CURVATURE AND RIGIDITY THEOREMS OF SUBMANIFOLDS

 IN A UNIT SPHERE(COMMUNICATED BY UDAY CHAND DE)

SHICHANG SHU, YANYAN LI

Abstract

In this paper, we investigate n-dimensional submanifolds with higher codimension in a unit sphere $S^{n+p}(1)$. We obtain some rigidity results of submanifolds in $S^{n+p}(1)$ with parallel mean curvature vector or with constant scalar curvature, which generalize some related rigidity results of hypersurfaces.

1. Introduction

Let M^{n} be an n-dimensional hypersurface in a unit sphere $S^{n+1}(1)$. It is well known that there are many rigidity results for hypersurfaces in $S^{n+1}(1)$ with constant mean curvature or constant scalar curvature (see [1], [4], [10]), but few of submanifolds with higher codimension in $S^{n+p}(1)$, especially, if the submanifolds are complete.

It is well known that H. Alencar, M. do Carmo [1] and H. Li [10] obtained some important results of compact hypersurface with constant mean curvature or constant scalar curvature in a unit sphere $S^{n+1}(1)$, respectively.

Theorem 1.1([1]). Let M^{n} be an n-dimensional compact hypersurface in a unit sphere $S^{n+1}(1)$ with constant mean curvature. Assume that $|\phi|^{2} \leq B_{H, n}$, then
(1) $|\phi|^{2}=0, M^{n}$ is totally umbilical; or
(2) $|\phi|^{2}=B_{H, n}$ if and only if
(i) $H=0, M^{n}$ is a Clifford torus $S^{k}(\sqrt{k / n}) \times S^{n-k}(\sqrt{(n-k) / n)}$, with $1 \leq k \leq$ $n-1$;
(ii) $H \neq 0, n \geq 3$, and M^{n} is an $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $r^{2}<(n-1) / n$;
(iii) $H \neq 0, n=2$, and M^{n} is an $H(r)$-torus $S^{1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $0<r<1$, $r^{2} \neq \frac{1}{2}$.

Theorem 1.2([10]). Let M^{n} be an n-dimensional ($n \geq 3$) compact hypersurface in

[^0]a unit sphere $S^{n+1}(1)$ with constant scalar curvature $n(n-1) R$ and $\bar{R}=R-1 \geq 0$. If
\[

$$
\begin{equation*}
n \bar{R} \leq S \leq \frac{n}{(n-2)(n \bar{R}+2)}\left\{n(n-1) \bar{R}^{2}+4(n-1) \bar{R}+n\right\} \tag{1.1}
\end{equation*}
$$

\]

then either $S=n \bar{R}$ and M^{n} is totally umbilical, or $S=\frac{n}{(n-2)(n \bar{R}+2)}\left\{n(n-1) \bar{R}^{2}+\right.$ $4(n-1) \bar{R}+n\}$ and M^{n} is a product $S^{1}\left(\sqrt{1-r^{2}}\right) \times S^{n-1}(r), r=\sqrt{\frac{n-2}{n R}}$.

Remark 1.1. We should notice that in Theorem 1.1, $|\phi|^{2}=S-n H^{2}$ is the non-negative function on M^{n}, S and H the squared norm of the second fundamental form and mean curvature of $M^{n}, B_{H, n}$ the square of the positive real root of

$$
P_{H, n}(x)=x^{2}+\frac{n-2}{\sqrt{n(n-1)}} n H x-n\left(1+H^{2}\right)=0 .
$$

We should notice that W. Santos [14], Cheng [5] obtained some important results of compact submanifolds with higher codimension and parallel mean curvature vector or constant scalar curvature in $S^{n+p}(1)$, but to our knowledge, the results of complete submanifolds in $S^{n+p}(1)$ are very few.

In this paper, we study n-dimensional compact or complete submanifolds with higher codimension and parallel mean curvature vector or constant scalar curvature in $S^{n+p}(1)$. In order to present our result, we define a function $Q_{\bar{R}, p, n}(x)$ by

$$
\begin{align*}
Q_{\bar{R}, p, n}(x)= & n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](x-n \bar{R}) \tag{1.2}\\
& -\frac{n-2}{n} \sqrt{[x+n(n-1) \bar{R}](x-n \bar{R})},
\end{align*}
$$

then we may obtain the following result:
Theorem 1.3. Let M^{n} be an n-dimensional compact submanifold in a unit sphere $S^{n+p}(1)$ with constant scalar curvature $n(n-1) R$ and $\bar{R}=R-1 \geq 0$. If the normalized mean curvature vector is parallel and the squared norm S of the second fundamental form of M^{n} satisfies

$$
\begin{equation*}
Q_{\bar{R}, p, n}(S) \geq 0 \tag{1.3}
\end{equation*}
$$

then
(1) $S=n \bar{R}$ and M^{n} is totally umbilical; or
(2) $Q_{\bar{R}, p, n}(S)=0$. In the latter case, either
(a) $p=1$ and M^{n} is a product $S^{1}\left(\sqrt{1-r^{2}}\right) \times S^{n-1}(r), r=\sqrt{\frac{n-2}{n R}}$; or
(b) $n=2, p=2$ and M^{n} is Veronese surface in S^{4}.

Remark 1.2. We note that if $p=1$, Theorem 1.3 reduces to Theorem 1.2. We should notice that in [11], J.T. Li obtained some results of compact submanifold in $S^{n+p}(1)$ with constant scalar curvature and parallel normalized mean curvature vector, but his results are very different from us.

We define a polynomial $P_{H, p, n}(x)$ by

$$
\begin{equation*}
P_{H, p, n}(x)=\left(2-\frac{1}{p}\right) x^{2}+\frac{n-2}{\sqrt{n(n-1)}} n H x-n\left(1+H^{2}\right) . \tag{1.4}
\end{equation*}
$$

We easily know that $P_{H, p, n}(x)=0$ has a positive real root, and denoted by $B_{H, p, n}$ the square of the positive real root.

If M^{n} is an n-dimensional complete submanifold with higher codimension in a unit sphere $S^{n+p}(1)$, we obtain the following results:

Theorem 1.4. Let M^{n} be an n-dimensional complete submanifold in a unit sphere $S^{n+p}(1)$ with parallel mean curvature vector. Assume that $\sup |\phi|^{2} \leq B_{H, p, n}$, then
(1) $\sup |\phi|^{2}=0, M^{n}$ is totally umbilical; or
(2) $\sup |\phi|^{2}=B_{H, p, n}$. If the supremum $\sup |\phi|^{2}$ is attained on M^{n}, then either
(a) $p=1$ and
(i) $H=0, M^{n}$ is an open piece of Clifford torus $S^{k}(\sqrt{k / n}) \times S^{n-k}(\sqrt{(n-k) / n)}$, with $1 \leq k \leq n-1$;
(ii) $H \neq 0, n \geq 3$, and M^{n} is an open piece of $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $r^{2}<(n-1) / n$;
(iii) $H \neq 0, n=2$, and M^{n} is an open piece of $H(r)$-torus $S^{1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $0<r<1, r^{2} \neq \frac{1}{2}$; or
(b) $n=2, p=2$ and M^{n} is an open piece of Veronese surface in S^{4}.

Theorem 1.5. Let M^{n} be an n-dimensional complete submanifold in a unit sphere $S^{n+p}(1)$ with constant scalar curvature $n(n-1) R$ and $\bar{R}=R-1>0$. If the normalized mean curvature vector is parallel and the squared norm S of the second fundamental form of M^{n} satisfies

$$
\begin{equation*}
Q_{\bar{R}, p, n}(\sup S) \geq 0 \tag{1.5}
\end{equation*}
$$

then
(1) $\sup S=n \bar{R}$ and M^{n} is totally umbilical; or
(2) $Q_{\bar{R}, p, n}(\sup S)=0$. In the latter case, if the supremum $\sup S$ is attained on M^{n}, then either
(i) $p=1$ and M^{n} is an open piece of $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $0<r<1$; or
(ii) $n=2, p=2$ and M^{n} is an open piece of Veronese surface in S^{4}, where $Q_{\bar{R}, p, n}(x)$ is defined by (1.2).

Remark 1.3. We note that Theorem 1.4 and Theorem 1.5 generalize the results of H. Alencar, M.do Carmo [1] and H. Li [10](Theorem 1.1 and Theorem 1.2) to complete submanifold with higher codimension.

2. Preliminaries

Let M^{n} be an n-dimensional submanifold in an $(n+p)$-dimensional unit sphere $S^{n+p}(1)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal basis of M^{n} with respect to the induced metric, $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ are their dual form. Let e_{n+1}, \ldots, e_{n+p} be the local unit orthonormal normal vector field. We make the following convention on the range of indices:

$$
1 \leq i, j, k, \ldots \leq n ; \quad n+1 \leq \alpha, \beta, \gamma, \ldots \leq n+p
$$

Then the structure equations are

$$
\begin{equation*}
d \omega_{A}=-\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
d \omega_{A B}=-\sum_{C} \omega_{A C} \wedge \omega_{C B}+\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D} \tag{2.2}\\
K_{A B C D}=\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C} \tag{2.3}
\end{gather*}
$$

The Gauss equations are

$$
\begin{align*}
R_{i j k l}= & \left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\sum_{\alpha}\left(h_{i k}^{\alpha} h_{j l}^{\alpha}-h_{i l}^{\alpha} h_{j k}^{\alpha}\right), \tag{2.4}\\
& n(n-1)(R-1)=n^{2} H^{2}-S, \tag{2.5}
\end{align*}
$$

where $S=\sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}, \quad \vec{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}, \quad H^{\alpha}=\frac{1}{n} \sum_{k} h_{k k}^{\alpha}, \quad H=|\vec{H}|, R$ is the normalized scalar curvature of M^{n}.

The first covariant derivative $\left\{h_{i j k}^{\alpha}\right\}$ and the second covariant derivative $\left\{h_{i j k l}^{\alpha}\right\}$ of $h_{i j}^{\alpha}$ are defined by

$$
\begin{gather*}
\sum_{k} h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\sum_{k} h_{k j}^{\alpha} \omega_{k i}-\sum_{k} h_{i k}^{\alpha} \omega_{k j}-\sum_{\beta} h_{i j}^{\beta} \omega_{\beta \alpha}, \tag{2.6}\\
\sum_{l} h_{i j k l}^{\alpha} \omega_{l}=d h_{i j k}^{\alpha}-\sum_{l} h_{l j k}^{\alpha} \omega_{l i}-\sum_{l} h_{i l k}^{\alpha} \omega_{l j}-\sum_{l} h_{i j l}^{\alpha} \omega_{l k}-\sum_{\beta} h_{i j k}^{\beta} \omega_{\beta \alpha} . \tag{2.7}
\end{gather*}
$$

Then, we have the Codazzi equations and the Ricci identities

$$
\begin{gather*}
h_{i j k}^{\alpha}=h_{i k j}^{\alpha} \tag{2.8}\\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=\sum_{m} h_{m j}^{\alpha} R_{m i k l}+\sum_{m} h_{i m}^{\alpha} R_{m j k l}+\sum_{\beta} h_{i j}^{\beta} R_{\beta \alpha k l} . \tag{2.9}
\end{gather*}
$$

The Ricci equations are

$$
\begin{equation*}
R_{\alpha \beta i j}=\sum_{k}\left(h_{i k}^{\alpha} h_{k j}^{\beta}-h_{i k}^{\beta} h_{k j}^{\alpha}\right) . \tag{2.10}
\end{equation*}
$$

From (2.8) and (2.9), we have

$$
\begin{equation*}
\Delta h_{i j}^{\alpha}=\sum_{k} h_{k k i j}^{\alpha}+\sum_{k, m} h_{k m}^{\alpha} R_{m i j k}+\sum_{k, m} h_{m i}^{\alpha} R_{m k j k}+\sum_{k, \beta} h_{k i}^{\beta} R_{\beta \alpha j k} . \tag{2.11}
\end{equation*}
$$

Denote by $|\phi|^{2}=S-n H^{2}$ the non-negative function $|\phi|$ on M^{n}. We know that $|\phi|^{2}=0$ exactly at the umbilical points of M^{n}. Define the first, second covariant derivatives and Laplacian of the mean curvature vector field $\vec{H}=\sum_{\alpha} H^{\alpha} e_{\alpha}$ in the normal bundle $N\left(M^{n}\right)$ as follows

$$
\begin{gather*}
\sum_{i} H_{, i}^{\alpha} \theta_{i}=d H^{\alpha}+\sum_{\beta} H^{\beta} \theta_{\beta \alpha}, \tag{2.12}\\
\sum_{j} H_{, i j}^{\alpha} \theta_{j}=d H_{, i}^{\alpha}+\sum_{j} H_{, j}^{\alpha} \theta_{j i}+\sum_{\beta} H_{, i}^{\beta} \theta_{\beta \alpha}, \tag{2.13}\\
\Delta^{\perp} H^{\alpha}=\sum_{i} H_{, i i}^{\alpha}, \quad H^{\alpha}=\frac{1}{n} \sum_{k} h_{k k}^{\alpha} . \tag{2.14}
\end{gather*}
$$

Let f be a smooth function on M^{n}. The first, second covariant derivatives $f_{i}, f_{i, j}$ and Laplacian of f are defined by

$$
\begin{equation*}
d f=\sum_{i} f_{i} \theta_{i}, \quad \sum_{j} f_{i, j} \theta_{j}=d f_{i}+\sum_{j} f_{j} \theta_{j i}, \quad \Delta f=\sum_{i} f_{i, i} \tag{2.15}
\end{equation*}
$$

For the fix index $\alpha(n+1 \leq \alpha \leq n+p)$, we introduce an operator \square^{α} due to Cheng-Yau [4] by

$$
\begin{equation*}
\square^{\alpha} f=\sum_{i, j}\left(n H^{\alpha} \delta_{i j}-h_{i j}^{\alpha}\right) f_{i, j} \tag{2.16}
\end{equation*}
$$

Since M^{n} is compact, the operator \square^{α} is self-adjoint (see[4]) if and only if

$$
\begin{equation*}
\int_{M}\left(\square^{\alpha} f\right) g d v=\int_{M} f\left(\square^{\alpha} g\right) d v \tag{2.17}
\end{equation*}
$$

where f and g are any smooth functions on M^{n}.
In general, for a matrix $A=\left(a_{i j}\right)$ we denote by $N(A)$ the square of the norm of A, that is,

$$
N(A)=\operatorname{tr}\left(A \cdot A^{t}\right)=\sum_{i, j}\left(a_{i j}\right)^{2} .
$$

Clearly, $N(A)=N\left(T^{t} A T\right)$ for any orthogonal matrix T.
We need the following Lemmas due to Chern-Do Carmo-Kobayashi [7], Cheng [5] and the author [15].

Lemma 2.1([7]). Let A and B be symmetric $(n \times n)$-matrices. Then

$$
\begin{equation*}
N(A B-B A) \leq 2 N(A) N(B) \tag{2.18}
\end{equation*}
$$

and the equality holds for nonzero matrices A and B if and only if A and B can be transformed simultaneously by on orthogonal matrix into multiples of \tilde{A} and \tilde{B} respectively, where

$$
\tilde{A}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right) \quad \tilde{B}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
$$

Moreover, if A_{1}, A_{2} and A_{3} are $(n \times n)$-symmetric matrices and if

$$
N\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)=2 N\left(A_{\alpha}\right) N\left(A_{\beta}\right), 1 \leq \alpha, \beta \leq 3
$$

then at least one of the matrices A_{α} must be zero.
Lemma 2.2([5]). Let b_{i} for $i=1, \cdots, n$ be real numbers satisfying $\sum_{i=1}^{n} b_{i}=0$ and $\sum_{i=1}^{n} b_{i}^{2}=B$. Then

$$
\begin{equation*}
\sum_{i=1}^{n} b_{i}^{4}-\frac{B^{2}}{n} \leq \frac{(n-2)^{2}}{n(n-1)} B^{2} \tag{2.19}
\end{equation*}
$$

Lemma 2.3 ([5], [15]). Let a_{i} and b_{i} for $i=1, \cdots, n$ be real numbers satisfying $\sum_{i=1}^{n} a_{i}=0$ and $\sum_{i=1}^{n} a_{i}^{2}=a$. Then

$$
\begin{equation*}
\left|\sum_{i=1}^{n} a_{i} b_{i}^{2}\right| \leq \sqrt{\sum_{i=1}^{n} b_{i}^{4}-\frac{\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{2}}{n}} \sqrt{a} \tag{2.20}
\end{equation*}
$$

If $a_{i}=b_{i}$ for $i=1, \cdots, n$, then Lemma 2.3 becomes to the well-known Lemma of M. Okumura [12].

Lemma 2.4 ([12]). Let $\left\{a_{i}\right\}_{i=1}^{n}$ be a set of real numbers satisfying $\sum_{i} a_{i}=$ $0, \sum_{i} a_{i}^{2}=a$, where $a \geq 0$. Then we have

$$
\begin{equation*}
-\frac{n-2}{\sqrt{n(n-1)}} a^{3 / 2} \leq \sum_{i} a_{i}^{3} \leq \frac{n-2}{\sqrt{n(n-1)}} a^{3 / 2} \tag{2.21}
\end{equation*}
$$

and the equalities hold if and only if at least $(n-1)$ of the a_{i} are equal.

3. Proof of Theorem 1.3

Define tensors

$$
\begin{gather*}
\tilde{h}_{i j}^{\alpha}=h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}, \tag{3.1}\\
\tilde{\sigma}_{\alpha \beta}=\sum_{i, j} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i j}^{\beta}, \quad \sigma_{\alpha \beta}=\sum_{i, j} h_{i j}^{\alpha} h_{i j}^{\beta} . \tag{3.2}
\end{gather*}
$$

Then the $(p \times p)$-matrix $\left(\tilde{\sigma}_{\alpha \beta}\right)$ is symmetric and can be assumed to be diagonized for a suitable choice of e_{n+1}, \ldots, e_{n+p}. We set

$$
\begin{equation*}
\tilde{\sigma}_{\alpha \beta}=\tilde{\sigma}_{\alpha} \delta_{\alpha \beta} \tag{3.3}
\end{equation*}
$$

By a direct calculation, we have

$$
\begin{gather*}
\sum_{k} \tilde{h}_{k k}^{\alpha}=0, \quad \tilde{\sigma}_{\alpha \beta}=\sigma_{\alpha \beta}-n H^{\alpha} H^{\beta}, \quad|\phi|^{2}=\sum_{\alpha} \tilde{\sigma}_{\alpha}=S-n H^{2}, \tag{3.4}\\
\sum_{i, j, k, \alpha} h_{k j}^{\beta} h_{i j}^{\alpha} h_{i k}^{\alpha}=\sum_{i, j, k, \alpha} \tilde{h}_{k j}^{\beta} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i k}^{\alpha}+2 \sum_{i, j, \alpha} H^{\alpha} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i j}^{\beta}+H^{\beta}|\phi|^{2}+n H^{2} H^{\beta} . \tag{3.5}
\end{gather*}
$$

Setting $f=n H^{\alpha}$ in (2.16), we have

$$
\begin{align*}
\square^{\alpha}\left(n H^{\alpha}\right) & =\sum_{i, j}\left(n H^{\alpha} \delta_{i j}-h_{i j}^{\alpha}\right)\left(n H^{\alpha}\right)_{i, j} \tag{3.6}\\
& =\sum_{i}\left(n H^{\alpha}\right)\left(n H^{\alpha}\right)_{i, i}-\sum_{i, j} h_{i j}^{\alpha}\left(n H^{\alpha}\right)_{i, j} .
\end{align*}
$$

We also have

$$
\begin{align*}
\frac{1}{2} \Delta(n H)^{2} & =\frac{1}{2} \Delta \sum_{\alpha}\left(n H^{\alpha}\right)^{2}=\frac{1}{2} \sum_{\alpha} \Delta\left(n H^{\alpha}\right)^{2} \tag{3.7}\\
& =\frac{1}{2} \sum_{\alpha, i}\left[\left(n H^{\alpha}\right)^{2}\right]_{i, i}=\sum_{\alpha, i}\left[\left(n H^{\alpha}\right)_{, i}\right]^{2}+\sum_{\alpha, i}\left(n H^{\alpha}\right)\left(n H^{\alpha}\right)_{i, i} \\
& =n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}+\sum_{\alpha, i}\left(n H^{\alpha}\right)\left(n H^{\alpha}\right)_{i, i} .
\end{align*}
$$

Therefore, from (2.5), (3.6), (3.7), we get

$$
\begin{align*}
\sum_{\alpha} \square^{\alpha}\left(n H^{\alpha}\right) & =\frac{1}{2} \Delta(n H)^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}-\sum_{i, j, \alpha} h_{i j}^{\alpha}\left(n H^{\alpha}\right)_{i, j} \tag{3.8}\\
& =\frac{1}{2} n(n-1) \Delta R+\frac{1}{2} \Delta S-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}-\sum_{i, j, \alpha} h_{i j}^{\alpha}\left(n H^{\alpha}\right)_{i, j}
\end{align*}
$$

From (2.11), we have

$$
\begin{align*}
\frac{1}{2} \Delta S= & \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{i, j, \alpha} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \tag{3.9}\\
= & |\nabla h|^{2}+\sum_{i, j, \alpha} h_{i j}^{\alpha}\left(n H^{\alpha}\right)_{i, j}+\sum_{\alpha} \sum_{i, j, k, l} h_{i j}^{\alpha}\left(h_{k l}^{\alpha} R_{l i j k}+h_{l i}^{\alpha} R_{l k j k}\right) \\
& +\sum_{\alpha, \beta} \sum_{i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k} .
\end{align*}
$$

Putting (3.9) into (3.8), we have

$$
\begin{align*}
\sum_{\alpha} \square^{\alpha}\left(n H^{\alpha}\right)= & |\nabla h|^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}+\frac{1}{2} n(n-1) \Delta R \tag{3.10}\\
& +\sum_{\alpha} \sum_{i, j, k, l} h_{i j}^{\alpha}\left(h_{k l}^{\alpha} R_{l i j k}+h_{l i}^{\alpha} R_{l k j k}\right)+\sum_{\alpha, \beta} \sum_{i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k} .
\end{align*}
$$

Thus, if M^{n} is compact, from (2.17) and Stokes formula, we have

$$
\begin{align*}
0= & \int_{M^{n}}\left\{|\nabla h|^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}\right\} d v \tag{3.11}\\
& +\int_{M^{n}}\left\{\sum_{\alpha} \sum_{i, j, k, l} h_{i j}^{\alpha}\left(h_{k l}^{\alpha} R_{l i j k}+h_{l i}^{\alpha} R_{l k j k}\right)\right\} d v+\int_{M^{n}} \sum_{\alpha, \beta} \sum_{i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k} d v .
\end{align*}
$$

From (2.10), we have

$$
\sum_{\alpha, \beta, k}\left(R_{\beta \alpha j k}\right)^{2}=\sum_{\alpha, \beta, i, j, k}\left(h_{j i}^{\beta} h_{i k}^{\alpha}-h_{k i}^{\beta} h_{i j}^{\alpha}\right) R_{\beta \alpha j k}=-2 \sum_{\alpha, \beta} \sum_{i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}
$$

Thus, we have

$$
\begin{align*}
\sum_{\alpha, \beta} \sum_{i, j, k} h_{i j}^{\alpha} h_{k i}^{\beta} R_{\beta \alpha j k}= & -\frac{1}{2} \sum_{\alpha, \beta, k}\left(R_{\beta \alpha j k}\right)^{2} \tag{3.12}\\
& =-\frac{1}{2} \sum_{\alpha, \beta, j, k}\left(\sum_{l} h_{j l}^{\beta} h_{l k}^{\alpha}-\sum_{l} h_{j l}^{\alpha} h_{l k}^{\beta}\right)^{2} \\
& =-\frac{1}{2} \sum_{\alpha, \beta, j, k}\left(\sum_{l} \tilde{h}_{j l}^{\beta} \tilde{h}_{l k}^{\alpha}-\sum_{l} \tilde{h}_{j l}^{\alpha} \tilde{h}_{l k}^{\beta}\right)^{2} \\
& =-\frac{1}{2} \sum_{\alpha, \beta} N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right)
\end{align*}
$$

where $\tilde{A}_{\alpha}:=\left(\tilde{h}_{i j}^{\alpha}\right)=\left(h_{i j}^{\alpha}-H^{\alpha} \delta_{i j}\right)$.

From (2.4), (2.10), (3.2), (3.4), (3.5) and (3.12), we have

$$
\begin{align*}
& \sum_{\alpha} \sum_{i, j, k, l} h_{i j}^{\alpha}\left(h_{k l}^{\alpha} R_{l i j k}+h_{l i}^{\alpha} R_{l k j k}\right) \tag{3.13}\\
= & n|\phi|^{2}-\sum_{\alpha, \beta} \sum_{i, j, k, l} h_{i j}^{\alpha} h_{i j}^{\beta} h_{l k}^{\alpha} h_{l k}^{\beta}+n \sum_{\alpha, \beta} \sum_{i, j, k} H^{\beta} h_{k j}^{\beta} h_{i j}^{\alpha} h_{i k}^{\alpha}+\sum_{\alpha, \beta, i, j, k} h_{j i}^{\alpha} h_{i k}^{\beta} R_{\beta \alpha j k} \\
= & n|\phi|^{2}-\sum_{\alpha, \beta} \sigma_{\alpha \beta}^{2}+n \sum_{\alpha, \beta} \sum_{i, j, k} H^{\beta} \tilde{h}_{k j}^{\beta} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i k}^{\alpha}+2 n \sum_{\alpha, \beta} \sum_{i, j} H^{\alpha} H^{\beta} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i j}^{\beta} \\
& +n \sum_{\beta}\left(H^{\beta}\right)^{2}|\phi|^{2}+n^{2} H^{2} \sum_{\beta}\left(H^{\beta}\right)^{2}-\frac{1}{2} \sum_{\alpha, \beta} N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right) \\
= & n|\phi|^{2}-\sum_{\alpha, \beta} \tilde{\sigma}_{\alpha \beta}^{2}+n H^{2}|\phi|^{2}+n \sum_{\alpha, \beta} \sum_{i, j, k} H^{\beta} \tilde{h}_{k j}^{\beta} \tilde{h}_{i j}^{\alpha} \tilde{h}_{i k}^{\alpha} \\
& -\frac{1}{2} \sum_{\alpha, \beta} N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right) .
\end{align*}
$$

Let $\sum_{i}\left(\tilde{h}_{i i}^{\beta}\right)^{2}=\tau_{\beta}$. Then $\tau_{\beta} \leq \sum_{i, j}\left(\tilde{h}_{i j}^{\beta}\right)^{2}=\tilde{\sigma}_{\beta}$. Since $\sum_{i} \tilde{h}_{i i}^{\beta}=0, \quad \sum_{i} \mu_{i}^{\alpha}=0$ and $\sum_{i}\left(\mu_{i}^{\alpha}\right)^{2}=\tilde{\sigma}_{\alpha}$. We have from Lemma 2.2 and Lemma 2.3 that

$$
\begin{align*}
\sum_{\alpha, \beta} \sum_{i, j, k} H^{\alpha} \tilde{h}_{i j}^{\alpha} \tilde{h}_{k j}^{\beta} \tilde{h}_{i k}^{\beta} & =\sum_{\beta, \alpha} \sum_{i, j, k} H^{\beta} \tilde{h}_{i j}^{\beta} \tilde{h}_{k j}^{\alpha} \tilde{h}_{i k}^{\alpha} \tag{3.14}\\
& =\sum_{\alpha, \beta} H^{\beta} \sum_{i} \tilde{h}_{i i}^{\beta}\left(\mu_{i}^{\alpha}\right)^{2} \geq-\frac{n-2}{\sqrt{n(n-1)}} \sum_{\alpha, \beta}\left|H^{\beta}\right| \tilde{\sigma}_{\alpha} \sqrt{\tau_{\beta}} \\
& \geq-\frac{n-2}{\sqrt{n(n-1)}} \sum_{\alpha} \tilde{\sigma}_{\alpha} \sum_{\beta}\left|H^{\beta}\right| \sqrt{\tilde{\sigma}_{\beta}} \\
& \geq-\frac{n-2}{\sqrt{n(n-1)}}|\phi|^{2} \sqrt{\sum_{\beta}\left(H^{\beta}\right)^{2} \sum_{\beta} \tilde{\sigma}_{\beta}} \\
& =-\frac{n-2}{\sqrt{n(n-1)}}|H||\phi|^{3} .
\end{align*}
$$

From Lemma 2.1, (3.3), (3.4), we have

$$
\begin{align*}
-\sum_{\alpha, \beta} \tilde{\sigma}_{\alpha \beta}^{2}-\sum_{\alpha, \beta} N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right) & =-\sum_{\alpha} \tilde{\sigma}_{\alpha}^{2}-\sum_{\alpha, \beta} N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right) \tag{3.15}\\
& \geq-\sum_{\alpha} \tilde{\sigma}_{\alpha}^{2}-2 \sum_{\alpha \neq \beta} \tilde{\sigma}_{\alpha} \tilde{\sigma}_{\beta} \\
& =-2\left(\sum_{\alpha} \tilde{\sigma}_{\alpha}\right)^{2}+\sum_{\alpha} \tilde{\sigma}_{\alpha}^{2} \\
& \geq-2|\phi|^{4}+\frac{1}{p}\left(\sum_{\alpha} \tilde{\sigma}_{\alpha}\right)^{2} \\
& =-\left(2-\frac{1}{p}\right)|\phi|^{4}
\end{align*}
$$

Therefore, from (3.11), (3.12)-(3.15), we have the following:

Proposition 3.1. Let M^{n} be an n-dimensional compact submanifolds in a unit sphere $S^{n+p}(1)$. Then there holds the following

$$
\begin{align*}
0 \geq & \int_{M^{n}}\left\{|\nabla h|^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}\right\} d v \tag{3.16}\\
& +\int_{M^{n}}|\phi|^{2}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}\right\} d v
\end{align*}
$$

Proof of Theorem 1.3. Since $R \geq 1$ and the normalized mean curvature vector is parallel, we easily know that

$$
|\nabla h|^{2} \geq n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}
$$

In fact, from (2.5) and $R \geq 1$, we have $S \leq n^{2} H^{2}$. Taking covariant derivative on (2.5), we get

$$
n^{2} H H_{, k}=\sum_{i, j, \alpha} h_{i j}^{\alpha} h_{i j k}^{\alpha}
$$

From Cauchy-Schwarz's inequality, we get

$$
\begin{equation*}
n^{4} H^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}=n^{4} H^{2} \sum_{k}\left(H_{, k}\right)^{2}=\sum_{k}\left(\sum_{i, j, \alpha} h_{i j}^{\alpha} h_{i j k}^{\alpha}\right)^{2} \leq S \sum_{i, j, k, \alpha}\left(h_{i j k}^{\alpha}\right)^{2}, \tag{3.17}
\end{equation*}
$$

and we conclude. Denote $\bar{R}=R-1$, by (2.5) we have $S-n H^{2}=\frac{n-1}{n}(S-n \bar{R})$. Thus, we obtain

$$
\begin{gathered}
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2} \\
=n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](S-n \bar{R}) \\
\quad-\frac{n-2}{n} \sqrt{[S+n(n-1) \bar{R}](S-n \bar{R})} .
\end{gathered}
$$

From the assumption of Theorem 1.3 and the Proposition 3.1, we have

$$
\begin{align*}
0 \geq & \int_{M^{n}}|\phi|^{2}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}\right\} d v \tag{3.18}\\
= & \int_{M^{n}} \frac{n-1}{n}(S-n \bar{R})\left\{n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](S-n \bar{R})\right. \\
& \left.-\frac{n-2}{n} \sqrt{[S+n(n-1) \bar{R}](S-n \bar{R})}\right\} d v \geq 0 .
\end{align*}
$$

Therefore, we have
(1) $S=n \bar{R}$, that is, M^{n} is totally umbilical;
(2) or

$$
\begin{align*}
& n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](S-n \bar{R}) \tag{3.19}\\
& \quad-\frac{n-2}{n} \sqrt{[S+n(n-1) \bar{R}](S-n \bar{R})}=0
\end{align*}
$$

In this case, the equalities in (3.18) (3.16), (3.15), (3.14) and Lemma 2.1 hold. Thus, we have

$$
\begin{equation*}
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}=0 . \tag{3.20}
\end{equation*}
$$

We see that M^{n} is not totally umbilical and the equalities in (3.16), (3.15), (3.14) and Lemma 2.1 hold. Thus, we have $\nabla h=0$,

$$
p \sum_{\alpha} \tilde{\sigma}_{\alpha}^{2}=\left(\sum_{\alpha} \tilde{\sigma}_{\alpha}\right)^{2}
$$

that is

$$
\begin{align*}
\tilde{\sigma}_{n+1} & =\cdots=\tilde{\sigma}_{n+p}, \tag{3.21}\\
N\left(\tilde{A}_{\alpha} \tilde{A}_{\beta}-\tilde{A}_{\beta} \tilde{A}_{\alpha}\right) & =2 N\left(\tilde{A}_{\alpha}\right) N\left(\tilde{A}_{\beta}\right), \quad \alpha \neq \beta, \tag{3.22}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{\beta}\left|H^{\beta}\right| \sqrt{\tilde{\sigma}_{\beta}}=|H||\phi| \tag{3.23}
\end{equation*}
$$

We may consider the case $p=1$ and $p \geq 2$ separately.
Case (i). If $p=1$, from (3.19), we have $n \neq 2$ and

$$
S=\frac{n}{(n-2)(n \bar{R}+2)}\left\{n(n-1) \bar{R}^{2}+4(n-1) \bar{R}+n\right\} .
$$

Thus, by the Theorem 1.1 of H. Li [10], we know that M^{n} is a product $S^{1}\left(\sqrt{1-r^{2}}\right) \times$ $S^{n-1}(r), r=\sqrt{\frac{n-2}{n R}}$.

Case (ii). If $p \geq 2$, from (3.21) and (3.23), we have

$$
\sqrt{\tilde{\sigma}_{n+1}} \sum_{\beta}\left|H^{\beta}\right|=\sqrt{\sum_{\beta}\left(H^{\beta}\right)^{2}} \sqrt{\sum_{\beta} \tilde{\sigma}_{\beta}}=\sqrt{p \tilde{\sigma}_{n+1}} \sqrt{\sum_{\beta}\left(H^{\beta}\right)^{2}}
$$

Since M^{n} is not totally umbilical, we have $\tilde{\sigma}_{n+1} \neq 0$. Thus, we have

$$
\left(\sum_{\beta}\left|H^{\beta}\right|\right)^{2}=p \sum_{\beta}\left(H^{\beta}\right)^{2}
$$

that is,

$$
\begin{equation*}
\left|H^{n+1}\right|=\cdots=\left|H^{n+p}\right| \tag{3.24}
\end{equation*}
$$

From Lemma 2.1, we know that at most two of $\tilde{A}_{\alpha}=\left(\tilde{h}_{i j}^{\alpha}\right), \alpha=n+1, \ldots, n+p$, are different from zero. If all of $\tilde{A}_{\alpha}=\left(\tilde{h}_{i j}^{\alpha}\right)$ are zero, which is contradiction with M^{n} is not totally umbilical. If only one of them, say \tilde{A}_{α}, is different from zero, which is contradiction with (3.21). Therefore, we may assume that

$$
\begin{gathered}
\tilde{A}_{n+1}=\lambda \tilde{A}, \quad \tilde{A}_{n+2}=\mu \tilde{B}, \quad \lambda, \mu \neq 0 \\
\tilde{A}_{\alpha}=0, \quad \alpha \geq n+3
\end{gathered}
$$

where \tilde{A} and \tilde{B} are defined in Lemma 2.1.
From (3.23), we have

$$
\left(\sqrt{2} \lambda\left|H^{n+1}\right|+\sqrt{2} \mu\left|H^{n+2}\right|\right)^{2}=H^{2}|\phi|^{2}=\sum_{\alpha}\left(H^{\alpha}\right)^{2}\left(2 \lambda^{2}+2 \mu^{2}\right)
$$

Thus, from (3.24), we have

$$
\left(H^{n+1}\right)^{2}(\lambda+\mu)^{2}=p\left(H^{n+1}\right)^{2}\left(\lambda^{2}+\mu^{2}\right)
$$

that is,

$$
\left(H^{n+1}\right)^{2}\left[(p-1) \lambda^{2}-2 \lambda \mu+(p-1) \mu^{2}\right]=0
$$

Since $\lambda, \mu \neq 0$, we infer that $H^{n+1}=0$. Thus, from (3.24), we have $H^{\alpha}=0, n+1 \leq$ $\alpha \leq n+p$, that is, $\vec{H}=0, M^{n}$ is a minimal submanifold in $S^{n+p}(1)$ and from (3.20), we have $S=\frac{n}{2-1 / p}$ on M^{n}. From the Theorem of Chern-Do Carmo-Kobayashi [7],
we know that $n=2, p=2$ and M^{n} is Veronese surface in S^{4}. This completes the proof of Theorem 1.3.

4. Proof of Theorem 1.4 and 1.5

The important maximum principle of Omori [13], Yau [16] and Cheng [6] are useful to us.

Proposition 4.1 ([13], [16]). Let M^{n} be a complete Riemannian manifold whose Ricci curvature is bounded from below. If f is a C^{2}-function bounded from above on M^{n}, then for any $\varepsilon>0$, there is a point $x \in M^{n}$ such that

$$
\begin{equation*}
\sup f-\varepsilon<f(x), \quad|\nabla f|(x)<\varepsilon, \quad \Delta f(x)<\varepsilon \tag{4.1}
\end{equation*}
$$

Proposition 4.2 ([6]). Let M^{n} be a complete Riemannian manifold whose Ricci curvature is bounded from below. Let f be a C^{2}-function which bounded from above. Then there exists a sequence $\left\{x_{k}\right\}$ in M^{n} such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} f\left(x_{k}\right)=\sup f, \quad \lim _{m \rightarrow \infty}\left|\nabla f\left(x_{k}\right)\right|=0, \quad \lim _{m \rightarrow \infty} \sup L f\left(x_{k}\right) \leq 0 \tag{4.2}
\end{equation*}
$$

where $L f=\sum_{j} b_{j} f_{j, j}$ is a differential operator, and $b_{j} \geq 0$ is bounded.
We need the following Lemma.
Lemma 4.3 ([2], [9]). Let $A=\left(a_{i j}\right), i, j=1, \cdots, n$ be a symmetric $(n \times n)$ matrix, $n \geq 2$. Assume that $A_{1}=\operatorname{tr} A, A_{2}=\sum_{i, j}\left(a_{i j}\right)^{2}$. Then

$$
\begin{align*}
\sum_{i}\left(a_{i n}\right)^{2}-A_{1} a_{n n} \leq & \frac{1}{n^{2}}\left\{n(n-1) A_{2}\right. \tag{4.3}\\
& \left.+(n-2) \sqrt{n-1}\left|A_{1}\right| \sqrt{n A_{2}-\left(A_{1}\right)^{2}}-2(n-1)\left(A_{1}\right)^{2}\right\}
\end{align*}
$$

the equality holds if and only if $n=2$ or $n>2,\left(a_{i j}\right)$ is of the following form

$$
\left(\begin{array}{cccc}
a & & & 0 \\
& \ddots & & \\
& & a & \\
0 & & & A_{1}-(n-1) a
\end{array}\right)
$$

where $\left(n a-A_{1}\right) A_{1} \geq 0$.

Proof of Theorem 1.4. We assume that $\sup |\phi|^{2} \leq B_{H, p, n}$, then $0 \leq|\phi| \leq \sqrt{B_{H, p, n}}$, we have $P_{H, p, n}(|\phi|) \leq 0$, that is

$$
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2} \geq 0
$$

Since the mean curvature vector is parallel, we know that the mean curvature is constant. From (3.9), (3.12)-(3.15), we have

$$
\begin{equation*}
\frac{1}{2} \Delta|\phi|^{2} \geq|\nabla \phi|^{2}+|\phi|^{2}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}\right\} \geq 0 \tag{4.4}
\end{equation*}
$$

For any point and any unit vector $v \in T_{p} M^{n}$, we choose a local orthonormal frame field e_{1}, \ldots, e_{n} such that $e_{n}=v$, we have from Gauss equation (2.4) that the Ricci curvature $\operatorname{Ric}(v, v)$ of M^{n} with respect to v is expressed as

$$
\begin{equation*}
\operatorname{Ric}(v, v)=(n-1)+\sum_{\alpha}\left[\left(\operatorname{tr} H_{\alpha}\right) h_{n n}^{\alpha}-\sum_{i}\left(h_{i n}^{\alpha}\right)^{2}\right] \tag{4.5}
\end{equation*}
$$

where H_{α} is the $(n \times n)$-matrix $\left(h_{i j}^{\alpha}\right)$. Assume that $T_{\alpha}=\operatorname{tr} H_{\alpha}, S_{\alpha}=\sum_{i, j}\left(h_{i j}^{\alpha}\right)^{2}$, then we have $n^{2} H^{2}=\sum_{\alpha} T_{\alpha}^{2}, S=\sum_{\alpha} S_{\alpha}$. By Lemma 4.3, we have

$$
\begin{align*}
\operatorname{Ric}(v, v) \geq & (n-1)-\sum_{\alpha} \frac{1}{n^{2}}\left\{n(n-1) S_{\alpha}\right. \tag{4.6}\\
& \left.+(n-2) \sqrt{n-1}\left|T_{\alpha}\right| \sqrt{n S_{\alpha}-T_{\alpha}^{2}}-2(n-1) T_{\alpha}^{2}\right\} \\
= & (n-1)-\frac{n-1}{n} S-\frac{n-2}{n} \sqrt{\frac{n-1}{n}} \sum_{\alpha}\left|T_{\alpha}\right| \sqrt{S_{\alpha}-\frac{T_{\alpha}^{2}}{n}}+\frac{2(n-1)}{n^{2}} \sum_{\alpha} T_{\alpha}^{2} \\
\geq & \frac{n-1}{n}\left\{n+2 n H^{2}-S-\frac{n-2}{\sqrt{n(n-1)}} \sqrt{\left.\left(\sum_{\alpha} T_{\alpha}^{2}\right)\left[\sum_{\alpha}\left(S_{\alpha}-\frac{T_{\alpha}^{2}}{n}\right)\right]\right\}}\right. \\
= & \frac{n-1}{n}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-|\phi|^{2}\right\} \\
\geq & \frac{n-1}{n}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}\right\} \geq 0 .
\end{align*}
$$

Therefore, we know that the Ricci curvature $\operatorname{Ric}(v, v)$ is bounded from below.
Now we consider the following smooth function on M^{n} defined by $f=-\left(|\phi|^{2}+\right.$ $a)^{-1 / 2}$, where $a(>0)$ is a real number. Obviously, f is bounded, so we can apply Proposition 4.1 to f. For any $\varepsilon>0$, there is a point $x \in M^{n}$, such that at which f satisfies the (4.1). By a simple and direct calculation, we have

$$
\begin{equation*}
f \Delta f=3|d f|^{2}-\frac{1}{2} f^{4} \Delta|\phi|^{2} \tag{4.7}
\end{equation*}
$$

From (4.1) and (4.7), we have

$$
\begin{equation*}
\frac{1}{2} \Delta|\phi|^{2}(x)=f^{-4}(x)\left[3|d f|^{2}(x)-f(x) \Delta f(x)\right]<f^{-4}(x)\left[3 \varepsilon^{2}-\varepsilon f(x)\right] \tag{4.8}
\end{equation*}
$$

Thus, for any convergent sequence $\left\{\varepsilon_{m}\right\}$ with $\varepsilon_{m}>0$ and $\lim _{m \rightarrow \infty} \varepsilon_{m}=0$, there exists a point sequence $\left\{x_{m}\right\}$ such that the sequence $\left\{f\left(x_{m}\right)\right\}$ converges to f_{0} (we can take a subsequence if necessary) and satisfies (4.1), hence, $\lim _{m \rightarrow \infty} \varepsilon_{m}\left[3 \varepsilon_{m}-\right.$ $\left.f\left(x_{m}\right)\right]=0$. From the definition of supremum and (4.1), we have $\lim _{m \rightarrow \infty} f\left(x_{m}\right)=$ $f_{0}=\sup f$ and hence the definition of f gives rise to $\lim _{m \rightarrow \infty}|\phi|^{2}\left(x_{m}\right)=\sup |\phi|^{2}$.

From (4.4) and (4.8), we have

$$
\begin{align*}
& f^{-4}\left(x_{m}\right)\left[3 \varepsilon_{m}^{2}-\varepsilon_{m} f\left(x_{m}\right)\right]>\frac{1}{2} \Delta|\phi|^{2}\left(x_{m}\right) \tag{4.9}\\
& \quad \geq|\phi|^{2}\left(x_{m}\right)\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|\left(x_{m}\right)-\left(2-\frac{1}{p}\right)|\phi|^{2}\left(x_{m}\right)\right\} \geq 0
\end{align*}
$$

Putting $m \rightarrow \infty$ in (4.9), we have

$$
\sup |\phi|^{2}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H| \sup |\phi|-\left(2-\frac{1}{p}\right) \sup |\phi|^{2}\right\}=0
$$

Thus, we have
(1) $\sup |\phi|^{2}=0$ and M^{n} is totally umbilical; or
(2)

$$
\begin{equation*}
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H| \sup |\phi|-\left(2-\frac{1}{p}\right) \sup |\phi|^{2}=0 \tag{4.10}
\end{equation*}
$$

From (4.4), we know that $|\phi|^{2}$ is a subharmonic function on M^{n}. Since the supremum sup $|\phi|^{2}$ is attained at some point of M^{n}, by the maximum principle, we have $|\phi|^{2}=$ const.$=B_{H, p, n}$. Thus, (4.10) becomes

$$
\begin{equation*}
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}=0 . \tag{4.11}
\end{equation*}
$$

and (4.4) becomes equality. We may consider the case $p=1$ and $p \geq 2$ separately.
Case (i). If $p=1$, from equality in (4.4), we obtain that $\nabla \phi=\nabla h=0$, that is, the second fundamental form is parallel. If $H=0$, then by a classical local rigidity result of Lawson (see Proposition 1 in Lawson [8]), we know that M^{n} is an open piece of a minimal Clifford torus of the form $S^{k}(\sqrt{k / n}) \times S^{n-k}(\sqrt{(n-k) / n)}$ with $1 \leq k \leq n-1$. If $H \neq 0$, then from the equality in (4.4), we also obtain the equality in Lemma 2.4 of Okumura, which implies that M^{n} has exactly two constant principal curvatures, with multiplicities $n-1$ and 1 . Then, by the classical result on isoparametric hypersurfaces of E. Cartan [3] we conclude that if $n \geq 3$, M^{n} must be an open piece of $H(r)$-torus $S^{1}\left(\sqrt{1-r^{2}}\right) \times S^{n-1}(r)$, with $0<r<1$, $r^{2}<(n-1) / n$; if $n=2, M^{n}$ is an open piece of $H(r)$-torus $S^{1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $0<r<1, r^{2} \neq \frac{1}{2}$.

Case (ii). If $p \geq 2$, since (4.11) holds, M^{n} is not totally umbilical and the equalities in (3.16), (3.15), (3.14) and Lemma 2.1 hold. Thus, we have $\nabla h=0$, and (3.21), (3.22), (3.23) hold. By the same assertion in the proof of Theorem 1.3, we know that M^{n} is a minimal submanifold in $S^{n+p}(1)$ and $S=\frac{n}{2-1 / p}$ on M^{n}. From the Theorem of Chern-Do Carmo-Kobayashi [7], we know that $n=2, p=2$ and (4.11) reduces to $S=\frac{4}{3}, M^{n}$ is an open piece of Veronese surface in S^{4}. This completes the proof of Theorem 1.4.

Proof of Theorem 1.5. Let

$$
\square f=\sum_{\alpha} \square^{\alpha} f=\sum_{i, j}\left(\sum_{\alpha}\left(n H^{\alpha} \delta_{i j}-h_{i j}^{\alpha}\right)\right) f_{i, j} .
$$

We may prove that the operator \square is elliptic. In fact, for a fixed $\alpha, n+1 \leq \alpha \leq n+p$, we can take a local orthonormal frame field $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}$, then

$$
\begin{equation*}
\square f=\sum_{i}\left(\sum_{\alpha}\left(n H^{\alpha}-\lambda_{i}^{\alpha}\right)\right) f_{i, i} . \tag{4.12}
\end{equation*}
$$

Since $R>1$, from (2.5), we have $S<n^{2} H^{2}$. For a fixed $\alpha, n+1 \leq \alpha \leq n+p$, if there is a λ_{i}^{α} such that $n H^{\alpha}-\lambda_{i}^{\alpha} \leq 0$, then $n^{2} H^{2}=\sum_{\alpha}\left(n H^{\alpha}\right)^{2} \leq \sum_{\alpha}\left(\lambda_{i}^{\alpha}\right)^{2} \leq S$,
this is a contradiction. Thus, we have $n H^{\alpha}-\lambda_{i}^{\alpha}>0$, then $\sum_{\alpha}\left(n H^{\alpha}-\lambda_{i}^{\alpha}\right)>0$ and the operator \square is elliptic.

From (1.5), we have

$$
\begin{align*}
n+n \bar{R}+\left[\frac{1}{n}-\right. & \left.\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](\sup S-n \bar{R}) \tag{4.13}\\
& -\frac{n-2}{n} \sqrt{[\sup S+n(n-1) \bar{R}](\sup S-n \bar{R})} \geq 0 .
\end{align*}
$$

Since $\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n} \leq-\frac{n-2}{n} \leq 0$, (4.13) implies that $\sup S<+\infty$ and

$$
\begin{align*}
n+n \bar{R}+\left[\frac{1}{n}-\right. & \left.\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](S-n \bar{R}) \tag{4.14}\\
& -\frac{n-2}{n} \sqrt{[S+n(n-1) \bar{R}](S-n \bar{R})} \geq 0 .
\end{align*}
$$

Thus, from (2.5) and (4.6), we get the Ricci curvature $\operatorname{Ric}(v, v)$ is bounded from below.

From (3.10), (3.12)-(3.15), (4.14) and $R>1$, we have

$$
\begin{align*}
\square\left(n H^{\alpha}\right)= & \sum_{\alpha} \square^{\alpha}\left(n H^{\alpha}\right)=|\nabla h|^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2} \tag{4.15}\\
& +|\phi|^{2}\left\{n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H||\phi|-\left(2-\frac{1}{p}\right)|\phi|^{2}\right. \\
\geq & \frac{n-1}{n}(S-n \bar{R})\left\{n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](S-n \bar{R})\right. \\
& \left.-\frac{n-2}{n} \sqrt{[S+n(n-1) \bar{R}](S-n \bar{R})}\right\} \geq 0 .
\end{align*}
$$

Putting $f=n H^{\alpha}$ in (4.12), by $H^{2}=\sum_{\alpha}\left(H^{\alpha}\right)^{2}$, we have $\left|n H^{\alpha}\right| \leq n H$. From (2.5) and $\sup S<+\infty$, we have $f=n H^{\alpha}$ is bounded from above. Since we know that $n H^{\alpha}-\lambda_{i}^{\alpha}>0$ and $\sum_{\alpha}\left(n H^{\alpha}-\lambda_{i}^{\alpha}\right)>0$, we have

$$
0<\sum_{\alpha}\left(n H^{\alpha}-\lambda_{i}^{\alpha}\right) \leq \sum_{\alpha, i}\left(n H^{\alpha}-\lambda_{i}^{\alpha}\right)=n(n-1) \sum_{\alpha} H^{\alpha}
$$

is bounded. We may use Proposition 4.2 to $f=n H^{\alpha}$. Thus, we have

$$
\begin{equation*}
\lim _{m \rightarrow+\infty}\left(n H^{\alpha}\right)\left(x_{m}\right)=\sup \left(n H^{\alpha}\right), \quad \lim _{m \rightarrow+\infty} \sup \square\left(n H^{\alpha}\right)\left(x_{m}\right) \leq 0 \tag{4.16}
\end{equation*}
$$

where $\left\{x_{m}\right\}$ is a sequence on M^{n}. From (2.5) and (4.16), we have $\lim _{m \rightarrow \infty} S\left(x_{m}\right)=$ $\sup S$.

From (4.13), (4.15) and (4.16), we have

$$
\begin{aligned}
0 & \geq \lim _{m \rightarrow+\infty} \sup \square\left(n H^{\alpha}\right)\left(x_{m}\right) \\
\geq & \frac{n-1}{n}(\sup S-n \bar{R})\left\{n+n \bar{R}+\left[\frac{1}{n}-\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](\sup S-n \bar{R})\right. \\
& \left.-\frac{n-2}{n} \sqrt{[\sup S+n(n-1) \bar{R}](\sup S-n \bar{R})}\right\} \geq 0 .
\end{aligned}
$$

Thus, we have
(i) $\sup S-n \bar{R}=0$, that is, $\sup S=n \bar{R}$. From (2.5), we have $\sup \left(S-n H^{2}\right)=0$, thus, $S=n H^{2}$ and M^{n} is totally umbilical; or
(ii)

$$
\begin{align*}
n+n \bar{R}+\left[\frac{1}{n}-\right. & \left.\left(2-\frac{1}{p}\right) \frac{n-1}{n}\right](\sup S-n \bar{R}) \tag{4.17}\\
& -\frac{n-2}{n} \sqrt{[\sup S+n(n-1) \bar{R}](\sup S-n \bar{R})}=0 .
\end{align*}
$$

(4.17) implies that (4.14) and (4.15) hold. From the assumption, we know that $\sup S$ is attained at some point of M^{n}. Thus, from (2.5), we have $\sup (n H)^{2}$ is attained at this point of M^{n}. By $\sup (n H)^{2}=\sum_{\alpha} \sup \left(n H^{\alpha}\right)^{2}$, we have $\sup \left(n H^{\alpha}\right)$ is attained at this point of M^{n}. Since the operator \square is elliptic, we have $n H^{\alpha}$ is constant. Thus, the equalities in (4.15) hold and $|\nabla h|^{2}=n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}$. From (2.5) and (3.17), we have

$$
0 \leq n^{3}(n-1)(R-1)\left|\nabla^{\perp} \vec{H}\right|^{2} \leq S\left(|\nabla h|^{2}-n^{2}\left|\nabla^{\perp} \vec{H}\right|^{2}\right)
$$

Since we assume that $R>1$, we have $\nabla^{\perp} \vec{H}=0$. Therefore, we know that M^{n} is a complete submanifold in $S^{n+p}(1)$ with parallel mean curvature vector.

From (4.17), we have

$$
\begin{equation*}
n+n H^{2}-\frac{n-2}{\sqrt{n(n-1)}} n|H| \sup |\phi|-\left(2-\frac{1}{p}\right) \sup |\phi|^{2}=0 \tag{4.18}
\end{equation*}
$$

Thus, we have sup $|\phi|^{2}=B_{H, p, n}$. Since $n^{2} H^{2}>S$, we have $H>0$. By the result of Theorem 1.4, we have $(i) p=1$ and M^{n} is an open piece of $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $0<r<1$; or (ii) $n=2, p=2$ and M^{n} is an open piece of Veronese surface in S^{4}. This completes the proof of the Theorem 1.5.
Acknowledgments. Project supported by NSF of Shaanxi Province(SJ08A31)and NSF of Shaanxi Educational Committee(11JK0479).

References

[1] H. Alencar and M.P.do Carmo, Hypersurfaces with constant mean curvatrue in spheres, Proc. Amer. Math. Soc., 120 (1994), 1223-1229.
[2] K.R. Cai, Topology of certain closed submanifolds in a Euclidean space, Chinese Ann. of Math., 8A (1987), 234-241.
[3] E. Cartan, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z., 45 (1939), 335-367.
[4] S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195-204.
[5] Q.M. Cheng, Submanifolds with constant scalar curvature, Proc. of the Royal Soc. of Edinburgh, 132A (2002), 1163-1183.
[6] Q.M. Cheng, Complete spacelike hypersurfaces of a de Sitter space with $r=k H$, Memoirs of the Faculty of Science, Kyushu University, 44 (1990), 67-77.
[7] S.S. Chern, M.Do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, in Functional Analysis and Related Fields (F. Brower, ed.), Springer-Verlag, Berlin, (1970), 59-75.
[8] H.B. Lawson Jr, Local rigidity theroems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
[9] P.F. Leung, An estimate on the Ricci curvature of a submanifold and some applications, Proc. of Amer. Math. Soc, 114 (1992), 1051-1061.
[10] H. Li. Hypersurfaces with constant scalar curvature in space forms, Math. Ann., 305 (1996), 665-672.
[11] J.T. Li, Submanifolds with constant scalar curvature, Kodai Math J., 27 (2004), 206-213.
[12] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math., 96 (1974), 207-213.
[13] H. Omori, Isometric immersion of Riemmanian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.
[14] W. Santos, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J., 46 (1994), 403-415.
[15] S.C. Shu, Curvature and rigidity of Willmore submanifolds, Tsukuba J. Math., 31 (2007), 175-196.
[16] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. pure and Appl. Math., 28 (1975), 201-228.

Shichang Shu
Institute of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000 Shaanxi, P.R. China

E-mail address: shushichang@126.com
Yanyan Li
Institute of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000 Shaanxi, P.R. China

E-mail address: muzilyy@163.com

[^0]: 2000 Mathematics Subject Classification. 53C42, 53A10.
 Key words and phrases. submanifolds; mean curvature; scalar curvature; rigidity theorems. © 2011 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted Jul 21, 2011. Published August 28, 2011.

