x|+ b2|y|+ b3|, for all x, y ∈ Rn.

Then the initial value problem (1.1)-(1.3) has a solution on J , provided that

M0∥q∥L1 lim inf
r→+∞

ψ(r)

r
+ V0(a1 + a2) +W0(b1 + b2) < 1.
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Corollary 3.4. Assume that (H1), (H2)∗ and the following condition hold.

(H3)∗∗ The impulse functions I1, I2 : Rn → Rn are continuous and there ex-
ist constants ai, bi ∈ R+, i = 1, 2, 3, αi, βi ∈ [0, 1), i = 1, 2, such that
|I1(x, y)| ≤ a1|x|α1 + a2|y|α2 + a3 and |I2(x, y)| ≤ b1|x|β1 + b2|y|β2 + b3, for
all x, y ∈ Rn.

Then the initial value problem (1.1)-(1.3) has a solution on J , provided that

M0∥q∥L1 lim inf
r→+∞

ψ(r)

r
< 1.

We finish this paper with the following uniqueness result for solutions of problem
(1.1)-(1.3) which involves Lipschitz condition on the functions f , I1 and I2.

Theorem 3.5. Assume that, for every x, y ∈ Rn, the function f(·, x, y) : J → Rn

is measurable and the following conditions hold.
(H2)∗∗ There exist functions p, q ∈ L1(J,R+) such that, for almost every t ∈ J

and all x1, x2, y1, y2 ∈ Rn,

|f(t, x1, y1)− f(t, x2, y2)| ≤ p(t)|x1 − x2|+ q(t)|y1 − y2|.
(H3)∗∗∗ There exist constants αi, βi ∈ R+, i = 1, 2, such that, for almost every

t ∈ J and all x1, x2, y1, y2 ∈ Rn,

|I1(x1, y1)− I1(x2, y2)| ≤ α1|x1 − x2|+ α2|y1 − y2|,
|I2(x1, y1)− I2(x2, y2)| ≤ β1|x1 − x2|+ β2|y1 − y2|.

Further if
M [∥p∥L1 + ∥q∥L1 ] + V [α1 + α2] +W [β1 + β2] < 1,

where M = max{M0,M1}, V = max{V0, V1} and V = max{W0,W1}, then the
initial value problem (1.1)-(1.3) has a unique solution on J .

Proof. Let x, y ∈ PC1(J,Rn). We have, for each t ∈ J ,

|(Γx)(t)− (Γy)(t)| ≤
∫ 1

0

|G(t, s)||f(s, x(s), x′(s))− f(s, y(s), y′(s))|ds

+|V (t)||I1(x(t1), x′(t1))− I1(y(t1), y
′(t1))|

+|W (t)||I2(x(t1), x′(t1))− I2(y(t1), y
′(t1))|

from which it is easy to deduce the following inequality

|(Γx)(t)− (Γy)(t)| ≤
(
M(∥p∥L1 + ∥q∥L1) + V (α1 + α2) +W (β1 + β2)

)
∥x− y∥0.

Moreover, we have on the other hand

|(Γx)′(t)− (Γy)′(t)| ≤
∫ 1

0

∣∣∣∣∂G∂t (t, s)
∣∣∣∣ |f(s, x(s), x′(s))− f(s, y(s), y′(s))|ds

+ |V ′(t)| |I1(x(t1), x′(t1))− I1(y(t1), y
′(t1))|

+ |W ′(t)| |I2(x(t1), x′(t1))− I2(y(t1), y
′(t1))|

≤
(
M(∥p∥L1 + ∥q∥L1) + V (α1 + α2)

+W (β1 + β2)
)
∥x− y∥0.

Hence,

∥Γx− Γy∥0 ≤
(
M [∥p∥L1 + ∥q∥L1 ] + V [α1 + α2] +W [β1 + β2]

)
∥x− y∥0,

that is, Γ is a contraction operator.
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Thus, Theorem 1.3 applies yielding the existence of the unique fixed point of Γ
and thus problem (1.1)-(1.3) has a unique solution on J . �
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