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SOME FURTHER RESULTS ON THE UNIQUE RANGE SETS OF

MEROMORPHIC FUNCTIONS

(COMMUNICATED BY INDRAJIT LAHIRI)

ABHIJIT BANERJEE AND SUJOY MAJUMDER

Abstract. With the aid of the notion of weighted sharing of sets we deal
with the problem of Unique Range Sets for meromorphic functions and obtain

a result which improve some previous results.

1. Introduction, Definitions and Results

In this paper by meromorphic functions we will always mean meromorphic func-
tions in the complex plane. We shall use the standard notations of value distribution
theory :

T (r, f), m(r, f), N(r,∞; f), N(r,∞; f), . . .

(see [7]). It will be convenient to let E denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. We denote by
T (r) the maximum of T (r, f) and T (r, g). The notation S(r) denotes any quantity
satisfying S(r) = o(T (r)) as r −→ ∞, r ̸∈ E.

For any constant a, we define

Θ(a; f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
.

If for some a ∈ C ∪ {∞}, f and g have the same set of a-points with same mul-
tiplicities then we say that f and g share the value a CM (counting multiplicities).
If we do not take the multiplicities into account, f and g are said to share the value
a IM (ignoring multiplicities).

Let S be a set of distinct elements of C∪{∞} and Ef (S) =
∪

a∈S{z : f(z)−a =
0}, where each zero is counted according to its multiplicity. If we do not count
the multiplicity the set Ef (S) =

∪
a∈S{z : f(z) − a = 0} is denoted by Ef (S). If

Ef (S) = Eg(S) we say that f and g share the set S CM. On the other hand if

Ef (S) = Eg(S), we say that f and g share the set S IM.
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As a simple application of his own value distribution theory, Nevanlinna proved
that a non-constant meromorphic function is uniquely determined by the inverse
image of 5 distinct values (including the infinity) IM. Gross [6] extended the study
by considering pre-images of a set and posed the question:

?Is there a finite set S so that an entire function is determined uniquely by the
pre-image of the set S CM??

We recall that a set S is called a unique range set for meromorphic functions
(URSM) if for any pair of non-constant meromorphic functions f and g, the con-
dition Ef (S) = Eg(S) implies f ≡ g. Similarly a set S is called a unique range set
for entire functions (URSE) if for any pair of non-constant entire functions f and
g, the condition Ef (S) = Eg(S) implies f ≡ g.

We will call any set S ⊂ C a unique range set for meromorphic functions ignoring
multiplicities (URSM-IM) for which Ef (S) = Eg(S) implies f ≡ g for any pair of
non-constant meromorphic functions.

In the last couple of years the concept of URSE, URSM and URSM-IM have
caused an increasing interest among the researchers. The study is focused mainly
on two problems: finding different URSM with the number of elements as small as
possible, and characterizing the URSM. e.g.,[2]-[5], [14]-[16] and [18]-[22].

A recent increment to uniqueness theory has been to considering weighted shar-
ing instead of sharing IM/CM which implies a gradual change from sharing IM
to sharing CM. This notion of weighted sharing has been introduced by I. Lahiri
around 2001 in [10, 11]. Below we are giving the following definitions:

Definition 1.1. [10, 11] Let k be a nonnegative integer or infinity. For a ∈ C∪{∞}
we denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity
m is counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g),
we say that f, g share the value a with weight k.

We write f , g share (a, k) to mean that f, g share the value a with weight k.
Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 1.2. [10] Let S be a set of distinct elements of C ∪ {∞} and k be a
nonnegative integer or ∞. Let Ef (S, k) =

∪
a∈S Ek(a; f).

Clearly Ef (S) = Ef (S,∞) and Ef (S) = Ef (S, 0).

In 2003 Y. Xu [18] proved the following theorem.

Theorem A. [18] If f and g are two non-constant meromorphic functions and
Θ(∞; f) > 3

4 , Θ(∞; g) > 3
4 , then there exists a set with seven elements such that

Ef (S,∞) = Eg(S,∞) implies f ≡ g.

Dealing with the question of Yi raised in [21] Lahiri and Banerjee exhibited a
unique range set S with smaller cardinalities than that obtained previously other
than Xu [18], imposing some restrictions on the poles of f and g. In fact, they
obtained the following result:

Theorem B. [12] Let S = {z : zn + azn−1 + b = 0}, where n (≥ 9) be an integer
and a, b be two nonzero constants such that zn + azn−1 + b = 0 has no multiple
root. If Ef (S, 2) = Eg(S, 2) and Θ(∞; f) + Θ(∞; g) > 4

n−1 then f ≡ g.
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In [2] and [4] Bartels and Fang-Guo both independently proved the existence of
a URSM-IM with 17 elements.

In this paper we shall continue the study and provide better results than that
obtained in [2], [4], [12], [18] at the cost of consideration of a new URS.

Suppose that the polynomial P (w) is defined by

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2, (1.1)

where n ≥ 3 is an integer, a and b are two nonzero complex numbers satisfying
abn−2 ̸= 1, 2.

In fact we consider the following rational function

R(w) =
awn

n(n− 1)(w − α1)(w − α2)
, (1.2)

where α1 and α2 are two distinct roots of

n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0.

We have from (1.2) that

R
′
(w) =

(n− 2)awn−1 (w − b)2

n(n− 1) (w − α1)2 (w − α2)2
. (1.3)

From (1.3) we know that w = 0 is a root with multiplicity n of the equation
R(w) = 0 and w = b is a root with multiplicity 3 of the equation R(w) − c = 0,

where c = abn−2

2 ̸= 1
2 , 1. Then

R(w)− c =
a(w − b)3 Qn−3(w)

n(n− 1)(w − α1)(w − α2)
, (1.4)

where Qn−3(w) is a polynomial of degree n− 3.
Moreover from (1.1) and (1.2) we have

R(w)− 1 =
P (w)

n(n− 1)(w − α1)(w − α2)
. (1.5)

Noting that c = abn−2

2 ̸= 1, from (1.3) and (1.5) we have

P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2

has only simple zeros.
The following theorem is the main result of the paper.

Theorem 1.1. Let S = {w | P (w) = 0}, where P (w) is given by (1.1), where
n(≥ 6) is an integer. Suppose that f and g are two non-constant meromorphic
functions satisfying Ef (S,m) = Eg(S,m). If

(i) m ≥ 2 and Θf +Θg +min{Θ(b; f),Θ(b; g) > 10− n
(ii) or if m = 1 and Θf+Θg+min{Θ(b; f),Θ(b; g)}+1

2 min{Θ(0; f)+Θ(∞; f),Θ(0; g)+
Θ(∞; g)} > 11− n

(iii) or if m = 0 and Θf + Θg + Θ(0; f) + Θ(∞; f) + Θ(0; g) + Θ(∞; g) +
min{Θ(0; f) + Θ(b; f) + Θ(∞; f),Θ(0; g) + Θ(b; g) + Θ(∞; g) > 16− n

then f ≡ g, where Θf = 2Θ(0; f) + 2 Θ(∞; f) + Θ(b; f) and Θg can be similarly
defined.
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Corollary 1.1. In Theorem 1.1 when m = 2 and n ≥ 7 and n ≥ 9 it is the
improvements of the results of Y. Xu [18] and Lahiri-Banerjee [12] respectively. On
the other hand when m = 0 and n ≥ 17 it is an improvement of the results of
Bartels [2] and Fang-Guo [4].

It is assumed that the readers are familiar with the standard definitions and
notations of the value distribution theory as those are available in [7]. Throughout
this paper, we also need the following definitions:

Definition 1.3. [9] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting
function of simple a-points of f . For a positive integer m we denote by N(r, a; f |≤
m)(N(r, a; f |≥ m)) the counting function of those a-points of f whose multiplic-
ities are not greater(less) than m where each a-point is counted according to its
multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly, where in counting the
a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are
defined analogously.

Definition 1.4. Let f and g be two non-constant meromorphic functions such that
f and g share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-point of
g with multiplicity q. We denote by NL(r, a; f) the reduced counting function of

those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting function of

those a-points of f and g where p = q = 1, by N
(2

E (r, a; f) the reduced counting
function of those a-points of f and g where p = q ≥ 2. In the same way we

can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). In a similar manner we can define

NL(r, a; f) and NL(r, a; g) for a ∈ C ∪ {∞}. When f and g share (a,m), m ≥ 1

then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 1.5. [10, 11] Let f , g share (a, 0). We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) = N∗(r, a; g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let
F and G be two non-constant meromorphic functions defined in C. Henceforth we
shall denote by H the following function.

H = (
F

′′

F ′ − 2F
′

F − 1
)− (

G
′′

G′ − 2G
′

G− 1
).

Let f and g be two non-constant meromorphic function and

F = R(f), G = R(g), (2.1)

where R(w) is given as (1.2). From (1.2) and (2.1) it is clear that

T (r, f) =
1

n
T (r, F ) + S(r, f), T (r, g) =

1

n
T (r,G) + S(r, g) (2.2)
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Lemma 2.1. Let F , G be given by (2.1) and H ̸≡ 0. Suppose that F , G share
(1,m), where m ≥ 0 is an integer. Then

N
1)
E (r, 1;F ) ≤ NL(r, 1;F ) +NL(r, 1;G) +N(r, 0; f) +N(r, b; f) +N(r,∞; f)

+N(r,∞; g) +N(r, 0; g) +N(r.b; g) +N0(r, 0; f
′
) +N0(r, 0; g

′
),

+S(r, f) + S(r, g)

where N0(r, 0; f
′
) denotes the reduced counting function corresponding to the zeros

of f
′
which are not the zeros of f(f − b) and F −1, N0(r, 0; g

′
) is defined similarly.

Proof. We omit the proof since it can be carried out in the line of the proof of
Lemma 2.18 [1]. �

Lemma 2.2. [13] If N(r, 0; f (k) | f ̸= 0) denotes the counting function of those
zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according
to its multiplicity then

N(r, 0; f (k) | f ̸= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 2.3. [17] Let f be a non-constant meromorphic function and P (f) =
a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2 . . . , an are constants and an ̸= 0.

Then T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.4. ([22], Lemma 6) If H ≡ 0, then F , G share (1,∞). If further F , G
share (∞, 0) then F , G share (∞,∞).

Lemma 2.5. [1] Let F and G be given by (2.1). If F , G share (1,m), where
0 ≤ m < ∞ . Then

(i)NL(r, 1;F ) ≤ 1

m+ 1
[N(r, 0; f) +N(r,∞; f)−N⊗(r, 0; f

′
)] + S(r, f)

(ii)NL(r, 1;G) ≤ 1

m+ 1
[N(r, 0; g) +N(r,∞; g)−N⊗(r, 0; g

′
)] + S(r, g),

N⊗(r, 0; f
′
) = N(r, 0; f

′ | f ̸= 0, ω1, ω2 . . . ωn) and N⊗(r, 0; g
′
) is defined similarly,

where ωi i = 1, 2, . . . , n are the distinct roots of the equation P (w) = 0.

Lemma 2.6. Let f , g be two non-constant meromorphic functions and suppose α1

and α2 are two distinct roots of the equation n(n−1)w2−2n(n−2)bw+(n−1)(n−
2)b2 = 0. Then

fn

(f − α1)(f − α2)

gn

(g − α1)(g − α2)
̸≡ n2(n− 1)2

a2
,

where n (≥ 5) is an integer.

Proof. Suppose FG ≡ 1. Let z0 be a pole of f with multiplicity p. Then clearly z0 is

a zero of g with multiplicity q such that (n−2)p = nq that is q = (n−2)(p−q)
2 ≥ n−2

2
and hence p = qn

(n−2) ≥ n
2 . Also it is clear that the zeros of (f − α1) and (f − α2)

are of multiplicities at least n. Therefore, by the second fundamental theorem we
obtain

T (r, f) ≤ N(r,∞; f) +N(r, α1; f) +N(r, α2; f) + S(r, f)

≤ 2

n
N(r,∞; f) +

1

n
N(r, α1; f) +

1

n
N(r, α2; f) + S(r, f)

≤ 4

n
T (r, f) + +S(r, f),
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which leads to a contradiction for n ≥ 5. This proves the lemma. �

Lemma 2.7. Let F , G be given by (2.1), where n ≥ 6 is an integer. If F ≡ G,
then f ≡ g.

Proof. We omit the proof since the proof can be found out in [8]. �

Lemma 2.8. Let F , G be given by (2.1). Also let S be given as in Theorem 1.1,
where n ≥ 3 is an integer. If Ef (S, 0) = Eg(S, 0) then S(r, f) = S(r, g).

Proof. Since Ef (S, 0) = Eg(S, 0), it follows that F and G share (1, 0). We denote
the distinct elements of S by wj , j = 1, 2, . . . n. Since F , G share (1, 0) from the
second fundamental theorem we have

(n− 2)T (r, g) ≤
n∑

j=1

N (r, wj ; g) + S(r, g)

=
n∑

j=1

N (r, wj ; f) + S(r, g)

≤ nT (r, f) + S(r, g).

Similarly we can deduce

(n− 2)T (r, f) ≤ nT (r, g) + S(r, f).

The last inequalities imply T (r, f) = O (T (r, g)) and T (r, g) = O (T (r, f)) and so
we have S(r, f) = S(r, g). �

3. Proofs of the theorem

Proof of Theorem 1.1. Let F , G be given by (2.1). Since Ef (S,m) = Eg(S,m), it
follows that F , G share (1,m).
Case 1. Suppose that H ̸≡ 0.

Subcase 1.1. m ≥ 1. While m ≥ 2, using Lemma 2.2 we note that

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.1)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N(r, 1;G |≥ 3)

≤ N0(r, 0; g
′
) +

n∑
j=1

{N(r, ωj ; g |= 2) + 2N(r, ωj ; g |≥ 3)}

≤ N(r, 0; g
′
| g ̸= 0) + S(r, g) ≤ N(r, 0; g) +N(r,∞; g) + S(r, g).



SOME FURTHER RESULTS ON THE UNIQUE RANGE SETS 195

Hence using (3.1), Lemmas 2.1 and 2.3 we get from second fundamental theorem
for ε > 0 that

(n+ 1) T (r, f) (3.2)

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 1;F |= 1) +N(r, 1;F |≥ 2)

−N0(r, 0; f
′
) + S(r, f)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f)

}
+N(r, 0; g) +N(r, b; g) +N(r,∞; g)

+N(r, 1;G |≥ 2) +N∗(r, 1;F,G) +N0(r, 0; g
′
) + S(r, f) + S(r, g)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N(r, 0; g) +N(r,∞; g)

}
+N(r, b; g)

+S(r, f) + S(r, g)

≤ (11− 2Θ(0; f)− 2Θ(0; g)− 2Θ(∞; f)− 2Θ(∞; g)− 2Θ(b; f)−Θ(b; g)

+ε)T (r) + S(r).

In a similar way we can obtain

(n+ 1) T (r, g) (3.3)

≤ (11− 2Θ(0; f)− 2Θ(0; g)− 2Θ(∞; f)− 2Θ(∞; g)−Θ(b; f)− 2Θ(b; g)

+ε)T (r) + S(r).

Combining (3.2) and (3.3) we see that

(n− 10 + 2Θ(0; f) + 2Θ(∞; f) + Θ(b; f) + 2Θ(0; g) + 2Θ(∞; g) (3.4)

+Θ(b; g) + min{Θ(b; f),Θ(b; g)} − ε ) T (r) ≤ S(r).

Since ε > 0, (3.4) leads to a contradiction.
While m = 1, using Lemma 2.5, (3.1) changes to

N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +N∗(r, 1;F,G) (3.5)

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) +NL(r, 1;F )

≤ N(r, 0; g) +N(r,∞; g) +
1

2
{N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g).

So using (3.5), Lemmas 2.1 and 2.3 and proceeding as in (3.2) we get from second
fundamental theorem for ε > 0 that

(n+ 1) T (r, f) (3.6)

≤ 2
{
N(r, 0; f) +N(r, b; f) +N(r,∞; f)

}
+N(r, 0; g) +N(r, b; g) +N(r,∞; g)

+N(r, 0; g) +N(r,∞; g) +
1

2
{N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g)

≤
{
5

2
N(r, 0; f) + 2N(r, b; f) +

5

2
N(r,∞; f) + 2N(r, 0; g) + 2N(r,∞; g)

}
+N(r, b; g) + S(r, f) + S(r, g)

≤
(
12− 5

2
Θ(0; f)− 2Θ(0; g)− 5

2
Θ(∞; f)− 2Θ(∞; g)− 2Θ(b; f)−Θ(b; g)

+ε)T (r) + S(r).
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Similarly we can obtain

(n+ 1) T (r, g) (3.7)

≤
(
12− 2Θ(0; f)− 5

2
Θ(0; g)− 2Θ(∞; f)− 5

2
Θ(∞; g)−Θ(b; f)

−2Θ(b; g) + ε)T (r) + S(r).

Combining (3.6) and (3.7) we see that

(n− 11 + 2Θ(0; f) + 2Θ(∞; f) + Θ(b; f) + 2Θ(0; g) + 2Θ(∞; g) (3.8)

+Θ(b; g) + min{Θ(b; f),Θ(b; g)}+ 1

2
min{Θ(0; f) + Θ(∞; f),Θ(0; g)

+Θ(∞; g)} − ε ) T (r) ≤ S(r).

Since ε > 0, (3.8) leads to a contradiction.
Subcase 1.2. m = 0. Using Lemma 2.5 we note that

N0(r, 0; g
′
) +N

(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) (3.9)

≤ N0(r, 0; g
′
) +N

(2

E (r, 1;G) +NL(r, 1;G) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N0(r, 0; g
′
) +N(r, 1;G |≥ 2) +NL(r, 1;G) + 2NL(r, 1;F )

≤ N(r, 0; g
′
| g ̸= 0) +N(r, 1;G |≥ 2) + 2N(r, 1;F |≥ 2)

≤ 2{N(r, 0; g
′
| g ̸= 0) +N(r, 0; f

′
| f ̸= 0)}

≤ 2{N(r, 0; g) +N(r,∞; g) +N(r, 0; f) +N(r,∞; f)}+ S(r, f) + S(r, g).

Hence using (3.9), Lemmas 2.1 and 2.3 we get from second fundamental theorem
for ε > 0 that

(n+ 1) T (r, f) (3.10)

≤ N(r, 0; f) +N(r, b; f) +N(r,∞; f) +N
1)
E (r, 1;F ) +NL(r, 1;F )

+NL(r, 1;G) +N
(2

E (r, 1;F )−N0(r, 0; f
′
) + S(r, f)

≤ 2
{
N(r, 0; f) +N(r,∞; f) +N(r, b; f)

}
+N(r, 0; g) +N(r, b; g)

+N(r,∞; g) +N
(2

E (r, 1;F ) + 2NL(r, 1;G) + 2NL(r, 1;F ) +N0(r, 0; g
′
)

+S(r, f) + S(r, g)

≤ 4
{
N(r, 0; f) +N(r,∞; f)

}
+ 3{N(r, 0; g) +N(r,∞; g)}+ 2N(r, b; f)

+N(r, b; g) + S(r, f) + S(r, g)

≤ (17− 4Θ(0; f)− 4Θ(∞; f)− 3Θ(0; g)− 3Θ(∞; g)− 2Θ(b; f)−Θ(b; g)

+ε)T (r) + S(r).

In a similar manner we can obtain

(n+ 1) T (r, g) (3.11)

≤ (17− 3Θ(0; f)− 3Θ(∞; f)− 4Θ(0; g)− 4Θ(∞; g)−Θ(b; f)

−2Θ(b; g) + ε)T (r) + S(r).
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Combining (3.10) and (3.11) we see that

(n− 16 + 3Θ(0; f) + 3Θ(∞; f) + Θ(b; f) + 3Θ(0; g) + 3Θ(∞; g) (3.12)

+Θ(b; g) + min{Θ(0; f) + Θ(b; f) + Θ(∞; f),Θ(0; g) + Θ(b; g)

+Θ(∞; g)} − ε)T (r) ≤ S(r).

Since ε > 0, (3.12) leads to a contradiction.
Case 2. Suppose that H ≡ 0. Then

F ≡ AG+B

CG+D
, (3.13)

where A, B, C, D are constants such that AD −BC ̸= 0. Also

T (r, F ) = T (r,G) +O(1),

and hence from Lemma 2.3 we have

T (r, f) = T (r, g) +O(1). (3.14)

From (1.4) we note that N(r, c;F ) ≤ N(r, b; f) + (n− 3)T (r, f) ≤ (n− 2)T (r, f) +
S(r, f). Similarly N(r, c;G) ≤ (n − 2)T (r, g) + S(r, g). We also note from Lemma
2.4 that F and G share (1,∞). We now consider the following cases.
Subcase 2.1. Let AC ̸= 0. Suppose B ̸= 0. From (3.13) we get

N

(
r,− B

A
;G

)
= N(r, 0;F ). (3.15)

In view of (3.14), (3.15), Lemma 2.3 and the second fundamental theorem we
get

nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N

(
r,− B

A
;G

)
+ S(r,G)

≤ N(r, 0; g) +N(r,∞; g) +N(r, α1; g) +N(r, α2; g) +N(r, 0; f) + S(r, g)

≤ 4T (r, g) + T (r, f) + S(r, g) ≤ 5T (r, g) + S(r, g),

which is a contradiction for n ≥ 6. So we must have B = 0 and in this case (3.13)
changes to

F ≡
A
C G

G+ D
C

. (3.16)

From (3.16) we see that

N(r,∞;F ) = N

(
r,− D

C
;G

)
. (3.17)

Suppose c ̸= −D
C . So in view of (3.14), (3.17), Lemma 2.3 and the second funda-

mental theorem we obtain

2nT (r, g) ≤ N(r, 0;G) +N(r,∞;G) +N

(
r,− D

C
;G

)
+N(r, c;G) + S(r,G)

≤ N(r, 0; g) + 3T (r, g) + 3T (r, f) + (n− 2)T (r, g) + S(r, g)

≤ (n+ 5)T (r, g) + S(r, g),

which implies a contradiction for n ≥ 6.

Now suppose c = −D
C . Since F and G share (1,∞), from (3.16) we get 1 =

A
C

1−c ,
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that is A
C = 1− c. Consequently from (3.16) we get

G ≡ c F

F − (1− c)
. (3.18)

Clearly c ̸= 1− c, since according to the statement of the theorem c ̸= 1
2 . So from

the second fundamental theorem, (3.14), (3.18) and Lemma 2.3 we see that

2nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) +N (r, 1− c;F ) +N(r, c;F ) + S(r, F )

≤ N(r, 0; f) +N(r,∞; f) +N(r, α1; f) +N(r, α2; f) +N(r,∞; g)

+N(r, α1; g) +N(r, α2; g) + (n− 2)T (r, f) + S(r, f)

≤ (n+ 5)T (r, f) + S(r, f),

which leads to a contradiction for n ≥ 6.
Subcase 2.2. Let A ̸= 0 and C = 0. Then F = αG+β, where α = A

D and β = B
D .

If F has no 1-point, by the second fundamental theorem and Lemma 2.3 we get

nT (r, f) ≤ N(r, 0;F ) +N(r,∞;F ) + S(r, f)

≤ 4T (r, f) + S(r, f),

which implies a contradiction for n ≥ 6.
If F and G have some 1-points then α+ β = 1 and so

F ≡ αG+ 1− α. (3.19)

Suppose α ̸= 1. If 1 − α ̸= c then in view of (3.14), Lemma 2.3 and the second
fundamental theorem we get

2nT (r, f) ≤ N(r, 0;F ) +N (r, c;F ) +N(r, 1− α;F ) +N(r,∞;F ) + S(r, F )

≤ (n+ 2)T (r, f) +N(r, 0;G) + S(r, f)

≤ (n+ 3)T (r, f) + S(r, f),

which implies a contradiction for n ≥ 6. If 1− α = c, then we have from (3.19)

F ≡ (1− c)G+ c.

Since c ̸= 1, by the second fundamental theorem we can obtain using (3.14) and
Lemma 2.3 that

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N

(
r,

c

c− 1
;G

)
+N(r,∞;G) + S(r,G)

≤ (n+ 2)T (r, g) +N(r, 0;F ) + S(r, g)

≤ (n+ 3)T (r, g) + S(r, g),

which implies a contradiction since n ≥ 6.
So α = 1 and hence F ≡ G. So by Lemma 2.7 we get f ≡ g.

Subcase 2.3. Let A = 0 and C ̸= 0. Then F ≡ 1
γG+δ , where γ = C

B and δ = D
B .

If F has no 1-point then as in Subcase 2.2 we can deduce a contradiction.
If F and G have some 1-points then γ + δ = 1 and so

F ≡ 1

γG+ 1− γ
. (3.20)

Suppose γ ̸= 1. If 1
1−γ ̸= c, then by the second fundamental theorem, (3.14) and
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Lemma 2.3 we get

2nT (r, f) ≤ N(r, 0;F ) +N(r,
1

1− γ
;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, f)

≤ (n+ 2)T (r, f) +N(r, 0;G) + S(r, f)

≤ (n+ 3)T (r, f) + S(r, f),

which gives a contradiction for n ≥ 6. If 1
1−γ = c, from (3.20) we have

F ≡ c

(c− 1) G+ 1
. (3.21)

If c ̸= 1
1−c , the second fundamental theorem with the help of (3.14), (3.21) and

Lemma 2.3 yields

2nT (r, g) ≤ N(r, 0;G) +N(r, c;G) +N

(
r,

1

1− c
;G

)
+N(r,∞;G) + S(r,G)

≤ (n+ 2)T (r, g) +N(r,∞;F ) + S(r, g)

≤ (n+ 5)T (r, g) + S(r, g),

which implies a contradiction since n ≥ 6. On the other hand if c = 1
1−c then from

(3.21) we have

G ≡ c(F − c)

F
.

So from the second fundamental theorem and (3.14) it follows that

nT (r, f) ≤ N(r, 0;F ) +N(r, c;F ) +N(r,∞;F ) + S(r, F )

≤ 4T (r, f) +N(r, 0;G) + S(r, f)

≤ 5T (r, f) + S(r, f),

which implies a contradiction since n ≥ 6. So we must have γ = 1 then FG ≡ 1,
which is impossible by Lemma 2.6. This completes the proof of the theorem. �
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