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EXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR SOME

NONLINEAR ELLIPTIC SYSTEMS

(COMMUNICATED BY VICENTIU RADULESCU)

G.A. AFROUZI, T.A. ROUSHAN

Abstract. In this paper we study a class of nonvariational elliptic systems, by

using the Gidas-Spruck Blow-up method. first, we obtain a priori estimates,
and then using Leray-Schauder topological degree theory, we establish the
existence of positive radial solutions vanishing at infinity.

1. Introduction

The aim of this paper is to prove the existence of radial positive solutions, van-
ishing at infinity, the so-called fundamental states, for the system{

−∆pu = λ f(x, u, v), in RN ,
−∆qv = µ g(x, u, v), in RN ,

(1.1)

under superlinear assumptions on the nonlinearities. Here 1 < p, q < N ; f and g
are real-valued functions; λ and µ are positive parameters.

Djellit and Tas in [2] investigated the system (1.1) by using fixed point theo-
rems. In this work, following the same ideas in [3] (A. Djellit, M. Moussaoui, S.
Tas, Existence of radial positive solutions vanishing at infinity for asymptotically
homogeneous systems, Electronic J. Diff. Eqns., Vol. 2010(2010), No. 54, 1-10.),
we establish existence of nontrivial positive radial solution vanishing at infinity,
namely “ground states”, under the following hypotheses, for system (1.1). For
other related works in the literature, we refer the reader to [1, 5, 6].

This paper is divided into three sections, organized as follows: in Section 2,
we give some notation and hypotheses; Section 3 is devoted to prove existence of
ground states.
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2. Notation and hypotheses

let us denote

X =

{
(u, v) ∈ C0([0,+∞[)× C0([0,+∞[), lim

r→+∞
u(r) = lim

r→+∞
v(r) = 0

}
the Banach space endowed with the norm

X = ∥(u, v)∥ = ∥u∥∞ + ∥v∥∞, ∥u∥∞ = sup
r∈[0,+∞[

|u(r)|.

In addition, let λ = µ = 1 and we specify assumptions on f and g. So, we define
the last functions by

f(|x|, u, v) = a1(|x|)|u|α−1u+ a2(|x|)|v|β−1v,

g(|x|, u, v) = a3(|x|)|u|γ−1u+ a4(|x|)|v|δ−1v,

and we assume that

(H1) the functions ai : [0,+∞[→ [0,+∞[ is continuous for each i = 1, . . . , 4. Also
there exist θ1, θ2 > p ; θ3, θ4 > q and R > 0 such that ai(ξ) = O(ξ−θi),∀ξ > R.
And ãi = min ai(r) > 0. i = 2, 3.
(H2) min(α, β) > p ; min(γ, δ) > q, i.e. system (1.1) is superlinear.

Let K = {(u, v) ∈ X, u ≥ 0, v ≥ 0} a positive cone of X, we will show that
system (1.1) has a solution in K.

A function ϕ : R → R defined in a neighborhood at the infinity (respect. at the
origin) is said asymptotically homogeneous at the infinity (respect. at the origin)

of order ρ > 0 for all σ > 0, we have lim
s→+∞

ϕ(σs)
ϕ(s) = σρ (respect. lim

s→0

ϕ(σs)
ϕ(s) = σρ).

Hence, if ϕ be one of the form |u|α−1u, |v|β−1v, |u|γ−1u or |v|δ−1v then it is
asymptotically homogeneous of order α, β, γ and δ respectively.

let α1 = p(q−1)+βq
βγ−(p−1)(q−1) , α2 = q(p−1)+γp

βγ−(p−1)(q−1) , β1 = α1− N−p
p−1 and β2 = α2− N−q

q−1 .

So, max(β1, β2) ≥ 0, α1α− α1(p− 1)− p < 0 and α2δ − α2(q − 1)− q < 0.

Proposition 2.1 ([4]). Let ϕ : R → R be a continuous, odd, asymptotically homo-
geneous at infinity (respect. at the origin) of order ρ such that tϕ(t) > 0 for all
t ̸= 0 and ϕ(t) → ∞ as t → ∞, then
(i) For all ε ∈]0, ρ[, there exists t0 > 0 such that ∀t ≥ t0 (respect. 0 ≤ t ≤ t0),
c1t

ρ−ε ≤ ϕ(t) ≤ c2t
ρ+ε ; c1, c2 are positive constants. Moreover

∀s ∈ [t0, t] : (ρ+ 1− ε)ϕ(s) ≤ (ρ+ 1 + ε)ϕ(t).
(ii) If {wn}, {tn} are real sequences such that wn → w and tn → +∞ (respect

tn → 0) then lim
n→+∞

ϕ(tnwn)
ϕ(tn)

= wρ.

For h ≥ 0 and λ ∈ [0, 1], we define two families of operators Th and Sλ from X
to itself by Th(u, v) = (w, z) such that (w, z) satisfies the system

−(rN−1|w′(r)|p−2w′(r))′ = rN−1a1(r)(u(r))
α + rN−1a2(r)[(v(r))

β + h]
in [0,+∞[,

−(rN−1|z′(r)|q−2z′(r))′ = rN−1a3(r)(u(r))
γ + rN−1a4(r)(v(r))

δ

in [0,+∞[,
w′(0) = z′(0) = 0, lim

r→+∞
w(r) = lim

r→+∞
z(r) = 0,

(2.1)
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and Sλ(u, v) = (w, z) such that (w, z) satisfies the system
−(rN−1|w′(r)|p−2w′(r))′ = λrN−1a1(r)(u(r))

α + λrN−1a2(r)(v(r))
β

in [0,+∞[,
−(rN−1|z′(r)|q−2z′(r))′ = λrN−1a3(r)(u(r))

γ + rN−1a4(r)(v(r))
δ

in [0,+∞[,
w′(0) = z′(0) = 0, lim

r→+∞
w(r) = lim

r→+∞
z(r) = 0.

(2.2)

3. Existence of solutions

To show the existence result, it is necessary to state some lemmas.

Lemma 3.1. Let u ∈ C1([0,+∞[) ∩ C2([0,+∞[) be a nontrivial positive radial
solution of the problem

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0, in [0,+∞[,

then we have
(i) u′(r) ≤ 0 for r ≥ 0,

(ii) The function Hp(r) = ru′(r) + N−p
p−1 u(r), r ≥ 0, is nonnegative and non-

increasing. In particular, the function r 7→ r
N−p
p−1 u(r) is non-decreasing in [0,+∞[.

Proof. (i) Let u be a nontrivial positive radial solution of the problem

−(rN−1|u′(r)|p−2u′(r))′ ≥ 0, in [0,+∞[.

Suppose that 0 < s < r. Integrating from s to r, we obtain
rN−1|u′

(r)|p−2u
′
(r) ≤ sN−1|u′

(s)|p−2u
′
(s). Letting s → 0, we get u

′
(r) ≤ 0.

Obviously, if u
′
(r) = 0 then u

′
(s) = 0 for 0 ≤ s ≤ r. This means that u is

either constant on [0,+∞[ or there exists r0 ≥ 0 such that u
′
(r) < 0 for r > r0

and u
′
(r) = 0, u(r) = u(0) for 0 ≤ r ≤ r0. Consequently u is non-increasing and

u(0) > 0.
(ii) Since u is a positive solution of the problem

−(rN−1|u
′
(r)|p−2u

′
(r))

′
≥ 0, in [0,+∞[,

we have −rN−1(p− 1)|u′
(r)|p−2u′′(r)− (N − 1)rN−2(p− 1)|u′

(r)|p−2u
′
(r) ≥ 0. In

other words ru′′(r) + N−p
p−1 u

′
(r) ≤ 0. This yields that Hp is non-increasing.

To show that Hp(r) ≥ 0 for all r ≥ 0, we use a contradiction argument. Indeed,
assume that there exists r1 > 0 such thatHp(r1) < 0. SinceHp is non-increasing, for

all r > r1,Hp(r) ≤ Hp(r1) or u
′
(r) + N−p

p−1
u(r)
r ≤ Hp(r1)

r . On the other hand u(r) >

0, N−p
p−1 > 0, hence u

′
(r) ≤ Hp(r1)

r . Consequently u(r)−u(r1) ≤ Hp(r1) ln
r
r1
, r > r1.

It follows immediately that lim
r→+∞

u(r) = −∞. This contradicts u begin positive.

In particular,
Hp(r)
ru(r) ≥ 0, ∀r > 0.

Finally, we obtain u
′
(r)

u(r) + N−p
p−1

1
r ≥ 0. In other words, (ln r

N−p
p−1 u(r))

′ ≥ 0. This

implies that the function r 7→ r
N−p
p−1 u(r) is non-decreasing.

�

Lemma 3.2. Under hypothesis (H1), the operators Th and Sλ are compact.

Proof. By following the same argument in [[2], Lemma 6], the lemma will be proved.
�
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We remark that the ground states of (1.1) are precisely the fixed points of the
operator T0.

Theorem 3.3. Suppose that (H1) and (H2) hold, the system{
−∆pu = a2(|x|)|v|β−1v, in RN

−∆qv = a3(|x|)|u|γ−1u, in RN ,
(3.1)

has no nontrivial radial positive solutions; in particular (3.1) has no ground state.

Proof. Let (u, v) be a radial positive solution of system (3.1). Then (u, v) satisfies
the differential system

−(rN−1|u′
(r)|p−2u

′
(r))

′
= rN−1a2(r)(v(r))

β in [0,+∞[,

−(rN−1|v′
(r)|q−2v

′
(r))

′
= rN−1a3(r)(u(r))

γ in [0,+∞[,

u
′
(0) = v

′
(0) = 0.

(3.2)

Hence,

−(rN−1|u
′
(r)|p−2u

′
(r))

′
≥ rN−1ã2v

β , (3.3)

−(rN−1|v
′
(r)|q−2v

′
(r))

′
≥ rN−1ã3u

γ . (3.4)

First, consider the case β1 > 0 or β2 > 0. Integrating both (3.3) and (3.4) from

0 to r and taking into account that u
′
(r) < 0, v

′
(r) < 0 for all r > 0, we obtain

−u
′
(r) ≥ (

ã2
N

)
1

p−1 r
1

p−1 v
β

p−1 ,

−v
′
(r) ≥ (

ã3
N

)
1

q−1 r
1

q−1u
γ

q−1 .

By lemma (3.1), we have Hp ≥ 0,Hq ≥ 0, thus

0 ≥ −ru
′
(r)− N − p

p− 1
u(r) ≥ (

ã2
N

)
1

p−1 r
p

p−1 v
β

p−1 − N − p

p− 1
u(r),

0 ≥ −rv
′
(r)− N − q

q − 1
v(r) ≥ (

ã3
N

)
1

q−1 r
q

q−1u
γ

q−1 − N − q

q − 1
v(r).

This yields

u(r) ≥ Cr
p

p−1 v
β

p−1 , (3.5)

v(r) ≥ Cr
q

q−1u
γ

q−1 . (3.6)

Combining these two inequalities, we have

u(r) ≤ Cr−α1 , (3.7)

v(r) ≤ Cr−α2 . (3.8)

Since r
N−p
p−1 u(r) and r

N−q
q−1 v(r) are non-decreasing, for all r > r0 > 0,

u(r) ≥ Cr
−N−p
p−1 r

N−p
p−1

0 u(r0) = Cr
−N−p
p−1 , (3.9)

v(r) ≥ Cr
−N−q
q−1 r

N−q
q−1

0 u(r0) = Cr
−N−q

−1 . (3.10)

Inequalities (3.7)− (3.10) imply either rβ1 ≤ C or rβ2 ≤ C. This is a contradic-
tion.
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Suppose now that β1 = 0 (we may prove in a similar manner for β2 = 0 ). Inte-
grating with respect to r the first equation of (3.2) from r0 > 0 to r and by using
(3.3), we obtain

rN−1|u
′
(r)|p−1 − rN−1

0 |u
′
(r0)|p−1 ≥ ã2

∫ r

r0

sN−1vβ(s)ds.

Then (3.6) yields

vβ(s) ≥ Cs
βq
q−1u

βγ
q−1 (s)

consequently

rN−1|u
′
(r)|p−1 ≥ C

∫ r

r0

sN−1+ βq
q−1u

βγ
q−1 (s)ds.

Taking into account inequality (3.9) and the fact that β1 = 0, we have

rN−1|u′(r)|p−1 ≥ C

∫ r

r0

sN−1+ βq
q−1−

N−p
p−1

βγ
q−1 (s)ds = C

∫ r

r0

s−1ds = C ln
r

r0
.

On the other hand, for r > 0,Hp(r) ≥ 0 implies (N−p
p−1 )

p−1up−1(r) ≥ rp−1|u′
(r)|p−1.

Hence

up−1(r) ≥ Crp−1|u
′
(r)|p−1 ≥ Crp−N ln

r

r0
.

Then we write

r
N−p
p−1 u(r) ≥ C(ln

r

r0
)

1
p−1 .

This together with (3.7) yields a contradiction.
�

We now show that the radial positive solutions of system (2.1) are bounded.

Theorem 3.4. Assume (H1) and (H2). If (u, v) is a ground state of (2.1), then
there exists a constant C > 0 (independent of u and v) such that ∥(u, v)∥X ≤ C.

Proof. Let (u, v) be a ground state of (2.1) for h = 0, then (u, v) satisfies the system

−(rN−1|u′
(r)|p−2u

′
(r))

′
= rN−1a1(r)|u(r)|α−1u(r) + rN−1a2(r)|v(r)|β−1v(r)

in [0,+∞[,

−(rN−1|v′
(r)|q−2v

′
(r))

′
= rN−1a3(r)|u(r)|γ−1u(r) + rN−1a4(r)|v(r)|δ−1v(r)

in [0,+∞[,

u
′
(0) = v

′
(0) = 0, lim

r→+∞
u(r) = lim

r→+∞
v(r) = 0,

(3.11)
Assume now that there exists a sequence of positive solutions of (3.11) such

that ∥un∥∞ → ∞ as n → +∞ or ∥vn∥∞ → ∞ as n → +∞. Taking γn =

∥un∥
1

α1∞ + ∥vn∥
1

α2∞ , since α1 > 0 and α2 > 0, we get γn → +∞ as n → +∞. Now
we introduce the transformations

y = γnr, wn(y) =
un(r)

γα1
n

, zn(y) =
vn(r)

γα2
n

.
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It is clear that for all y ∈ [0,+∞[, 0 ≤ wn(y) ≤ 1, 0 ≤ zn(y) ≤ 1. Furthermore it is
easy to see that for any n the pair (wn, zn) is a solution of the system

−(yN−1|w′

n(y)|p−2w
′

n(y))
′
= yN−1a1(

y
γn

)
|γα1

n wn(y)|α−1γα1
n wn(y)

γ
α1(p−1)+p
n

+yN−1a2(
y
γn

)
|γα2

n zn(y)|β−1γα2
n zn(y)

γ
α1(p−1)+p
n

, in [0,+∞[,

−(yN−1|z′

n(y)|q−2z
′

n(y))
′
= yN−1a3(

y
γn

)
|γα1

n wn(y)|γ−1γα1
n wn(y)

γ
α2(q−1)+q
n

+yN−1a4(
y
γn

)
|γα2

n zn(y)|δ−1γα2
n zn(y)

γ
α2(q−1)+q
n

, in [0,+∞[,

w
′

n(0) = z
′

n(0) = 0, lim
r→+∞

wn(r) = lim
r→+∞

zn(r) = 0.

(3.12)

Let R > 0 be fixed. We claim that {w′

n} and {z′

n} are bounded in C([0, R]).

Indeed passing to a subsequence of {w′

n} (denoted again {w′

n} )assume that

∥w′

n∥C([0,R]) → +∞ as n → +∞. Hence there exists a sequence {yn} in [0, R] such

that for all A > 0, there exists n0 ∈ N such that for all n ≥ n0, |w
′

n(yn)| > A.
Integrating with respect to y the first equation of system (3.12), we obtain

|w
′

n(yn)|p−1

=
1

yN−1
n

∫ yn

0

(
yN−1a1(

y

γn
)
(γα1

n wn(y))
α

γ
α1(p−1)+p
n

+ yN−1a2(
y

γn
)
(γα2

n zn(y))
β

γ
α1(p−1)+p
n

)
dy.

From the part (i) of Proposition (2.1), and the fact that {wn} and {zn} are bounded,
we obtain

c111γ
α1(α−ε)−α1(p−1)−p
n ≤ (γα1

n wn(y))
α

γ
α1(p−1)+p
n

≤ c211γ
α1(α+ε)−α1(p−1)−p
n ,

c112γ
α1(β−ε)−α1(p−1)−p
n ≤ (γα2

n zn(y))
β

γ
α1(p−1)+p
n

≤ c212γ
α2(β+ε)−α1(p−1)−p
n .

By choosing ε sufficiently small, since α1α− α1(p− 1)− p < 0 we get

(γα1
n wn(y))

α

γ
α1(p−1)+p
n

→ 0,
(γα2

n zn(y))
β

γ
α1(p−1)+p
n

→ c1 as n → +∞

where c1 is positive constant. So there exists n1 ∈ N such that for any n ≥ n1, we
have

|w
′

n(yn)|p−1 ≤ a2(0)

yN−1
n

c1

∫ yn

0

yN−1dy =
c1
N

a2(0)yn ≤ Rc1
N

a2(0) ≡ c.

Setting n ≥ max(n0, n1), we have A < |w′

n(yn)| ≤ c. This contradicts the fact

that A may be infinitely large. Similarly we prove that {z′

n} is bounded in C([0, R]).
Consequently {wn} and {zn} are equicontinuous in C([0, R]). By Arzela-Ascoli
theorem, there exists a subsequence of {wn} denoted again {wn} (respect.{zn})
such that wn → w ( respect.zn → z) in C([0, R]).

On the other hand,

∥wn∥
1

α1∞ + ∥zn∥
1

α2∞ = 1,

this implies that the real-valued sequences {∥wn∥∞} and {∥zn∥∞} are bounded.
Hence there exist subsequences denoted again {∥wn∥∞} and {∥zn∥∞} such that

∥wn∥∞ → w0, ∥zn∥∞ → z0 and w
1

α1
0 + z

1
α2
0 = 1. In view of the uniqueness of

the limit in C([0, R]), we get ∥w∥
1

α1∞ + ∥z∥
1

α2∞ = 1. This implies that (w, z) is not
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identically null. Integrating from 0 to y ∈ [0, R], the first and the second equation
of system (3.12), we obtain

wn(0)− wn(y) =

∫ y

0

(gn(s))
1

p−1 ds, (3.13)

zn(0)− zn(y) =

∫ y

0

(hn(s))
1

q−1 ds. (3.14)

Clearly gn(y) and hn(y) are defined by

gn(y) =
1

yN−1

∫ y

0

(
sN−1a1(

s

γn
)
(γα1

n wn(s))
α

γ
α1(p−1)+p
n

+ sN−1a2(
s

γn
)
(γα2

n zn(s))
β

γ
α1(p−1)+p
n

)
ds,

hn(y) =
1

yN−1

∫ y

0

(
sN−1a3(

s

γn
)
(γα1

n wn(s))
γ

γ
α2(q−1)+q
n

+ sN−1a4(
s

γn
)
(γα2

n zn(s))
δ

γ
α2(q−1)+q
n

)
ds.

By Proposition (2.1), we obtain

(γα1
n wn(s))

α

γ
α1(p−1)+p
n

→ 0,
(γα2

n zn(s))
δ

γ
α2(q−1)+q
n

→ 0,

(γα2
n zn(s))

β

γ
α1(p−1)+p
n

=
(γα2

n )β

γ
α1(p−1)+p
n

(γα2
n zn(s))

β

γα2β
n

→ czβ(s)

(γα1
n wn(s))

γ

γ
α2(q−1)+q
n

=
(γα1

n )γ

γ
α2(q−1)+q
n

(γα1
n wn(s))

γ

γα1γ
n

→ cwγ(s),

as n → +∞. By the Lebesgue theorem on dominated convergence, it follows that

gn(y) →
c

yN−1

∫ y

0

sN−1a2(0)z
β(s)ds,

hn(y) →
c

yN−1

∫ y

0

sN−1a3(0)w
γ(s)ds,

as n → +∞. Passing to the limit in (3.13) and (3.14), we obtain

w(0)− w(y) = c

∫ y

0

1

τN−1

(∫ τ

0

sN−1a2(0)z
β(s)ds

) 1
p−1

dτ,

z(0)− z(y) = c

∫ y

0

1

τN−1

(∫ τ

0

sN−1a3(0)w
γ(s)ds

) 1
q−1

dτ.

In this way w ≥ 0, z ≥ 0, w, z ∈ C1([0, R]) ∩ C2(]0, R]) and satisfy the system
−(yN−1|w′

(y)|p−2w
′
(y))

′
= ca2(0)y

N−1(z(y))β , in [0, R],

−(yN−1|z′
(y)|q−2z

′
(y))

′
= ca3(0)y

N−1(w(y))γ , in [0, R],

w
′
(0) = z

′
(0) = 0

(3.15)

If we use the same argument on [0, R∗] where R∗ > R, we obtain a solution
(w∗, z∗) of system (3.15) with R∗ instead of R, which coincide with (w, z) in [0, R].
To this end, we indefinitely extend (w, z) to [0,+∞[. By Lemma (3.1) w(y) >
0, z(y) > 0, for all y ≥ 0. The pair (w, z) also satisfies system (3.15). In other
words (w, z) is a radial positive solution of (3.2). This contradicts Theorem (3.3).

�
Lemma 3.5. Under hypothesis (H1) and (H2), there exists h0 > 0 such that the
problem (u, v) = Th(u, v) has no solution for h ≥ h0
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Proof. Let (u, v) ∈ X of the above problem. Then (u, v) satisfies system
−(rN−1|u′(r)|p−2u′(r))′ = rN−1a1(r)u

α(r) + rN−1a2(r)[(v(r))
β + h]

in [0,+∞[,
−(rN−1|v′(r)|q−2v′(r))′ = rN−1a3(r)u

γ(r) + rN−1a4(r)(v(r))
δ

in [0,+∞[,
u′(0) = v′(0) = 0, lim

r→+∞
u(r) = lim

r→+∞
v(r) = 0

(3.16)

Assume that there exists a sequence {hn}, hn → +∞ as n → +∞, such that
(3.16) admits a pair of solutions {(un, vn)}. In view of Lemma (3.1), we have

un(r) > 0, vn(r) > 0, u
′

n(r) ≤ 0 and v
′

n(r) ≤ 0, for all n ∈ N . By replacing (un, vn)
to (u, v) in (3.16) and integrating the first equation of system (3.16), from R to 2R,
R > 0, we obtain

un(R) ≥
∫ 2R

R

(
η1−N

∫ η

0

ξN−1a2(ξ)hndξ

) 1
p−1

dη ≥ cRhn
1

p−1

Here

c =

(
1

(2R)N−1

∫ R

0

ξN−1a2(ξ)dξ

) 1
p−1

.

Consequently un(R) ≥ cRhn
1

p−1 . Passing to the limit we get un(R) → +∞. On
the other hand, integrating the second equation of (3.16), from R to 2R, we get

vn(R) ≥
∫ 2R

R

(
η1−N

∫ η

0

ξN−1a3(ξ)(un(ξ))
γdξ

) 1
q−1

dη ≥ cRun(R)
γ

q−1

By Proposition (2.1), we have vn(R) ≥ c(un(R))
γ−ε
q−1 , in a same way, we obtain

un(R) ≥ c(vn(R))
β−ε
p−1 . It follows from the last two inequalities, that

(un(R))
(β−ε)(γ−ε)−(p−1)(q−1)

(p−1)(q−1) ≤ 1

c
.

This is a contradiction, since un(R) increases to infinitely.
�

Lemma 3.6. There exists ρ̄ > 0 such that for all ρ ∈]0, ρ̄[ and all (u, v) ∈ X
satisfying ∥(u, v)∥ = ρ, the equation (u, v) = Sλ(u, v) has no solution.

Proof. Assume that there exists {ρn} ∈ [0,+∞[, ρn → 0; {λn} ⊂ [0, 1] and (un, vn) ∈
X such that (un, vn) = Sλ(un, vn) with ∥(un, vn)∥ = ρn. So, we get

∥un∥∞ ≤ cλ
1

p−1
n

(
∥un∥

α−ε
p−1
∞ + ∥vn∥

β−ε
p−1
∞

)
,

∥vn∥∞ ≤ cλ
1

q−1
n

(
∥un∥

γ−ε
q−1
∞ + ∥vn∥

δ−ε
q−1
∞

)
.

Adding the last two inequalities, we obtain

∥(un, vn)∥ ≤ C
(
∥(un, vn)∥

α−ε
p−1 + ∥(un, vn)∥

β−ε
p−1 + ∥(un, vn)∥

γ−ε
q−1 + ∥(un, vn)∥

δ−ε
q−1

)
.

This yields

1 ≤ C
(
∥(un, vn)∥

α−ε
p−1 −1 + ∥(un, vn)∥

β−ε
p−1−1 + ∥(un, vn)∥

γ−ε
q−1−1 + ∥(un, vn)∥

δ−ε
q−1−1

)
.
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The above inequality contradicts the fact that ∥(un, vn)∥ = ρn → 0 as n → +∞.
�

Theorem 3.7. Under hypothesis (H1) and (H2), system (1.1) has positive radial
solution.

Proof. To show the existence of ground states for (1.1) (or (2.1) with h=0), it is
sufficient to prove that the compact operator T0 admits a fixed point. By virtue of
Theorem (3.4), the eventual fixed point (u, v) of T0 are bounded; in fact there exists
C > 0 such that ∥(u, v)∥X ≤ C. Let us choose R1 > C and let us designate by BR1

the ball ofX, centered at the origin with radius R1. To this end, the Leray-Schauder
degree degLS(I − Th, BR1 , 0) is well defined. we recall that I denote the identical
operator in X. Moreover, by Lemma (3.5), we have degLS(I − Th, BR1 , 0) = 0 for
all h ≥ h0. It follows from the homotopy invariance of the Leray-Schauder degree
that

degLS(I − T0, BR1
, 0) = degLS(I − Th, BR1

, 0) = 0.

on the other hand, by Lemma (3.6), there exists 0 < ρ < ρ̄ < R1 such that
degLS(I − Sλ, Bρ, 0) is well defined. Once again, the homotopy invariance of the
Leray-Schauder degree yields

1 = degLS(I,Bρ, 0) = degLS(I − Sλ, Bρ, 0)

= degLS(I − S1, Bρ, 0) = degLS(I − T0, Bρ, 0).

Using the additivity of the the Leray-Schauder degree,

degLS(I − T0, BR1 \Bρ, 0) = degLS(I − T0, BR1 , 0)− degLS(I − T0, Bρ, 0) = −1.

This implies that T0 has fixed point in BR1 \ Bρ. Consequently, there exists a
nontrivial ground state.

�
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