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CURVATURE AND RIGIDITY THEOREMS OF SUBMANIFOLDS
IN A UNIT SPHERE

(COMMUNICATED BY UDAY CHAND DE)

SHICHANG SHU, YANYAN LI

ABSTRACT. In this paper, we investigate n-dimensional submanifolds with
higher codimension in a unit sphere S™1P(1). We obtain some rigidity re-
sults of submanifolds in S™*P(1) with parallel mean curvature vector or with
constant scalar curvature, which generalize some related rigidity results of hy-
persurfaces.

1. INTRODUCTION

Let M™ be an n-dimensional hypersurface in a unit sphere S"*1(1). It is well
known that there are many rigidity results for hypersurfaces in S"*1(1) with con-
stant mean curvature or constant scalar curvature (see [1], [4], [10]), but few of
submanifolds with higher codimension in S"*?(1), especially, if the submanifolds
are complete.

It is well known that H. Alencar, M. do Carmo [1] and H. Li [10] obtained some
important results of compact hypersurface with constant mean curvature or con-
stant scalar curvature in a unit sphere S"*1(1) , respectively.

Theorem 1.1([1]). Let M™ be an n-dimensional compact hypersurface in a unit
sphere S™1(1) with constant mean curvature. Assume that |p|> < By, , then

(1) |¢|? =0, M™ is totally umbilical; or

( ) |¢\2 = Bp . if and only if
=0, M™ is a Clifford torus S*(\/k/n) x S"*(\/(n — k)/n), with 1 < k <

)
r2<(n—1)/n
iii) H # 0, n =2, and M™ is an H(r)-torus S*(r)xS*(v/1 —r2) with0 < r < 1,

Theorem 1.2([10]). Let M™ be an n-dimensional (n > 3) compact hypersurface in
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a unit sphere S"t1(1) with constant scalar curvature n(n—1)R and R = R—1 > 0.
If
_ n _ _
R<S§< —m——x—— —1)R*+4(n— 1R 1.1
NR<S < (= DR = DR}, (LD

then either S = nR and M™ is totally umbilical, or S = m{n(n —-1R%+

4(n —1)R+n} and M"™ is a product S*(v/1 —72) x S*~(r), r = \/%

Remark 1.1.  We should notice that in Theorem 1.1, |¢|> = S — nH? is the
non-negative function on M", S and H the squared norm of the second funda-

mental form and mean curvature of M", By, the square of the positive real root
of

Py p(z) = 2 + n7—2on —n(l14+ H?*) =0.
’ n(n—1)

We should notice that W. Santos [14], Cheng [5] obtained some important results
of compact submanifolds with higher codimension and parallel mean curvature
vector or constant scalar curvature in S"*P(1), but to our knowledge, the results
of complete submanifolds in S"*?(1) are very few.

In this paper, we study n-dimensional compact or complete submanifolds with
higher codimension and parallel mean curvature vector or constant scalar curvature
in §7*7(1). In order to present our result, we define a function Qg , () by

1.n—-1

— 1
QR,p,n(x) =n+nRk+ [g - (2 - 5) n

\/[:E +n(n—1)R](x — nR),

J(z —nR) (1.2)

n—2

then we may obtain the following result:

Theorem 1.3. Let M™ be an n-dimensional compact submanifold in a unit sphere
S"tP(1) with constant scalar curvature n(n — 1)R and R = R —1 > 0. If the
normalized mean curvature vector is parallel and the squared norm S of the second
fundamental form of M™ satisfies

Qprpn(S) 20, (1.3)
then

(1

nR and M™ is totally umbilical; or
( ) = 0. In the latter case, either

and M™ is a product S'(v/1 —12) x S"~1(r), r = \/ﬁ’ or

=2 and M"™ is Veronese surface in S*.

:U\

) S =
(2) Qryp
(a) p=
(b) n

Remark 1.2. We note that if p = 1, Theorem 1.3 reduces to Theorem 1.2. We
should notice that in [11], J.T. Li obtained some results of compact submanifold
in S™*P(1) with constant scalar curvature and parallel normalized mean curvature
vector, but his results are very different from us.
We define a polynomial P, () by
1 n—2

Py pn(z) =(2— E)x + T_l)on —n(l+ H?). (1.4)
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We easily know that Py p ., (2) = 0 has a positive real root, and denoted by By pn
the square of the positive real root.

If M™ is an n-dimensional complete submanifold with higher codimension in a
unit sphere S"*?(1), we obtain the following results:

Theorem 1.4. Let M™ be an n-dimensional complete submanifold in a unit sphere
S"tP(1) with parallel mean curvature vector. Assume that sup |¢|> < By p.p , then

(1) sup|¢|?> =0, M™ is totally umbilical; or

(2) sup|¢|?> = Bup.n- If the supremum sup |p|* is attained on M™, then either

(a) p=1 and

(1) H =0, M"™ is an open piece of Clifford torus S*(\/k/n)xS"~*(\/(n — k)/n),
with 1 <k <n-—1;

(ii) H # 0, n > 3, and M™ is an open piece of H(r)-torus ST~1(r)x S*(v/1 —r2)
with r? < (n —1)/n;

(iii) H # 0, n =2, and M™ is an open piece of H(r)-torus S*(r) x S1(v/1 —r2)
with 0 < r <1, rz#%; or

(b) n =2, p=2 and M™ is an open piece of Veronese surface in S*.

Theorem 1.5. Let M™ be an n-dimensional complete submanifold in a unit sphere
S"+P(1) with constant scalar curvature n(n —1)R and R = R —1 > 0. If the nor-
malized mean curvature vector is parallel and the squared morm S of the second
fundamental form of M™ satisfies

QR,p,n(Sup S) >0, (15)

then

(1) sup S = nR and M™ is totally umbilical; or

(2) Qppn(supS) = 0. In the latter case, if the supremum sup S is attained on
M™, then either

(i) p =1 and M™ is an open piece of H(r)-torus S"1(r) x S1(v/1 —r2) with
0<r<li;or

(i) n = 2, p = 2 and M™ is an open piece of Veronese surface in S*, where
Qp,pn() is defined by (1.2).

Remark 1.3. We note that Theorem 1.4 and Theorem 1.5 generalize the re-
sults of H. Alencar, M.do Carmo [1] and H. Li [10](Theorem 1.1 and Theorem 1.2)
to complete submanifold with higher codimension.

2. PRELIMINARIES

Let M™ be an n-dimensional submanifold in an (n + p)-dimensional unit sphere
S™*P(1). Let {e1,...,e,} be a local orthonormal basis of M"™ with respect to the
induced metric, {w1,...,wy,} are their dual form. Let e,41,...,€ntp be the local
unit orthonormal normal vector field. We make the following convention on the
range of indices:

1<i,jk,...<n; n+l1<a,pB,7...<n+p.

Then the structure equations are

de:—ZOJAB/\wB, wap +wpa =0, (2.1)
B



18 SHICHANG SHU, YANYAN LI

1
dwap = — ZUJAC ANwep + 3 Z Kapcpwe Awp, (2.2)
c C.D
Kapep =6acdBp —dapdBc. (2.3)

The Gauss equations are

Rijii = (0irdj1 — 6:djn) +Z a5 — hiahdy), (2.4)

n(n—1)(R—1)=n*H? - S, (2.5)

where S = 7 (h$))?, H = Y. H%,, H" = 1Ehkk, H = |H|, R is the
15,0 a

normalized scalar curvature of M™.
The first covariant derivative {h; } and the second covariant derivative {h{;;;}
of h{; are defined by

D hSgwr =dh =Y bk — Y hwk — Y hiiwga, (2.6)
k k k B
> h@wr = dhgy — > b — > hfw — Y hSww — > hlwsa. (2.7)
l l l l B

Then, we have the Codazzi equations and the Ricci identities

?jk = ?kjv (2:8)
e — M = > ho Ronint + Y W Renjir + > i Rpant. (2.9)
The Ricci equations are ’
Ragij = p_(hiihy, — Wphi). (2.10)
2

From (2.8) and (2.9), we have

ARG = " hss + b Rigi + Y bt R + Y B R (2.11)
k k,m k,m k,B

Denote by |¢|? = S — nH? the non-negative function |¢| on M™. We know that
|#|? = 0 exactly at the umbilical points of M"™. Define the first, second covariant
derivatives and Laplacian of the mean curvature vector field H = > H%¢,, in the

normal bundle N(M™) as follows

Z HS0; = dH® + Z H 930, (2.12)
ZH“ 0; = dHS + Z H%0;; + ZH 050, (2.13)
AtH® = ZH H® =~ zk:hgk. (2.14)

Let f be a smooth function on M . The first, second covariant derivatives f;, f; ;
and Laplacian of f are defined by

df =3 il D fiibi=dfi + > fibji, Af=_ fis. (2.15)
i J J i
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For the fix index a(n + 1 < a < n + p), we introduce an operator 0% due to
Cheng-Yau [4] by

O°f =Y (nH*5;; — h;) fi ;. (2.16)
1,3
Since M™ is compact, the operator (0% is self-adjoint (see[4]) if and only if
[ @ o= [ scrg, (217)
M M

where f and g are any smooth functions on M™.
In general, for a matrix A = (a;;) we denote by N(A) the square of the norm of
A, that is,
N(A) =tr(A- A") = (a;)*.
ij
Clearly, N(A) = N(T*AT) for any orthogonal matrix 7.
We need the following Lemmas due to Chern-Do Carmo-Kobayashi [7], Cheng
[5] and the author [15].

Lemma 2.1([7]). Let A and B be symmetric (n X n)-matrices. Then
N(AB — BA) <2N(A)N(B), (2.18)
and the equality holds for nonzero matrices A and B if and only if A and B can

be transformed simultaneously by on orthogonal matriz into multiples of A and B
respectively, where

010 0 1 0 0 0
10 0 0 0 -1 0 0
i-looo 0 g_0 0 o 0
000 -~ 0 0 0 0 -~ 0

Moreover, if A1, As and As are (n x n)-symmetric matrices and if
N(AyAp — AgAa) = QN(AQ)N(AB), 1<a,8<3

then at least one of the matrices A, must be zero.

Lemma 2.2([5]). Letb; fori = 1,---,n be real numbers satisfying >, b; = 0
i=1

(2

and Y b2 = B. Then

=1

n 2 o2
3 ot - B =2 (2.19)
P n ~— n(n-—1)

Lemma 2.3 ([5], [15]). Let a; and b; for i = 1,--- ,n be real numbers sat-

isfying > a; =0 and > a? = a. Then
i=1 i=1

w2
< Zb;‘—%\/&. (2.20)

n
E azbf
i=1
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If a; =b; fori=1,---,n, then Lemma 2.3 becomes to the well-known Lemma
of M. Okumura [12].

Lemma 2.4 ([12]). Let {a;}}, be a set of real numbers satisfying Zaz =

0,5 a? = a, where a > 0. Then we have

n=2 o Z 5 < ”7—269/2 (2.21)

n(n—l vn(n—1) ’

and the equalities hold if and only if at least (n — 1) of the a; are equal.

3. PROOF OF THEOREM 1.3

Define tensors

h$; = b5 — H*8y, (3.1)

Ton = LMGHG:  0s = DG (3.2)

Then the (p x p)-matrix (oag) is symmetric and can be assumed to be diagonized
for a suitable choice of ey41,. .., €nqp. We set

Gap = Galags- (3.3)

By a direct calculation, we have

Zi}gk =0, Gop=0us—nH H’, |¢ =) 6o =S—nH>  (34)

7 ohphGhg = > hLhShG +2Y " HORGAS + HP|¢)* + nH2H. (3.5)

ij 'Yy
i,5,k,a 0,7,k 0],
Setting f = nH® in (2.16), we have
Da(nHa) :Z(nHQ(SU — h%)(’l’LHO‘)iJ (36)

i,
—Z (nH*)(nH®); Zho‘ (nH®);
We also have

—A nH)? —AZ (nH*) ZA (nH*)? (3.7)

772 [(RHY) “:Z[(nHO‘ ; —|—Z (nH*)(nHY);

OL’L

:n2\viH\2 + ) (nH*)(nH®); ;.
Therefore, from (2.5), (3.6), (3.7), we get
1 _,
> O%nH®) :iA(nH)z —n?|VtH? - Z h$s(nH®); ; (3.8)
i,
71 1 21—l 712 a a
=5n(n—1)AR+ A8 —n?[VEH[* - Z R (nH®)

,J,a
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From (2.11), we have

1 (6% (e
iAS:'Z )+ Zh AR, (3.9)
i,5,k,a 5,0
SH®)i 5+ Y Y g (hiy Rigk + b Rukjie)
1,7, a 4,7,k
+> > hihiiReajn.
a,fB 1,5,k

Putting (3.9) into (3.8), we have

L, 1
> O%nH®) =|Vh|* - n?[VH|* + 3n —1AR (3.10)

+> > (g Ruij + hiyRuje) + > > b hi Rpajn-

a i,5,k,l a,B .5,k

Thus, if M™ is compact, from (2.17) and Stokes formula, we have

0= [ {|Vh]>=n?|V*H?*}dv (3.11)
Mn
—I-/ ’ {Z Z h%(h 1R —‘rhllRl]f]k }dv+/ ZZh szBijdv'
" 2,7,k,1 a,B 1,5,k

From (2.10), we have

> (Roaje)® = > (hihS — hhS) Raaje = =2 > hishy Rpaji.

a,Bk a,p,i,5,k a,B i,k

Thus, we have

S S R Rk = —5 3 (Raags)? (312)
a,B i,4,k a,B,k
1
=5 > O hni - Zh i)
a,B,j,k 1
1 -~ I
== 2 QMG =Y ki)
a,B,4,k 1 l

1 L - L.
=3 D N(AuAs — AgA,),
a,B

where A, := (ﬁ%) = (hg; — H%0;5).
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From (2.4), (2.10), (3.2), (3.4), (3.5) and (3.12), we have

Z Z he; (hig R + i Ruji) (3.13)
a 4,7,k
=nlg> = > hEhLhGAY 1> S HPRL SRS + Y b8k Raaji
a,B i,7,k,l a,B 1,5,k «a,B,i,5,k
ol = ot 0SS WL + o0 S eI,
a,B 4,5,k a,B i,j
1 L - S
B2 4|2 2772 By2 _ * .
+nZ(H PIoP +n*H? Y J(HP)? = 53 N(Aads — Agd.)
B B a,B
=n|g|? = 25+ nH2¢|* +n Y > HPh heihs,
a,p a,B 1,5,k
1 L. S
-3 > N(AaAp— A3A,).
a,B

Let Z(BZF = 73. Then 75 < Z(EZP = Gg. Since Zﬁﬁ =0, > puf =0and
4 1,5 % 4

S (u)? = 5,. We have from Lemma 2.2 and Lemma 2.3 that

i
Y DPILETININS 35 ST 810
a,B 1,5,k B, 1,5,k

n—2 -
=L H SR 2~ e S e
—\/ﬁzéazﬂ:ufﬂ\\/‘%

> — 2 HBY2D 5
> \/7|¢| Z )%ﬁ

n—2
=———°__|H||o].
Il

From Lemma 2.1, (3.3), ( 4), we have
—Zaaﬁ ZN — AgA,) Zo ZNA Ag — AgA,) (3.15)
ZU 7220(105
a#p
72(2604 +Z&o¢
> = 2ol + (3 5

1
—(2—=2)|o|%
(2=l
Therefore, from (3.11), (3.12)-(3.15), we have the following:
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Proposition 3.1. Let M"™ be an n-dimensional compact submanifolds in a unit
sphere S"TP(1). Then there holds the following

0 z/ {|Vh]? = 02|V H|*}dv (3.16)
MTI,

n—2
Vn(n—1)

Proof of Theorem 1.3. Since R > 1 and the normalized mean curvature vector is
parallel, we easily know that

2 2 _ 9 Lyg2
+ [ 1oPtn-+nn nlHljo] - (2 Dlof}de.

|Vh|? > n?|VEH.
In fact, from (2.5) and R > 1, we have S < n?H?. Taking covariant derivative on
(2.5), we get
n*HH ) =Y hi;he.
,J,0

From Cauchy-Schwarz’s inequality, we get

n*HAVEHP =n*H?Y (Hi)? =Y (O hghe)? <8 Y (hy)?,  (3.17)

k k ij,a .3,k a

and we conclude. Denote R = R — 1, by (2.5) we have S — nH? = 2=1(5 — nR).
Thus, we obtain

2 n—2 _o— Ly4e
went? — — A=l - (2~ o
zn—&-nR—F[%—(Q—%)n_l](S—nR)

n—2

VIS + n(n — VRIS - nR).

n
From the assumption of Theorem 1.3 and the Proposition 3.1, we have

-2
! 2/ 62 {n +nH? - —=
M’!L

Vn(n —1)

n|Hlg| - (2 - }9>|¢|2}dv (3.18)

1.n-—-1

n—1 _ _ 1 _
= — —_ 2 _ — _
| S nR) R [ - 2 - ) )S — 0B
n—2 _ -
— —1 — dv > 0.
- \/[S +n(n—1)R](S—nR)}dv >0
Therefore, we have
(1) S = nR, that is, M™ is totally umbilical;
(2) or
_ 1 1.n—1 _
— (2= - 1
n+nR + [n ( p) - ](S —nR) (3.19)
n—2

. VIS + n(n — DRI(S —nR) =0.

In this case, the equalities in (3.18) (3.16), (3.15), (3.14) and Lemma 2.1 hold.
Thus, we have
-2
n+nH? — " -

Vn(n—1)

1
nlHl|¢] — (2 - ];)|¢|2 =0. (3.20)
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We see that M™ is not totally umbilical and the equalities in (3.16), (3.15), (3.14)
and Lemma 2.1 hold. Thus, we have Vh = 0,

pz‘}i = (Z 6a)27
« o
that is

Ontl = "+ = Ontp, (3.21)
N(AQAB - AﬁAa) = 2N(AQ)N(Aﬂ)7 a# B, (322)

S5 = |H]l4). (3.23)
B

We may consider the case p =1 and p > 2 separately.
Case (i). If p =1, from (3.19), we have n # 2 and

S = m{n(n — )R>+ 4(n— 1R +n}.
Thus, by the Theorem 1.1 of H. Li [10], we know that M™ is a product S (/1 — 72) x
§"H (), = /252,
Case (ii). If p > 2, from (3.21) and (3.23), we have

Vo S| = \/EWV \/Z 55 = \/pomr1, [ (HOP
B B B B

Since M™ is not totally umbilical, we have &,,+1 # 0. Thus, we have

O _H)? =p) (H)?,
5 E

and

that is,
|H" Y = ... = |H"P) (3.24)

From Lemma 2.1, we know that at most two of A, = (h%),a =n+1,...,n+p, are

N - i
different from zero. If all of A, = (h;) are zero, which is contradiction with M™" is
not totally umbilical. If only one of them, say Ay, is different from zero, which is
contradiction with (3.21). Therefore, we may assume that

Api1 =MA, Apyo=pB, A\p#0,

A, =0, a>n+3,

where A and B are defined in Lemma 2.1.
From (3.23), we have

(VEAH™ | + V2ul H™2))? = H|g] = SO (H®)(2)% + 2112).

[

Thus, from (3.24), we have
(204 ) = p(H)2O 442,
that is,
(H"™)?[(p = DA* =22+ (p — D’ = 0.
Since A\, u # 0, we iilfer that H" ™! = 0. Thus, from (3.24), we have H* = 0,n+1 <

a < n+p, that is, H = 0, M™ is a minimal submanifold in §"*?(1) and from (3.20),

we have S = 3=17 on M™. From the Theorem of Chern-Do Carmo-Kobayashi [7],
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we know that n = 2, p = 2 and M" is Veronese surface in S*. This completes the
proof of Theorem 1.3. O

4. PROOF OF THEOREM 1.4 AND 1.5

The important maximum principle of Omori [13], Yau [16] and Cheng [6] are
useful to us.

Proposition 4.1 ([13], [16]). Let M™ be a complete Riemannian manifold whose
Ricci curvature is bounded from below. If f is a C*-function bounded from above
on M™, then for any € > 0, there is a point x € M™ such that

sup f —e < f(z), |[Vfl(z) <e, Af(z)<e. (4.1)

Proposition 4.2 ([6]). Let M™ be a complete Riemannian manifold whose Ricci
curvature is bounded from below. Let f be a C?-function which bounded from above.
Then there exists a sequence {x} in M™ such that

lim f(zg)=supf, lim |Vf(zr)=0, lim supLf(zx) <0, (4.2)
m—oo m—00 m—o0

where Lf =% b;f;; is a differential operator, and b; > 0 is bounded.
J
We need the following Lemma.

Lemma 4.3 ([2], [9]). Let A = (ai;),t,j = 1,---,n be a symmetric (n x n)
matriz, n > 2. Assume that Ay = trA, Ay = (a;j)*. Then

,J

Z(am)2 — Aiann, §%{n(n —1)A, (4.3)

%

+ (n = 2)vn — 1|A1|\/nAy — (A1)2 — 2(n — 1)(A;)?},
the equality holds if and only if n =2 or n > 2, (a;;) is of the following form
a 0

0 A —(n—1a
where (na — A;)A; > 0.

Proof of Theorem 1.4. We assume that sup |¢|? < Bh pn, then0 < |4| < \/Bu pn,
we have Py, »(]¢|) <0, that is

n—2
Vn(n —1)

Since the mean curvature vector is parallel, we know that the mean curvature is
constant. From (3.9), (3.12)-(3.15), we have

1
n+nH? — n|H|\¢|—(2—§)I¢I220~

n|Hl¢] — (2= )6} > 0. (4.4)

1 n—2
SAIBF = [VeI* +[¢*{n +nH? — —

Vn(n—1)

1
p
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For any point and any unit vector v € T,M"™, we choose a local orthonormal
frame field ey, ..., e, such that e, = v, we have from Gauss equation (2.4) that the
Riccei curvature Ric(v,v) of M™ with respect to v is expressed as

Ric(v,v) = (n—1) 4+ Z[(trHa)hzn - Z(hf‘n)Q], (4.5)

where H,, is the (n x n)-matrix (hg;). Assume that T, = trHq, So = >_(h})?, then
]

we have n?H? =5 T2,5 =5 S,. By Lemma 4.3, we have

Ric(v,v) >(n —1) — Z %{n(n —1)S, (4.6)

«

+ (n —2)Vn — 1|Ta|\/nSe — T2 — 2(n —

:(nq)f”* - FZU /54 f—+”7*12T2

1 , N
(ne2nH? - 5 - nl\/zw L)
A P S et S TP
n(n—1)
n —2

b ng? nl Hll| - (2 - %)W} >0,

_n-s
vn(n—1)
Therefore, we know that the Ricci curvature Ric(v,v) is bounded from below.

Now we consider the following smooth function on M™ defined by f = —(|¢|* +
a)~2, where a(> 0) is a real number. Obviously, f is bounded, so we can apply
Proposition 4.1 to f. For any € > 0, there is a point x € M™, such that at which f
satisfies the (4.1). By a simple and direct calculation, we have

FAS = 3ldf? — 5 7MLl (47)

From (4.1) and (4.7), we have

%AIW(&E) = [ @)Bldf*(2) — f@)Af(@)] < fTH(@)[B3e* —ef(2)].  (48)

Thus, for any convergent sequence {e,,} with €, > 0 and lim,, o, €, = 0, there

exists a point sequence {z,,} such that the sequence {f(z,,)} converges to fy (we

can take a subsequence if necessary) and satisfies (4.1), hence, lim;,;, o0 em[3em —

f(zm)] = 0. From the definition of supremum and (4.1), we have lim,, oo f(2n) =

fo = sup f and hence the definition of f gives rise to lim,, o |¢|?(2,,) = sup |¢|?.
From (4.4) and (4.8), we have

M) B — e ()] > 5 A6 () (149)
-2

v/n(n—1)

> 19[2(2) n + nH? 0| ||| (20n) — (2 — }3>|¢|2<xm>} > 0.
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Putting m — oo in (4.9), we have

1
sup |¢[*{n + nH? — n|H|SHP\¢|—(2—5)SUP|¢|Z}=0~

n—2
vn(n—1)
Thus, we have

(1) sup |¢|? = 0 and M™ is totally umbilical; or
(2)

n —

2
vn(n—1)
From (4.4), we know that |¢|? is a subharmonic function on M™. Since the supre-
mum sup |¢|? is attained at some point of M™, by the maximum principle, we have
|¢|? = const. = By p . Thus, (4.10) becomes

n—2 1

and (4.4) becomes equality. We may consider the case p = 1 and p > 2 separately.

1
n+nH? — n|H|sup\¢|—(2—§)sup|¢|2 = 0. (4.10)

Case (i). If p = 1, from equality in (4.4), we obtain that V¢ = Vh = 0, that
is, the second fundamental form is parallel. If H = 0, then by a classical local
rigidity result of Lawson (see Proposition 1 in Lawson [8]), we know that M™ is an
open piece of a minimal Clifford torus of the form S*(y/k/n) x S"=*(\/(n — k)/n)
with 1 <k <n-—1. If H # 0, then from the equality in (4.4), we also obtain
the equality in Lemma 2.4 of Okumura, which implies that M™ has exactly two
constant principal curvatures, with multiplicities n—1 and 1. Then, by the classical
result on isoparametric hypersurfaces of E. Cartan [3] we conclude that if n > 3,
M™ must be an open piece of H(r)-torus S'(v/1 —1r2) x S"~1(r), with 0 < r < 1,
r? < (n—1)/n; if n =2, M™ is an open piece of H(r)-torus S*(r) x S1(v/1—r2)
with 0 <r <1, r? # 1.

Case (ii). If p > 2, since (4.11) holds, M™ is not totally umbilical and the
equalities in (3.16), (3.15), (3.14) and Lemma 2.1 hold. Thus, we have Vh = 0,
and (3.21), (3.22), (3.23) hold. By the same assertion in the proof of Theorem 1.3,
we know that M™ is a minimal submanifold in S"*?(1) and S = 3=17p on M"™.
From the Theorem of Chern Do Carmo-Kobayashi [7], we know that n =2, p = 2
and (4.11) reduces to S = 37 M™ is an open piece of Veronese surface in 54 This
completes the proof of Theorem 1.4. O

Proof of Theorem 1.5. Let
Of =Y 0% =Y O _(nHi; — hy)) fi ;-
«@ 1,9 «@

We may prove that the operator [J is elliptic. In fact, for a fixed a,n+1 < a < n+p,

we can take a local orthonormal frame field {e, .. en} such that hf; = A{d;;, then

Of = > (H™ = 7)) fis (4.12)

Since R > 1, from (2.5), we have S < n?H?. For a fixed a,n+1 < a <n +p if
there is a A% such that nH® — A¢ < 0, then n?H? = Z(nH“) <>M)r< S
@

«
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this is a contradiction. Thus, we have nH® — A% > 0, then > (nH* — A¢) > 0 and
«

the operator U is elliptic.
From (1.5), we have

_ 1 1
n+nR+[f—(2—7)n
n p
n—2

— 1](supS —nR) (4.13)

\/[supS +n(n —1)R](supS — nR) >

Since 1 — (2 - 1)n=1 < =2 < (4.13) implies that sup S < +oc and

p’/ n
1 1.n—-1
n+nRk+ [*—(2— };)n

n—2

- (S —nR) (4.14)

VIS +n(n— RIS —nR) > 0.

Thus, from (2.5) and (4.6), we get the Ricci curvature Ric(v,v) is bounded from
below.
From (3.10), (3.12)-(3.15), (4.14) and R > 1 , we have

O(nH®) ZD“ (nH®) = |Vh|? — n?|V*+H|? (4.15)
2 2 n— 2 S NP
[0 {0+ ni W(n—_)nmnw 2-lé
ST VR S - Lyn- 1](S—nR)

p’ n
VI8 + n(n — DRI(S —nR)} > 0.
Putting f = nH® in (4.12), by H? = Y (H%)?, we have [nH%| < nH. From

n—2

(2.5) and sup S < 400, we have f = nH® is bounded from above. Since we know
that nH® — A¢ > 0 and Z(nHOY —A$) > 0, we have

O<ZnH“ A <ZnHO‘ AN =n n71ZHa

Q’L

is bounded. We may use Proposition 4.2 to f = nH®. Thus, we have
M (0% — « : (0% <
mgrﬂw(nH )N (@,) = sup(nHY), mll)IEOO sup O(nH*)(zm,) <0, (4.16)

where {x,,} is a sequence on M™. From (2.5) and (4.16), we have lim,, o0 S(@,) =
sup S.
From (4.13), (4.15) and (4.16), we have

0> lm_supD(nH)(@n)

1.n-—

>" = Lsup S —nR){n +nR+ [ — (2~ ) Lsup S — i)

n—2

\/[supS+n(n —1)R](supS —nR)} > 0.

Thus, we have -
(i) sup.S —nR = 0, that is, sup S = nR. From (2.5), we have sup(S —nH?) = 0,
thus, S = nH? and M" is totally umbilical; or
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(i)
T T LT

n p.n

n- 2\/[Sup5+n(n— )R](sup S —nR) = 0.

](sup S — nR) (4.17)

(4.17) implies that (4.14) and (4.15) hold. From the assumption, we know that
sup S is attained at some point of M™. Thus, from (2.5), we have sup(nH)? is
attained at this point of M™. By sup(nH)? = Y sup(nH%)?, we have sup(nH®)

«
is attained at this point of M™. Since the operator [J is elliptic, we have nH® is
constant. Thus, the equalities in (4.15) hold and |Vh|? = n?|VLH|? . From (2.5)
and (3.17), we have

0<n?(n—1)(R—1)|V*H|? < S(|Vh|]> —n?|VEH]?).

Since we assume that R > 1, we have VLH =0. Therefore, we know that M™ is a
complete submanifold in S™*P(1) with parallel mean curvature vector.

From (4.17), we have
n—

2
vn(n—1)
Thus, we have sup|¢|*> = Bpp,,. Since n?H? > S, we have H > 0. By the
result of Theorem 1.4, we have (i) p = 1 and M™ is an open piece of H (r)-torus
S 1(r) x SY(V/1—7r2) with 0 < 7 < 1; or (i) n = 2, p = 2 and M™ is an open
piece of Veronese surface in S*. This completes the proof of the Theorem 1.5. O

1
n+nH? — n|H|sup|é| — (2 — 2;)sup |p|*> = 0. (4.18)
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