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HARMONIC ANALYSIS AND UNCERTAINTY PRINCIPLES FOR

INTEGRAL TRANSFORMS GENERALIZING THE SPHERICAL

MEAN OPERATOR

(COMMUNICATED BY HUSEIN BOR)

KHALED HLEILI, SLIM OMRI, LAKHDAR TANNECH RACHDI

Abstract. For m,n ∈ N; m > n > 1, we define an integral transform Rm,n

that generalizes the spherical mean operator. We establish many harmonic
analysis results for the Fourier transform Fm,n connected with Rm,n. Next,

we establish inversion formulas for the operator Rm,n and its dual tRm,n.
Finally, we prove some uncertainty principles related to the Fourier transform
Fm,n.

1. Introduction

The spherical mean operator R is defined, for a function f on R×Rn, even with
respect to the first variable, as

R(f)(r, x) =

∫
Sn

f((0, x) + rω)dσn(ω); (r, x) ∈ R× Rn.

where Sn is the unit sphere: Sn = {ω ∈ R × Rn ; |ω| = 1} and σn is the surface
measure on Sn normalized to have total measure one.

The dual of the spherical mean operator tR is defined by

tR(g)(r, x) =
1

(2π)
n
2

∫
Rn

g(
√
r2 + |x− y|2, y)dy,

where dy is the Lebesgue measure on Rn.
The spherical mean operator R and its dual tR play an important role and have

many applications, for example, in image processing of so-called synthetic aperture
radar (SAR) data [13, 14], or in the linearized inverse scattering problem in acoustics
[10]. Many aspects of such operator have been studied [2, 7, 16, 19, 20, 23, 24, 26].

In [3] Baccar, Ben Hamadi and Rachdi defined and studied the Riemann-Liouville
operator Rα which generalizes the spherical mean operator in dimension two, and
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in the same work, the authors established several inversions formula connected with
the operator Rα. In [15] Hleili, Omri and Rachdi proved many importants uncer-
tainty principles for the same operator Rα.

Our purpose in this work is to define and study a class of integral transforms
which generalizes the spherical mean operator R in dimension n, and to establish
several uncertainty principles for this class of integral transforms.

Namely, for every integers m > n > 1, we define the integral transform Rm,n by

Rm,n(f)(r, x) =


2Γ(m+1

2 )

Γ(m−n
2 )Γ(n+1

2 )

∫ 1

0

∫
Sn

f((0, x) + rtω)

×(1− t2)
m−n

2 −1tndtdσn(ω), if m > n,∫
Sn

f((0, x) + rω)dσn(ω), if m = n,

where f is a continuous function on R×Rn, even with respect to the first variable.

The dual operator tRm,n is defined by

tRm,n(f)(s, y) =


1

2
m
2 Γ(m−n

2 )π
n
2

∫ ∫
s2+|z|2<r2

f(r, z + y)

×(r2 − s2 − |z|2)m−n
2 −1rdrdz if m > n,

1

(2π)
n
2

∫
Rn

f(
√
s2 + |x− y|2, x)dx if m = n.

We associate to the operator Rm,n, the Fourier transform Fm,n defined by

∀(µ, λ) ∈ Υ ; Fm,n(f)(µ, λ) =

∫ +∞

0

∫
Rn

f(r, x)φµ,λ(r, x) dνm,n(r, x),

where
• φµ,λ(r, x) = Rm,n

(
cos(µ.)e−i⟨λ|.⟩

)
(r, x) = jm−1

2

(
r
√
µ2 + λ2

)
e−i⟨λ|x⟩, and jm−1

2
,

is the modified Bessel function of the first kind and index
m− 1

2
.

• dνm,n is the measure defined on [0,+∞[×Rn, by

dνm,n(r, x) =
rmdr

2
m−1

2 Γ(m+1
2 )

⊗ dx

(2π)
n
2
.

• Υ is the set given by

Υ = R× Rn ∪
{
(it, x) | (t, x) ∈ R× Rn , |t| 6 |x|

}
.

Then we have established the harmonic analysis related to the Fourier trans-
form Fm,n. Next, we define and study the fractional powers of the Bessel operator

ℓα =
∂2

∂r2
+

2α+ 1

r

∂

∂r
, α > − 1

2 , and the Laplacian operator ∆ =
∂2

∂r2
+

n∑
i=1

∂2

∂x2i
.

Using these fractional powers, we determine some subspaces of the schwartz
space Se (R× Rn) (the space of infinitely differentiable functions on R×Rn rapidly
decreasing together with every their derivatives and even with respect to the first
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variable) where Rm,n and tRm,n are topological isomorphisms and we give the
inverse isomorphisms, more precisely we have the following inversion formulas

f = K1
m,n

tRm,nRm,n(f),

g = Rm,nK
1
m,n

tRm,n(g).

and

f = tRm,nK
2
m,nRm,n(f),

g = K2
m,nRm,n

tRm,n(g),

where the operators K1
m,n and K2

m,n are expressed in terms of the fractional powers
of ℓα and ∆.

On the other hand, the uncertainty principles play an important role in har-
monic analysis and have been studied by many authors and from many points of
view [11, 12].These principles state that a function f and its Fourier transform

f̂ cannot be simultaneously sharply localized.Theorems of Hardy, Morgan, Beurl-
ing,... are established for several Fourier transforms [6, 18, 21, 22].

In this context, we have studied and established some important uncertainty
principles for the Fourier transform Fm,n. More precisely we have proved the fol-
lowing Beurling-Hrmander type theorem

• Let f ∈ L2(dνm,n), and let d be a real number, d > 0. If∫ ∫
Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)d

e|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ) < +∞.

Then there exist a positive constant a and a polynomial P on R × Rn, even with
respect to the first variable, such that

∀(r, x) ∈ R× Rn, f(r, x) = P (r, x)e−a(r2+|x|2),

with deg(P ) <
d− (m+ n+ 1)

2
.

Where
• dγm,n is the spectral measure that will be defined in the second section.
• Υ+ is the subset of Υ, given by

Υ+ = [0,+∞[×Rn ∪
{
(it, x) | (t, x) ∈ [0,+∞[×Rn , t 6 |x|

}
.

• θ is the bijective function defined on the set Υ+ by

θ(µ, λ) = (
√
µ2 + |λ|2, λ).

The precedent theorem allows us to establish the Gelfand-Shilov and Cowling-Price
theorems.

• (Gelfand-Shilov) Let p, q be two conjugate exponents, p, q ∈]1,+∞[ and let ξ, η
be non negative real numbers such that ξη > 1. Let f be a measurable function on
R× Rn, even with respect to the first variable, such that f ∈ L2(dνm,n).
If ∫ +∞

0

∫
Rn

|f(r, x)|e
ξp|(r,x)|p

p

(1 + |(r, x)|)d
dνm,n(r, x) < +∞,
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and ∫ ∫
Υ+

|Fm,n(f)(µ, λ)|e
ηq|θ(µ,λ)|q

q

(1 + |θ(µ, λ)|)d
dγm,n(µ, λ) < +∞ ; d > 0.

Then

i) For d 6 m+ n+ 1

2
, f = 0.

ii) For d >
m+ n+ 1

2
, we have

a) f = 0 for ξη > 1.
b) f = 0 for ξη = 1, and p ̸= 2.

c) f(r, x) = P (r, x)e−a(r2+|x|2) for ξη = 1 and p = q = 2,
where a > 0 and P is a polynomial on R×Rn even with respect to the first variable,

with deg(P ) < d− m+ n+ 1

2
.

• (Cowling-Price) Let ξ, η, ω1, ω2 be non negative real numbers such that ξη > 1

4
.

Let p, q be two exponents, p, q ∈ [1,+∞], and let f be a measurable function on
R× Rn, even with respect to the first variable such that f ∈ L2(dνm,n).
If ∥∥∥∥∥ eξ|(.,.)|

2

(1 + |(., .)|)ω1
f

∥∥∥∥∥
p,νm,n

< +∞,

and ∥∥∥∥∥ eη|θ(.,.)|
2

(1 + |θ(., .)|)ω2
Fm,n(f)

∥∥∥∥∥
q,γm,n

< +∞,

then

i) For ξη >
1

4
, f = 0.

ii) For ξη =
1

4
, there exist a positive constant a and a polynomial P on R × Rn,

even with respect to the first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2).

2. The operators Rm,n and its dual tRm,n

In this section, we define the operators Rm,n and its dual tRm,n and we give
some properties.
Let m,n be two integers such that m > n > 1.

For every (µ, λ) ∈ C× Cn, the system
∂

∂xj
u(r, x) = −iλju(r, x), if 1 6 j 6 n,

Ξu(r, x) = −µ2u(r, x),

u(0, 0) = 1;
∂

∂r
u(0, x) = 0,∀x ∈ Rn,

admits a unique solution φµ,λ, given by

∀(r, x) ∈ R× Rn; φµ,λ(r, x) = jm−1
2

(r
√
µ2 + λ2)e−i⟨λ|x⟩, (2.1)
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where
• λ2 = λ21 + ...+ λ2n; λ = (λ1, ..., λn) ∈ Cn,
• ⟨λ|x⟩ = λ1x1 + ...+ λnxn; x = (x1, ..., xn) ∈ Rn,
• Ξ is the operator given by

Ξ =
∂2

∂r2
+
m

r

∂

∂r
−

n∑
j=1

∂2

∂x2j
. (2.2)

• jm−1
2

is the modified Bessel function defined by

jm−1
2

(z) =
2

m−1
2 Γ(m+1

2 )

z
m−1

2

Jm−1
2

(z) = Γ(
m+ 1

2
)

+∞∑
k=0

(−1)k

k!Γ(m+1
2 + k)

(
z

2
)2k, z ∈ C,

(2.3)
and Jm−1

2
is the Bessel function of the first kind and index m−1

2 [8, 9, 17, 25].

The modified Bessel function jm−1
2

has the following integral representation [1, 17],

for every z ∈ C, we have

jm−1
2

(z) =
2Γ(m+1

2 )
√
πΓ(m2 )

∫ 1

0

(1− t2)
m
2 −1 cos(zt)dt. (2.4)

From relation (2.4), we deduce that for every z ∈ C, and for every k ∈ N, we have∣∣j(k)m−1
2

(z)
∣∣ 6 e|Im(z)|. (2.5)

From the properties of the modified Bessel function jm−1
2

, we deduce that the

eigenfunction φµ,λ is bounded on R× Rn if and only if (µ, λ) belongs to the set

Υ = R× Rn ∪
{
(it, x) | (t, x) ∈ R× Rn , |t| 6 |x|

}
, (2.6)

and in this case

sup
(r,x)∈R×Rn

|φµ,λ(r, x)| = 1, (2.7)

where |x| =
√
x21 + ...+ x2n; x = (x1, ..., xn) ∈ Rn.

For real numbers a > b > −1/2, we define the Sonine transform Sa,b by

Sa,b(f)(r, x) =

 2Γ(a+ 1)

Γ(a− b)Γ(b+ 1)

∫ 1

0

f(rt, x)(1− t2)a−b−1t2b+1dt, if a > b;

f(r, x), if a = b.
(2.8)

It is well known, see for example [1, 17], that for every (µ, λ) ∈ C× Cn, we have

∀(r, x) ∈ R× Rn, Sa,b

(
jb(µ.)e

−i⟨λ|.⟩)(r, x) = ja(rµ)e
−i⟨λ|x⟩. (2.9)

Proposition 2.1. For every (µ, λ) ∈ C × Cn, the eigenfunction φµ,λ has the fol-
lowing integral representation

φµ,λ(r, x) =


2Γ(m+1

2 )

Γ(m−n
2 )Γ(n+1

2 )

∫ 1

0

∫
Sn

(1− t2)
m−n

2 −1 cos(rtµη)

×e−i⟨λ|x+rtξ⟩tndtdσn(η, ξ), if m > n,∫
Sn

cos(rµη)e−i⟨λ|x+rξ⟩dσn(η, ξ), if m = n,

(2.10)
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where Sn = {(η, ξ) ∈ R × Rn; η2 + |ξ|2 = 1} is the unit sphere of R × Rn, and σn
is the surface measure on Sn normalized to have total measure one.

Proof. • If m > n, it is well known that for every (µ, λ) ∈ C× Cn, we have

jn−1
2

(r
√
µ2 + λ2) =

∫
Sn

cos(rµη)e−i⟨λ|rξ⟩dσn(η, ξ). (2.11)

On the other hand and according to relation (2.9), we have for every (µ, λ) ∈ C×Cn,
and for every (r, x) ∈ R× Rn

Sm−1
2 ,n−1

2

(
jn−1

2
(.
√
µ2 + λ2)e−i⟨λ|.⟩)(r, x) = jm−1

2
(r
√
µ2 + λ2)e−i⟨λ|x⟩. (2.12)

Hence by combining relations (2.8), (2.11) and (2.12), we get for every (µ, λ) ∈
C× Cn and for every (r, x) ∈ R× Rn,

φµ,λ(r, x) =
2Γ(m+1

2 )

Γ(m−n
2 )Γ(n+1

2 )

∫ 1

0

∫
Sn

(1−t2)
m−n

2 −1 cos(rtµη)e−i⟨λ|x+rtξ⟩tndtdσn(η, ξ).

• If m = n, then the result follows from relations (2.1) and (2.11). �

The precedent Mehler integral representation of the eigenfunction φµ,λ allows us

to define the integral transform Rm,n, connected with operators
∂

∂xj
; 1 6 j 6 n

and Ξ. More precisely, we have

Definition 2.2. We define the integral transform Rm,n associated with operators
∂

∂xj
; 1 6 j 6 n and Ξ to be

Rm,n(f)(r, x) =


2Γ(m+1

2 )

Γ(m−n
2 )Γ(n+1

2 )

∫ 1

0

∫
Sn

f((0, x) + rtω)

×(1− t2)
m−n

2 −1tndtdσn(ω), if m > n,∫
Sn

f((0, x) + rω)dσn(ω), if m = n,

(2.13)

where f is a continuous function on R×Rn, even with respect to the first variable.

Remark 2.3. i) From the Proposition 2.1 and Definition 2.2, we have

φµ,λ(r, x) = Rm,n

(
cos(µ.) exp(−i⟨λ|.⟩)

)
(r, x). (2.14)

ii) We can easily see, as in [5], that the integral transform Rm,n is continuous and
injective from Ee(R×Rn) (the space of infinitely differentiable functions on R×Rn,
even with respect to the first variable) into itself.

We denote by
• dmn+1 the measure defined on [0,+∞[×Rn, by

dmn+1(r, x) =

√
2

π

1

(2π)
n
2
dr ⊗ dx, (2.15)
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where dx is the Lebesgue measure on Rn.
• Lp(dmn+1) the space of measurable functions f on [0,+∞[×Rn, such that

∥f∥p,mn+1 =
(∫ +∞

0

∫
Rn

|f(r, x)|p dmn+1(r, x)
) 1

p

< +∞, if p ∈ [1,+∞[,

∥f∥∞,mn+1 = ess sup
(r,x)∈[0,+∞[×Rn

|f(r, x)| < +∞, if p = +∞.

• dνm,n, the measure defined on [0,+∞[×Rn, by

dνm,n(r, x) =
rmdr

2
m−1

2 Γ(m+1
2 )

⊗ dx

(2π)
n
2
. (2.16)

• Lp(dνm,n), the Lebesgue space of measurable functions f on [0,+∞[×Rn, such
that ∥f∥p,νm,n < +∞.
• Se(R × Rn) the Shwartz’s space formed by the infinitely differentiable functions
on R×Rn, rapidly decreasing together with every their derivatives, and even with
respect to the first variable.
• Ce(R × Rn) the space of continuous functions on R × Rn, even with respect to
the first variable.

Lemma 2.4. i) For every function f ∈ L1(dνm,n), the function tRm,n(f) defined
by

tRm,n(f)(s, y) =


1

2
m
2 Γ(m−n

2 )π
n
2

∫ ∫
s2+|z|2<r2

f(r, z + y)

×(r2 − s2 − |z|2)m−n
2 −1rdrdz if m > n,

1

(2π)
n
2

∫
Rn

f(
√
s2 + |x− y|2, x)dx if m = n.

belongs to L1(dmn+1) and we have

∥tRm,n(f)∥1,mn+1
6 ∥f∥1,νm,n

. (2.17)

ii) For every bounded function f ∈ Ce(R×Rn), and for every function g ∈ L1(dνm,n),
we have∫ +∞

0

∫
Rn

Rm,n(f)(r, x)g(r, x)dνm,n(r, x)

=

∫ +∞

0

∫
Rn

f(s, y)tRm,n(g)(s, y)dmn+1(s, y),

(2.18)

Proof. i) Let f ∈ L1(dνm,n).
• If m > n, we have∣∣∣tRm,n(f)(s, y)

∣∣∣
6 1

2
m
2 Γ(m−n

2 )π
n
2

∫ ∫
s2+|z|2<r2

|f(r, z + y)|(r2 − s2 − |z|2)
m−n

2 −1rdrdz,
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and using Fubini’s theorem, we obtain∫ +∞

0

∫
Rn

∣∣∣tRm,n(f)(s, y)
∣∣∣dmn+1(s, y)

6 1

2
m
2 Γ(m−n

2 )(2π)
n
2 π

n
2

√
2

π

∫ +∞

0

∫
Rn

(∫ ∫
s2+|z|2<r2

|f(r, z + y)|

× (r2 − s2 − |z|2)
m−n

2 −1rdrdz
)
dsdy

=
1

2
m+n−1

2 Γ(m−n
2 )πn+ 1

2

∫ +∞

0

[ ∫ ∫
s2+|z|2<r2

(∫
Rn

|f(r, z + y)| dy
)

× (r2 − s2 − |z|2)
m−n

2 −1rdrdz
]
ds

=
1

2
m+n−1

2 Γ(m−n
2 )πn+ 1

2

∫ +∞

0

[ ∫ ∫
s2+|z|2<r2

(∫
Rn

|f(r, y)| dy
)

× (r2 − s2 − |z|2)
m−n

2 −1rdrdz
]
ds

=
1

2
m+n−1

2 Γ(m−n
2 )πn+ 1

2

∫ +∞

0

∫
Rn

|f(r, y)|

×
(∫ ∫

s2+|z|2<r2
(r2 − s2 − |z|2)

m−n
2 −1dsdz

)
rdrdy

=
1

2
m+n−3

2 Γ(m−n
2 )Γ(n+1

2 )π
n
2

∫ +∞

0

∫
Rn

|f(r, y)|
(∫ r

0

(r2 − t2)
m−n

2 −1tndt
)
rdrdy.

From the fact that∫ r

0

(r2 − t2)
m−n

2 −1tndt =
Γ(m−n

2 )Γ(n+1
2 )

2Γ(m+1
2 )

rm−1,

we deduce that∫ +∞

0

∫
Rn

∣∣∣tRm,n(f)(s, y)
∣∣∣dmn+1(s, y)

6 1

2
m−1

2 Γ(m+1
2 )(2π)

n
2

∫ +∞

0

∫
Rn

|f(r, y)|rmdrdy

= ∥f∥1,νm,n .

• The case m = n may be treated similarly .

ii)• If m > n, then by relation (2.13), we have

Rm,n(f)(r, x)

=
Γ(m+1

2 )

Γ(m−n
2 )π

n+1
2

r1−m

∫ ∫
s2+|y|2<r2

f(s, x+ y)(r2 − s2 − |y|2)
m−n

2 −1dsdy

=
Γ(m+1

2 )

Γ(m−n
2 )π

n+1
2

r1−m

∫ ∫
s2+|x−y|2<r2

f(s, y)(r2 − s2 − |x− y|2)
m−n

2 −1dsdy,
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and by Fubini’s theorem, we get∫ +∞

0

∫
Rn

Rm,n(f)(r, x)g(r, x)dνm,n(r, x)

=
1

2
m−1

2 Γ(m−n
2 )π

n+1
2 (2π)

n
2

∫ +∞

0

∫
Rn

g(r, x)

×
(∫ ∫

s2+|x−y|2<r2
f(s, y)(r2 − s2 − |x− y|2)

m−n
2 −1dsdy

)
rdrdx

=

∫ +∞

0

∫
Rn

f(s, y)
( 1

2
m
2 Γ(m−n

2 )π
n
2

∫ ∫
s2+|x−y|2<r2

g(r, x)

× (r2 − s2 − |x− y|2)
m−n

2 −1rdrdx
)
dmn+1(s, y).

• If m = n, we have∫ +∞

0

∫
Rn

Rn,n(f)(r, x)g(r, x)dνn,n(r, x)

=
1

2
n−1
2 Γ(n+1

2 )(2π)
n
2

∫ +∞

0

∫
Rn

(∫
Sn

f(rω + (0, x))dσn(ω)
)

× g(r, x)rndrdx,

and by Fubini’s theorem,∫ +∞

0

∫
Rn

Rn,n(f)(r, x)g(r, x)dνn,n(r, x)

=
1

2
n−1
2 Γ(n+1

2 )(2π)
n
2

∫
Rn

(∫ +∞

0

∫
Sn

f(rω + (0, x))

× g(r, x)rndrdσn(ω)
)
dx

=
Γ(n+1

2 )

2π
n+1
2 2

n−1
2 Γ(n+1

2 )(2π)
n
2

∫
Rn

(∫
Rn+1

f((s, y) + (0, x))

× g(
√
s2 + |y|2, x)dsdy

)
dx

=
Γ(n+1

2 )

2π
n+1
2 2

n−1
2 Γ(n+1

2 )(2π)
n
2

∫
Rn

(∫
Rn+1

f(s, y)

× g(
√
s2 + |y − x|2, x)dsdy

)
dx

=

∫ +∞

0

∫
Rn

f(s, y)
( 1

(2π)
n
2

∫
Rn

g(
√
s2 + |y − x|2, x)dx

)
dmn+1(s, y).

�
We denote by

• BΥ+ the σ-algebra defined on Υ+ by

BΥ+ = {θ−1(B) , B ∈ BBor([0,+∞[×Rn)},
where the set Υ+ and the function θ are defined in the introduction.
• dγm,n the measure defined on BΥ+ by

∀ A ∈ BΥ+ ; γm,n(A) = νm,n(θ(A)).
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• Lp(dγm,n) the Lebesgue space of measurable functions f on Υ+, such that
∥f∥p,γm,n < +∞.

Then we have the following properties

Proposition 2.5. i) For every nonnegative measurable function g on Υ+, we have∫ ∫
Υ+

g(µ, λ) dγm,n(µ, λ)

=
1

2
m−1

2 Γ(m+1
2 )(2π)

n
2

(∫ +∞

0

∫
Rn

g(µ, λ)(µ2 + |λ|2)
m−1

2 µdµ dλ

+

∫
Rn

∫ |λ|

0

g(iµ, λ)(|λ|2 − µ2)
m−1

2 µdµ dλ
)
.

ii) For every nonnegative measurable function f on [0,+∞[×Rn (respectively in-
tegrable on [0,+∞[×Rn with respect to the measure dνm,n), foθ is a measurable
nonnegative function on Υ+, (respectively integrable on Υ+ with respect to the mea-
sure dγm,n) and we have∫ ∫

Υ+

(f ◦ θ)(µ, λ) dγm,n(µ, λ) =

∫ +∞

0

∫
Rn

f(r, x) dνm,n(r, x). (2.19)

3. The Fourier transform associated with the operator Rm,n

In the next, we shall define the translation operator and the convolution product
associated with the integral transform Rm,n. For this we need the following product
formula satisfied by the function φµ,λ, that is for every (r, x), (s, y) ∈ [0,+∞[×Rn,

φµ,λ(r, x)φµ,λ(s, y) =
Γ(m+1

2 )
√
πΓ(m2 )

∫ π

0

φµ,λ(
√
r2 + s2 + 2rs cos θ, x+ y) sinm−1(θ)dθ.

(3.1)

Definition 3.1. i) For every (r, x) ∈ [0,+∞[×Rn, the translation operator τ(r,x)
associated with the integral transform Rm,n is defined on Lp(dνm,n), p ∈ [1,+∞],
by

τ(r,x)f(s, y) =
Γ(m+1

2 )
√
πΓ(m2 )

∫ π

0

f(
√
r2 + s2 + 2rs cos θ, x+ y) sinm−1(θ)dθ.

ii) The convolution product of f, g ∈ L1(dνm,n) is defined by

∀(r, x) ∈ [0,+∞[×Rn; f ∗ g(r, x) =
∫ +∞

0

∫
Rn

τ(r,−x)(f̌)(s, y)g(s, y)dνm,n(s, y),

where f̌(s, y) = f(s,−y).

We have the following properties

• relation (3.1) can be written: τ(r,x)φµ,λ(s, y) = φµ,λ(r, x)φµ,λ(s, y).
• If f ∈ Lp(dνm,n), 1 6 p 6 +∞, then for every (r, x) ∈ [0,+∞[×Rn, the function
τ(r,x)f belongs to Lp(dνm,n) and we have

||τ(r,x)f ||p,νm,n 6 ||f ||p,νm,n . (3.2)
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In particular, for every f ∈ L1(dνm,n) and (s, y) ∈ [0,+∞[×Rn, the function τ(r,x)f

belongs to L1(dνm,n) and we have∫ +∞

0

∫
Rn

τ(s,y)f(r, x)dνm,n(r, x) =

∫ +∞

0

∫
Rn

f(r, x)dνm,n(r, x). (3.3)

• Let p, q, r ∈ [1,+∞] such that
1

p
+

1

q
= 1 +

1

r
. For every f ∈ Lp(dνm,n), and

g ∈ Lq(dνm,n), the function f ∗ g belongs to Lr(dνm,n) and we have

||f ∗ g||r,νm,n 6 ||f ||p,νm,n ||g||q,νm,n . (3.4)

In the following, we will define the Fourier transform Fm,n connected with Rm,n

and we give its connection with the translation operator and the convolution product
defined above. Next, we shall give some properties that we need in the coming
sections.

Definition 3.2. The Fourier transform Fm,n associated with the integral transform
Rm,n is defined on L1(dνm,n) by

∀(µ, λ) ∈ Υ ; Fm,n(f)(µ, λ) =

∫ +∞

0

∫
Rn

f(r, x)φµ,λ(r, x) dνm,n(r, x),

where φµ,λ is the function given by (2.1) and Υ is the set defined by (2.6).

The Fourier transform Fm,n satisfies the properties

• For every f ∈ L1(dνm,n) and (r, x) ∈ [0,+∞[×Rn, we have

∀(µ, λ) ∈ Υ, Fm,n(τ(r,−x)f)(µ, λ) = φµ,λ(r, x)Fm,n(f)(µ, λ). (3.5)

• For every f, g ∈ L1(dνm,n), we have

∀(µ, λ) ∈ Υ, Fm,n(f ∗ g)(µ, λ) = Fm,n(f)(µ, λ)Fm,n(g)(µ, λ).

• For every f ∈ L1(dνm,n), and (µ, λ) ∈ Υ

Fm,n(f)(µ, λ) = F̃m,n(f) ◦ θ(µ, λ), (3.6)

where for every (µ, λ) ∈ [0,+∞[×Rn,

F̃m,n(f)(µ, λ) =

∫ +∞

0

∫
Rn

f(r, x)jm−1
2

(rµ)e−i⟨λ|x⟩dνm,n(r, x). (3.7)

Moreover, relation (2.7) implies that the Fourier transform Fm,n is a bounded
linear operator from L1(dνm,n) into L

∞(dγm,n), and that for every f ∈ L1(dνm,n),
we have

∥Fm,n(f)∥∞,γm,n 6 ∥f∥1,νm,n . (3.8)

Theorem 3.3 (Inversion formula). Let f ∈ L1(dνm,n) such that Fm,n(f) ∈ L1(dγm,n),
then for almost every (r, x) ∈ [0,+∞[×Rn, we have

f(r, x) =

∫ ∫
Υ+

Fm,n(f)(µ, λ)φµ,λ(r, x) dγm,n(µ, λ)

=

∫ +∞

0

∫
Rn

F̃m,n(f)(µ, λ)jm−1
2

(rµ)ei⟨λ|x⟩ dνm,n(µ, λ).
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Theorem 3.4 (Plancherel theorem). The Fourier transform Fm,n can be extended
to an isometric isomorphism from L2(dνm,n) onto L2(dγm,n). In particular, we
have the Parseval equality, for every f, g ∈ L2(dνm,n)∫ +∞

0

∫
Rn

f(r, x)g(r, x)dνm,n(r, x)

=

∫ ∫
Υ+

Fm,n(f)(µ, λ)Fm,n(g)(µ, λ)dγm,n(µ, λ).

Remark 3.5. i) Let f ∈ L1(dνm,n) and g ∈ L2(dνm,n), by relation (3.3), the
function f ∗ g belongs to L2(dνm,n); moreover

Fm,n(f ∗ g) = Fm,n(f)Fm,n(g). (3.9)

ii) For every f, g ∈ L2(dνm,n); the function f ∗ g belongs to the space Ce,0(R×Rn)
consisting of continuous functions h on R×Rn, even with respect to the first variable
and such that

lim
r2+|x|2→+∞

h(r, x) = 0.

Moreover,

f ∗ g = F−1
m,n(Fm,n(f)Fm,n(g)), (3.10)

where F−1
m,n is the mapping defined on L1(dγm,n) by

F−1
m,n(g)(r, x) =

∫ ∫
Υ+

g(µ, λ)φµ,λ(r, x)dγm,n(µ, λ).

Remark 3.6. From Lemma 2.4 and relation (2.14), we deduce that for every f ∈
L1(dνm,n), we have

∀(µ, λ) ∈ R× Rn, Fm,n(f)(µ, λ) = Λn+1 ◦ tRm,n(f)(µ, λ),

where Λn+1 is the usual Fourier transform defined on [0,+∞[×Rn, by

Λn+1(f)(µ, λ) =

∫ +∞

0

∫
Rn

f(r, x) cos(rµ)e−i⟨λ|x⟩dmn+1(r, x). (3.11)

The following result is an immediate consequence of Fubini’s theorem.

Lemma 3.7. For a bounded function g ∈ Ce(R× Rn), and a function f ∈ Se(R×
Rn), we have∫ +∞

0

∫
Rn

f(r, x)Sm−1
2 ,n−1

2
(g)(r, x) dνm,n(r, x)

=

∫ +∞

0

∫
Rn

tSm−1
2 ,n−1

2
(f)(r, x)g(r, x) dνn,n(r, x),

(3.12)

where tSa,b is the dual of the Sonine transform defined for f ∈ Se(R× Rn), by

tSa,b(f)(r, x) =


1

2a−b−1Γ(a− b)

∫ +∞

r

(t2 − r2)a−b−1f(t, x)t dt, if a > b;

f(r, x), if a = b.
(3.13)
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Proposition 3.8. For every f ∈ L1(dνm,n), the function tSm−1
2 ,n−1

2
(f) belongs to

L1(dνn,n), and we have

∥tSm−1
2 ,n−1

2
(f)∥1,νn,n 6 ∥f∥1,νm,n . (3.14)

Moreover, for every f ∈ Se(R× Rn) we have

∀(µ, λ) ∈ [0,+∞[×Rn, F̃m,n(f)(µ, λ) = F̃n,n ◦ tSm−1
2 ,n−1

2
(f)(µ, λ). (3.15)

The relation (3.15) follows from (2.12) and Lemma (3.7).

Remark 3.9. Since for every m > n, the Fourier transform F̃m,n is a topological
isomorphism from Se(R × Rn) onto itself, then by relation (3.15) we deduce that
the dual transform tSm−1

2 ,n−1
2

is also a topological isomorphism from Se(R × Rn)

onto itself.

4. Fractional powers of Bessel and the Laplacian operators

In the next section, we will establish inversion formulas for the operators Rm,n

and its dual tRm,n. More precisely, we define some functions spaces where the op-
erators Rm,n and tRm,n are topological isomorphisms, and we exhibit the inverse
operators in terms of integro-differential operators. For this we define and study in
this section, the fractional powers of Bessel and Laplacian operators.

We denote by

• Ee(R) the space of even infinitely differentiable functions on R.
• Se(R) the subspace of Ee(R), consisting of functions rapidly decreasing together
with every their derivatives.
• S′

e(R) the space of even tempered distributions on R.
• S′

e(R×Rn) the space of tempered distributions on R×Rn, even with respect to
the first variable.
Each of these spaces is equipped with its usual topology.
• For α ∈ R, α > −1

2 , dωα the measure defined on [0,+∞[ by

dωα(r) =
1

2αΓ(α+ 1)
r2α+1dr. (4.1)

• ℓα the Bessel operator defined on ]0,+∞[ by

ℓα =
∂2

∂r2
+

2α+ 1

r

∂

∂r
, α > −1

2
. (4.2)

• For an even measurable function f on R, Tωα

f denotes the even tempered distri-
bution defined by

∀φ ∈ Se(R), ⟨Tωα

f , φ⟩ =
∫ +∞

0

f(r)φ(r)dωα(r). (4.3)
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• For a measurable function g on R × Rn, even with respect to the first variable,
T

mn+1
g (resp.T

νm,n
g ) denotes the even tempered distribution, defined by

∀φ ∈ S
′

e(R× Rn), ⟨Tmn+1
g , φ⟩ =

∫ +∞

0

∫
Rn

g(r, x)φ(r, x)dmn+1(r, x),(
resp.⟨T νm,n

g , φ⟩ =
∫ +∞

0

∫
Rn

g(r, x)φ(r, x)dνm,n(r, x)
)
, (4.4)

where dmn+1 and dνm,n are the measures given by relations (2.15) and (2.16).

Let a ∈ C, such that Re(a) > −2(α + 1), then the function r 7→ |r|a defines an
even tempered distribution Tωα

|r|a on R . Indeed, let m ∈ N satisfying∫ +∞

0

rRe(a)+2α+1

(1 + r2)m
dr < +∞,

then for every φ ∈ Se(R);

|⟨Tωα

|r|a , φ⟩| 6 Cm,α,aPm(φ),

where

Cm,α,a =
1

2αΓ(α+ 1)

∫ +∞

0

rRe(a)+2α+1

(1 + r2)m
dr,

and

Pm(φ) = sup
k1,k26m

x∈R

(1 + x2)k1 |φ(k2)(x)|.

Now let a ∈ C\{−2(α+1)−k, k ∈ N} andm ∈ N∗ such that Re(a) > −m−2(α+1),
then the value of the following expression∫ 1

0

(
φ(r)−

m−1∑
j=0

φ(j)(0)

j!
rj
)
radωα(r) +

1

2αΓ(α+ 1)

m−1∑
j=0

φ(j)(0)

j!(j + a+ 2α+ 2)
,

is independent of the choice of the parameter m. Hence the mapping

a 7→ Tωα

|r|a

may be extended on C\{−2(α+ 1)− k, k ∈ N}, by setting

⟨Tωα

|r|a , φ⟩ =
∫ 1

0

(
φ(r)−

m−1∑
j=0

φ(j)(0)

j!
rj
)
radωα(r) +

∫ +∞

1

raφ(r)dωα(r)

+
1

2αΓ(α+ 1)

m−1∑
j=0

φ(j)(0)

j!(j + a+ 2α+ 2)

where m is an any integer satisfying Re(a) > −m− 2(α+ 1), and therefore Tωα

|r|a is

an even tempered distribution on R. Thus the mapping

a 7→ Tωα

|r|a

can be extended to a valued function in S
′

e(R), analytic on C\{−2(α+1)−k, k ∈ N}.
On the other hand, the points −2(α+ 1)− k, k ∈ N are simples poles for Tωα

|r|a and

we have

Res(Tωα

|r|a ,−2(α+ 1)− k) =
(−1)k

2αΓ(α+ 1)

δ(k)

k!
,
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in particular

Res(Tωα

|r|a ,−2(α+ 1)− 2k − 1) =
−1

2αΓ(α+ 1)

δ(2k+1)

(2k + 1)!
= 0, over Se(R).

This means that the mapping

a 7→ Tωα

|r|a

is analytic on C\{−2(α+ k + 1), k ∈ N} and

Res(Tωα

|r|a ,−2(α+ k + 1)) =
1

2αΓ(α+ 1)

δ(2k)

(2k)!
.

Definition 4.1. i) The Bessel translation operator ταr is defined on Se(R) by

ταr (f)(s) =


Γ(α+ 1)

√
πΓ(α+ 1

2 )

∫ π

0

f(
√
r2 + s2 + 2rs cos θ) sin2α(θ)dθ, if α > −1

2 ;

1

2
[f(r + s) + f(r − s)], if α = −1

2 .

ii) The Bessel convolution product of f ∈ Se(R) and T ∈ S
′

e(R) is the function
defined by

∀ r ∈ R, T ∗α f(r) = ⟨T, ταr (f)⟩. (4.5)

iii) The Fourier-Bessel transform is defined on Se(R) by

∀µ ∈ R, Fα(f)(µ) =

∫ +∞

0

f(r)jα(rµ)dωα(r), (4.6)

and on S
′

e(R) by
∀φ ∈ Se(R), ⟨Fα(T ), φ⟩ = ⟨T, Fα(φ)⟩. (4.7)

We have the following properties
• Fα is an isomorphism from Se(R) (resp. S

′

e(R)) onto itself, and we have

F−1
α = Fα. (4.8)

• For f ∈ Se(R), and r ∈ R, the function ταr (f) belongs to Se(R) and we have

Fα(τ
α
r f)(µ) = jα(rµ)Fα(f)(µ). (4.9)

• For f ∈ Se(R) and T ∈ S
′

e(R), the function T ∗α f belongs to Ee(R), and is slowly
increasing, moreover

Fα(T
ωα

T∗αf ) = Fα(f)Fα(T ). (4.10)

Proposition 4.2. The mappings

a 7→ Tωα

|r|a , a 7→ Tωα

Γ(a2 + α+ 1)

Γ(−a
2 )

2a+α+1|r|−a−2α−2

(4.11)

defined initially for −2(α + 1) < Re(a) < 0, can be extended to a valued functions

in S
′

e(R), analytic on C\{−2(α+ k + 1), k ∈ N}, and we have

Fα(T
ωα

|r|a) = Tωα

Γ(a2 + α+ 1)

Γ(−a
2 )

2a+α+1|r|−a−2α−2

. (4.12)
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Proof. Let a ∈ C, −2(α+ 1) < Re(a) < 0 and let ψt be the function defined by

ψt(r) = e
−tr2

2 , t > 0.

We have

Fα(ψt)(λ) = t−α−1e
−λ2

2t . (4.13)

On the other hand, for every φ ∈ Se(R), we have∫ +∞

0

Fα(ψt)(r)φ(r)dωα(r) =

∫ +∞

0

Fα(φ)(r)ψt(r)dωα(r), (4.14)

from relations (4.13) and (4.14), we obtain∫ +∞

0

t−α−1e
−r2

2t φ(r)dωα(r) =

∫ +∞

0

Fα(φ)(r)e
−tr2

2 dωα(r).

Multiplying both sides by t−
a+2
2 and integrating over ]0,+∞[, we obtain∫ +∞

0

∫ +∞

0

t−α−1t−
a+2
2 e

−λ2

2t φ(r)dωα(r)dt (4.15)

=

∫ +∞

0

∫ +∞

0

Fα(φ)(r)e
−tr2

2 t−
a+2
2 dωα(r)dt,

(4.16)

and by using Fubini’s theorem, we deduce that∫ +∞

0

Fα(φ)(r)r
adωα(r) = 2a+α+1Γ(

a
2 + α+ 1)

Γ(−a
2 )

∫ +∞

0

φ(r)r−a−2α−2dωα(r).

This shows that for every a ∈ C, such that −2(α+ 1) < Re(a) < 0, we have

Fα(T
ωα

|r|a) = Tωα

Γ(a2 + α+ 1)

Γ(−a
2 )

2a+α+1|r|−a−2α−2

.

The result is then obtained by analytic continuation.
�

Definition 4.3. For a ∈ C\{−(α + k + 1), k ∈ N}, the fractional power of Bessel
operator ℓα is defined on Se(R) by

(−ℓα)af(r) =
(
Tωα

Γ(a+ α+ 1)

Γ(−a)
22a+α+1|s|−2a−2α−2

∗α f
)
(r). (4.17)

It is well known that for f ∈ Se(R), the function (−ℓα)af belongs to Ee(R) and
is slowly increasing, moreover by relations (4.10) and (4.12), we deduce that for
f ∈ Se(R) and a ∈ C\{−(α+ k + 1), k ∈ N}, we have

Fα(T
ωα

(−ℓα)af ) = Fα(f)T
ωα

|r|2a . (4.18)

Let A be the transform defined on Se(R× Rn) by

A (φ)(ρ) =

∫
Sn

φ(ρω)dσn(ω),

then A is a continuous mapping from Se(R× Rn) into Se(R).
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Let a ∈ C, such that Re(a) > −n+1
2 , then the function (r, x) 7→ (r2 + |x|2)a

defines an even tempered distribution T
mn+1

(r2+|x|2)a on R× Rn and we have

⟨Tmn+1

(r2+|x|2)a , φ⟩ =
∫ +∞

0

∫
Rn

(r2 + |x|2)aφ(r, x)dmn+1(r, x)

= ⟨T
ωn−1

2

|r|2a ,A (φ)⟩. (4.19)

From relation (4.19) and Proposition 4.2, we deduce that the valued function in

S
′

e(R× Rn) defined by

a 7→ T
mn+1

(r2+|x|2)a

is analytic on C\{−(n+1
2 + k), k ∈ N}. Moreover, we have

Proposition 4.4. the mappings

a 7→ T
mn+1

(r2+|x|2)a , a 7→ T
mn+1

Γ(n+1
2 + a)

Γ(−a)
2

n+1
2 +2a(r2 + |x|2)−(n+1

2 +a)

(4.20)

defined firstly for −n+1
2 < Re(a) < 0, can be extended to valued functions in S

′

e(R×
Rn), analytic on C\{−(n+1

2 + k), k ∈ N}, and we have

Λn+1(T
mn+1

(r2+|x|2)a) = T
mn+1

Γ(n+1
2 + a)

Γ(−a)
2

n+1
2 +2a(r2 + |x|2)−(n+1

2 +a)

, (4.21)

where Λn+1 is defined on S
′

e(R× Rn) by

⟨Λn+1(T ), φ⟩ = ⟨T,Λn+1(φ)⟩, φ ∈ Se(R× Rn), (4.22)

and Λn+1(φ) is given by relation (3.11).

Proof. Let a ∈ C, such that −(n+1
2 ) < Re(a) < 0, and let ψt, t > 0, be the function

defined on R× Rn, by

ψt(r, x) = e−
t
2 (r

2+|x|2).

We have

Λn+1(ψt)(µ, λ) = t−
n+1
2 e−

1
2t (µ

2+|λ|2).

On the other hand, for every φ ∈ Se(R× Rn), we have∫ +∞

0

∫
Rn

Λn+1(ψt)(r, x)φ(r, x)dmn+1(r, x)

=

∫ +∞

0

∫
Rn

ψt(r, x)Λn+1(φ)(r, x)dmn+1(r, x),

hence,∫ +∞

0

∫
Rn

t−
n+1
2 e−

1
2t (r

2+|x|2)φ(r, x)dmn+1(r, x)

=

∫ +∞

0

∫
Rn

e−
t
2 (r

2+|x|2)Λn+1(φ)(r, x)dmn+1(r, x).
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Multiplying both sides by t−(a+1) and integrating over ]0,+∞[, we obtain∫ +∞

0

(∫ +∞

0

∫
Rn

e−
1
2t (r

2+|x|2)φ(r, x)dmn+1(r, x)
)
t−(n+1

2 +a+1)dt

=

∫ +∞

0

(∫ +∞

0

∫
Rn

e−
t
2 (r

2+|x|2)Λn+1(φ)(r, x)dmn+1(r, x)
)
t−(a+1)dt,

using Fubini’s theorem, we deduce that∫ +∞

0

∫
Rn

Λn+1(φ)(r, x)(r
2 + |x|2)admn+1(r, x)

=
Γ(n+1

2 + a)

Γ(−a)
2

n+1
2 +2a

∫ +∞

0

∫
Rn

φ(r, x)(r2 + |x|2)−(n+1
2 +a)dmn+1(r, x).

This shows that for every a ∈ C, such that −n+1
2 < Re(a) < 0, we have

Λn+1(T
mn+1

(r2+|x|2)a) = T
mn+1

Γ(n+1
2 + a)

Γ(−a)
2

n+1
2 +2a(r2 + |x|2)−(n+1

2 +a)

.

Then the proof is complete by analytic continuation . �

Definition 4.5. For a ∈ C\{−(n+1
2 + k), k ∈ N}, the fractional power of the

Laplacian operator ∆ =
∂2

∂r2
+

n∑
j=1

(
∂

∂xj
)2 is defined on Se(R× Rn) by

(−∆)af(r, x) =
(
T

mn+1

Γ(n+1
2 + a)

Γ(−a)
2

n+1
2 +2a(s2 + |y|2)−(n+1

2 +a)

⋆ f
)
(r, x), (4.23)

where
i) ⋆ is the usual convolution product defined by

T ⋆ f(r, x) = ⟨T, σ(r,−x)(f̌)⟩, T ∈ S
′

e(R× Rn), f ∈ Se(R× Rn); (4.24)

ii) σ(r,x) is the translation operator associated with Λn+1 and given by

σ(r,x)(f)(s, y) =
1

2

[
f(r + s, x+ y) + f(r − s, x+ y)

]
, f ∈ Se(R× Rn). (4.25)

It is well known that for f ∈ Se(R×Rn) and T ∈ S
′

e(R×Rn), the function T ⋆f
belongs to Ee(R× Rn) and is slowly increasing. Moreover

Λn+1(T
mn+1

T⋆f ) = Λn+1(f)Λn+1(T ), (4.26)

thus from relations (4.21) and (4.26), we deduce that for f ∈ Se(R × Rn) and
a ∈ C\{−(n+1

2 + k), k ∈ N},

Λn+1(T
mn+1

(−∆)af ) = Λn+1(f)T
mn+1

(r2+|x|2)a . (4.27)

5. Inversion formulas for Rm,n and tRm,n

In this section, we will define some subspaces of Se(R×Rn) where the operator
Rm,n and its dual tRm,n are topological isomorphisms. Using the fractional powers
defined in the precedent section we give nice expression of the inverse operators.
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We denote by
• N the subspace of Se(R× Rn), consisting of functions f satisfying

∀ k ∈ N, ∀ x ∈ Rn, (
∂

∂r2
)kf(0, x) = 0, (5.1)

where
∂

∂r2
is the singular partial differential operator defined by

∂

∂r2
=

1

r

∂

∂r
. (5.2)

• Se,0(R×Rn) the subspace of Se(R×Rn), constituted by the functions f satisfying

∀ k ∈ N, ∀ x ∈ Rn,

∫ +∞

0

f(r, x)r2kdr = 0. (5.3)

• S0
e (R×Rn) the subspace of Se(R×Rn), constituted by the functions f satisfying

supp(F̃m,n(f)) ⊂
{
(µ, λ) ∈ R× Rn; |µ| > |λ|

}
. (5.4)

Lemma 5.1. i) The usual Fourier transform Λn+1 defined by relation (3.11) is an
isomorphism from Se,0(R× Rn) onto N .
ii) The subspace N can be written as

N =
{
f ∈ Se(R× Rn);∀ k ∈ N, ∀ x ∈ Rn, (

∂

∂r
)2kf(0, x) = 0

}
. (5.5)

Proof. Let f ∈ Se,0(R× Rn).
i) For m > 0, we have

(
∂

∂µ2
)k(jm−1

2
)(rµ) =

(−1)kΓ(m+1
2 )

2kΓ(m+1
2 + k)

r2kjm−1
2 +k(rµ), (5.6)

thus, from the expression of Λn+1, given in Remark 3.6, and the fact that j−1
2
(s) =

cos s, we obtain

(
∂

∂µ2
)k(Λn+1(f))(0, λ) =

(−1)k

2k−
1
2Γ(k + 1

2 )(2π)
n
2

∫
Rn

∫ +∞

0

f(r, x)r2ke−i⟨λ|x⟩drdx,

(5.7)
which gives the result.
ii) The proof of ii) is immediate. �

Theorem 5.2. i) For every real number a, the transforms Aa(f) and Ba(f) defined
respectively on N by

Aa(f)(r, x) = (r2 + |x|2)af(r, x),

and

Ba(f)(r, x) = |r|af(r, x),
are isomorphisms from the space N onto itself.
ii) For f ∈ N , the function B−1(f) defined by

B−1(f)(r, x) =

{
f(
√
r2 − |x|2, x), if |r| > |x|,

0, otherwise,

belongs to the space Se(R× Rn).
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Proof. i) Let a be a real number, by induction for every k ∈ N, there is a polynomial
Pk of n+ 1 variables such that

(
∂

∂r
)k(r2 + |x|2)a = Pk(r, x)(r

2 + |x|2)a−k.

Hence, for every (k, α) ∈ N × Nn, there is a polynomial Pk,α satisfying for every
(r, x) ∈ R× Rn\{(0, 0)},

(
∂

∂r
)kDα

x (r
2 + |x|2)a = Pk,α(r, x)(r

2 + |x|2)a−k−|α|. (5.8)

Let f be a function of the space N , and let (k, α) ∈ N × Nn, then by Leibniz’s
formula, we deduce that for every (r, x) ∈ R× Rn\{(0, 0)}, we have

(
∂

∂r
)kDα

x ((r
2 + |x|2)af(r, x)) =

∑
(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!

× (
∂

∂r
)k1Dβ

x(r
2 + |x|2)a( ∂

∂r
)k−k1Dα−β

x (f)(r, x),

and from relation (5.8), we get

(
∂

∂r
)kDα

x ((r
2 + |x|2)af(r, x)) =

∑
(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!
Pk1,β(r, x)

× (r2 + |x|2)a−k1−|β|(
∂

∂r
)k−k1Dα−β

x (f)(r, x).

Let m, ℓ ∈ N satisfying a−m+ ℓ > 0, and let k, k
′ ∈ N, α ∈ Nn such that k

′ 6 m
and k + |α| 6 m. Since f belongs to the space N , then by using Taylor’s formula
we have

(
∂

∂r
)kDα

x ((r
2 + |x|2)af(r, x))

=
∑

(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!
Pk1,β(r, x)(r

2 + |x|2)a−k1−|β|

× r2ℓ

(2ℓ− 1)!

∫ 1

0

(1− t)2ℓ−1(
∂

∂r
)2ℓ+k−k1Dα−β

x (f)(rt, x)dt; if |r| 6 1,

and

(
∂

∂r
)kDα

x ((r
2 + |x|2)af(r, x))

= −
∑

(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!
Pk1,β(r, x)(r

2 + |x|2)a−k1−|β|

× r2ℓ

(2ℓ− 1)!

∫ +∞

1

(1− t)2ℓ−1(
∂

∂r
)2ℓ+k−k1Dα−β

x (f)(rt, x)dt; if |r| > 1.

This shows that the function Aa(f) is infinitely differentiable on R×Rn, even with
respect the first variable and for every k ∈ N and x ∈ Rn,

(
∂

∂r
)k
[
Aa(f)(r, x))

]
r=0

= 0.

Furthermore, there existm0 ∈ N and a constant C > 0 such that for every (k1, β) 6
(k, α), k + |α| 6 m, we have

|Pk1,β(r, x)| 6 C(1 + r2 + |x|2)m0 .
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• For (r, x) ∈ R× Rn; |r| 6 1, we have

(1 + r2+|x|2)k
′ ∣∣∣( ∂
∂r

)kDα
x ((r

2 + |x|2)af(r, x))
∣∣∣

6 C
∑

(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!
(1 + r2 + |x|2)k

′
+[a]+1−m+ℓ+m0

×
∫ 1

0

∣∣∣( ∂
∂r

)2ℓ+k−k1Dα−β
x (f)(rt, x)

∣∣∣dt
6 C2[a]+1+ℓ

∑
(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!

×
∫ 1

0

(1 + (rt)2 + |x|2)[a]+1+ℓ+m0

∣∣∣( ∂
∂r

)2ℓ+k−k1Dα−β
x (f)(rt, x)

∣∣∣dt
6 C2[a]+1+ℓ+mP2ℓ+m+[a]+m0+1(f). (5.9)

• For (r, x) ∈ R× Rn; |r| > 1, we have

(1 + r2+|x|2)k
′ ∣∣∣( ∂
∂r

)kDα
x ((r

2 + |x|2)af(r, x))
∣∣∣

6 C
∑

(k1,β)6(k,α)

(k, α)!

(k1, β)!(k − k1, α− β)!

×
∫ +∞

1

(1 + (rt)2 + |x|2)[a]+1+3ℓ+m0

∣∣∣( ∂
∂r

)2ℓ+k−k1Dα−β
x (f)(rt, x)

∣∣∣ dt

1 + t2

6 Cπ2mP3ℓ+m+m0+[a]+1(f). (5.10)

Combining relations (5.9) and (5.10), we deduce that Aa(f) belongs to the space
N , and for every m ∈ N,

Pm(Aa(f)) 6 2m+ℓ+[a]+2P3ℓ+m+m0+[a]+1(f). (5.11)

where Pm(φ) = sup
(r,x)∈R×Rn

k16m
k2+|α|6m

(1 + r2 + |x|2)k1

∣∣∣( ∂
∂r

)k2Dα
xφ(r, x)

∣∣∣,
φ ∈ Se(R× Rn).
Hence, for every a ∈ R, the transform Aa is continuous from the space N into itself,
and consequently Aa is an isomorphism from N onto itself, and A −1

a = A−a.
Similarly, one can prove that for every a ∈ R the transform Ba is an isomorphism
from N onto itself, and B−1

a = B−a.
ii) Let f ∈ Se(R× Rn) and let

g(r, x) = B−1(f)(r, x) =

{
f(
√
r2 − |x|2, x), if |r| > |x|,

0, otherwise.

Then by induction for every k ∈ N, there exist real polynomials Pk, 0 6 k 6 n,
such that

(
∂

∂r
)k(g)(r, x) =

k∑
ℓ=0

Pℓ(r)(
∂

∂r2
)ℓ(f)(

√
r2 − |x|2, x).
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On the other hand, for every j ∈ {1, ..., n} and again by induction on αj ∈ N, we
get

(
∂

∂xj
)αj (

∂

∂r
)k(g)(r, x) =

k∑
ℓ=0

Pℓ(r)C
αj

j ((
∂

∂r2
)ℓ(f))(

√
r2 − |x|2, x),

where

Cj = −xj
∂

∂r2
+

∂

∂xj
.

Hence, for every (k, α) ∈ N× Nn, we have

(
∂

∂r
)kDα

x (g)(r, x) =

k∑
ℓ=0

Pℓ(r)C
α1
1 ...Cαn

n ((
∂

∂r2
)ℓ(f))(

√
r2 − |x|2, x),

this shows that B−1(f) is a C∞ function on R×Rn, even with respect to the first
variable.
Let m ∈ N, k, k′ ∈ N and α ∈ Nn satisfying k+ |α| 6 m and k

′ 6 m, then for every
(r, x) ∈ R× Rn, we get

(1 + r2+|x|2)k
′

(
∂

∂r
)kDα

x (B
−1(f))(r, x)

= (1 + r2 + |x|2)k
′ k∑
ℓ=0

Pℓ(r)C
α1
1 ...Cαn

n ((
∂

∂r2
)ℓ(f))(

√
r2 − |x|2, x).

Let m0 ∈ N and M > 0 such that for every ℓ 6 k 6 m

|Pℓ(r)| 6 M(1 + r2)m0 6M(1 + r2 + |x|2)m0 ,

then for every (r, x) ∈ R× Rn, we have

(1 + r2+|x|2)k
′ ∣∣∣( ∂
∂r

)kDα
x (B

−1(f))(r, x)
∣∣∣

6M
k∑

ℓ=0

(1 + r2 + |x|2)k
′
+m0

∣∣∣Cα1
1 ...Cαn

n ((
∂

∂r2
)ℓ(f))(

√
r2 − |x|2, x)

∣∣∣
6M

k∑
ℓ=0

(1 + r2 + 2|x|2)k
′
+m0

∣∣∣Cα1
1 ...Cαn

n ((
∂

∂r2
)ℓ(f))(

√
r2 − |x|2, x)

∣∣∣
6M

k∑
ℓ=0

Pm+m0

(
Cα1

1 ...Cαn
n ((

∂

∂r2
)ℓ(f))

)
. (5.12)

Therefore the function B−1(f) belongs to the space Se(R× Rn). �

Theorem 5.3. The Fourier transform Fm,n associated with the integral transform
Rm,n is an isomorphism from S0

e (R× Rn) onto N .

Proof. Let f ∈ S0
e (R× Rn). From relation (3.6), we get

(
∂

∂µ2
)k(Fm,n(f))(0, λ) = (

∂

∂µ2
)k
(
F̃m,n(f) ◦ θ

)
(0, λ)

=
(( ∂

∂µ2

)k
F̃m,n(f)

)
◦ θ(0, λ) (5.13)

=
( ∂

∂µ2

)k
(F̃m,n(f))(|λ|, λ) = 0,
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because supp(F̃m,n(f)) ⊂
{
(µ, λ) ∈ R × Rn; |µ| > |λ|

}
. This shows that Fm,n

maps injectively S0
e (R× Rn) onto N . On the other hand, let h ∈ N and

g(r, x) =

{
h(
√
r2 − |x|2, x), if |r| > |x|,

0, otherwise.

From Theorem 5.2 ii), it follows that g belongs to Se(R × Rn), then there exists

f ∈ Se(R × Rn) such that F̃m,n(f) = g. Consequently, f ∈ S0
e (R × Rn) and

Fm,n(f) = h. �

From Lemma 5.1, and Theorem 5.3, we deduce the following result

Corollary 5.4. The dual transform tRm,n is an isomorphism from
S0
e (R× Rn) onto Se,0(R× Rn).

Theorem 5.5. The operator K1
m,n defined by

K1
m,n(f) =

√
π

2
m
2 Γ(m+1

2 )
(− ∂2

∂r2
)

1
2 (−∆)

m−1
2 f, (5.14)

is an isomorphism from Se,0(R× Rn) onto itself,
where

(− ∂2

∂r2
)

1
2 f(r, x) = (−ℓ−1

2
)

1
2 (f(., x)) (r). (5.15)

Proof. Let f ∈ Se,0(R× Rn) and φ ∈ Se(R× Rn). Using Fubini’s theorem, we get

⟨Λn+1(T
mn+1

(− ∂2

∂r2
)
1
2 f

), φ⟩

=

∫ +∞

0

∫
Rn

(− ∂2

∂r2
)

1
2 f(r, x)Λn+1(φ)(r, x)dmn+1(r, x)

=
1

(2π)n

∫
Rn

∫
Rn

⟨
T

ω−1
2

(−ℓ−1
2

)
1
2 (f(.,x))

, F−1
2
(φ(., y))

⟩
e−i⟨x|y⟩dxdy,

and by relation (4.18), we obtain

⟨Λn+1(T
mn+1

(− ∂2

∂r2
)
1
2 f

), φ⟩

=
1

(2π)n

∫
Rn

∫
Rn

⟨
F−1

2
(f(., x))T

ω−1
2

|r| , φ(., y)
⟩
e−i⟨x|y⟩dxdy

=

∫ +∞

0

∫
Rn

sφ(s, y)
(∫ +∞

0

∫
Rn

f(r, x) cos(rs)e−i⟨x|y⟩dmn+1(r, x)
)
dmn+1(s, y),

this shows that

Λn+1(T
mn+1

(− ∂2

∂r2
)
1
2 f

) = T
mn+1

|r|Λn+1(f)
. (5.16)

Now, from Lemma 5.1, we deduce that the function

(µ, λ) → |µ|Λn+1(f)(µ, λ) (5.17)
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belongs to the subspace N , then from relation (5.16), it follows that the function

(− ∂2

∂r2
)

1
2 f belongs to the subspace Se,0(R× Rn), and we have

∀(µ, λ) ∈ R× Rn, Λn+1((−
∂2

∂r2
)

1
2 f)(µ, λ) = |µ|Λn+1(f)(µ, λ). (5.18)

By the same way, and using relation (4.27), we deduce that for every f ∈ Se,0(R×
Rn), the function (−∆)

m−1
2 f belongs to the subspace Se,0(R× Rn), and for every

(µ, λ) ∈ R× Rn,

Λn+1((−∆)
m−1

2 f)(µ, λ) = (µ2 + |λ|2)
m−1

2 Λn+1(f)(µ, λ). (5.19)

From relations (5.18) and (5.19), we deduce that

K1
m,n(f)(r, x) =

√
π

2
m
2 Γ(m+1

2 )
Λ−1
n+1

(
(µ2 + |λ|2)

m−1
2 |µ|Λn+1(f)

)
(r, x). (5.20)

Hence, the Theorem follows from Lemma 5.1 and Theorem 5.2. �

We denote by
• For T ∈ S

′

e(R× Rn), φ ∈ Se(R× Rn),

⟨Sa,b(T ), φ⟩ = ⟨T, tSa,b(φ)⟩, (5.21)

where Sa,b; a > b > −1

2
, is the Sonine transform defined by relation (2.8).

• For T ∈ S
′

e(R× Rn), φ ∈ Se(R× Rn),

T ∗ φ(r, x) = ⟨T, τ(r,−x)φ̌⟩, (5.22)

where τ(r,x) is the translation operator given by Definition 3.1.

• F̃m,n is the mapping defined on S
′

e(R× Rn) by

⟨F̃m,n(T ), φ⟩ = ⟨T, F̃m,n(φ)⟩; φ ∈ Se(R× Rn). (5.23)

• Lm−1
2

is the operator defined on Se(R× Rn) by

Lm−1
2

(f)(r, x) = (−ℓm−1
2

)m−1 (f(., x)) (r), (5.24)

where (−ℓm−1
2

)a is the fractional power of Bessel operator given by Definition 4.3.

Theorem 5.6. The operator K2
m,n defined by

K2
m,n(f)(r, x) = Sm−1

2 ,n−1
2

(T ) ∗ ((−Ξ)Lm−1
2

(f̌))(r,−x) (5.25)

is an isomorphism from S0
e (R× Rn) onto itself, where

• T is the distribution defined by

⟨T, φ⟩ = π

2mΓ2(m+1
2 )(2π)

n
2

∫
Rn

φ(|y|, y)dy, (5.26)

• Ξ is the operator given by relation (2.2).

Proof. For f ∈ S0
e (R× Rn), we have

K2
m,n(f)(r, x) = ⟨Sm−1

2 ,n−1
2

(T ), τ(r,x)(−Ξ)Lm−1
2
f⟩

=
π

2mΓ2(m+1
2 )(2π)

n
2

∫
Rn

tSm−1
2 ,n−1

2

(
τ(r,x)(−Ξ)Lm−1

2
f
)
(|y|, y)dy.
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Using inversion formula for the Fourier Bessel transform Fn−1
2

and applying the

Fubini’s theorem, we deduce that

K2
m,n(f)(r, x)

=
π

2mΓ2(m+1
2 )(2π)

n
2

∫
Rn

{∫ +∞

0

∫ +∞

0

tSm−1
2 ,n−1

2

(
τ(r,x)(−Ξ)Lm−1

2
f
)
(t, y)

(5.27)

× jn−1
2

(ts)jn−1
2

(s|y|)dωn(t)dωn(s)
}
dy.

From the fact that
√
π

2
n
2 Γ(n+1

2 )
sn−1jn−1

2
(s|y|) = 1

(2π)
n
2

∫
|λ|<s

e−i⟨λ|y⟩√
s2 − |λ|2

dλ, (5.28)

and again by Fubini’s theorem, we obtain

K2
m,n(f)(r, x)

=

√
π

2m− 1
2Γ2(m+1

2 )(2π)
n
2

∫ +∞

0

∫
|λ|<s

[ ∫ +∞

0

∫
Rn

tSm−1
2 ,n−1

2

(
τ(r,x)(−Ξ)Lm−1

2
f
)
(t, y)

× jn−1
2

(ts)e−i⟨λ|y⟩dνn,n(t, y)
] sdsdλ√

s2 − |λ|2
. (5.29)

Using relation (3.15), we get

K2
m,n(f)(r, x)

=

√
π

2m− 1
2Γ2(m+1

2 )(2π)
n
2

∫ +∞

0

∫
|λ|<s

F̃m,n

(
τ(r,x)(−Ξ)Lm−1

2
f
)
(s, λ)

sdsdλ√
s2 − |λ|2

.

(5.30)

Since for every f ∈ Se(R× Rn), we have

∀(r, x), (s, λ) ∈ R× Rn, F̃m,n(τ(r,x)f)(s, λ) = jm−1
2

(rs)ei⟨λ|x⟩F̃m,n(f)(s, λ),

(5.31)
we get

K2
m,n(f)(r, x) =

√
π

2m− 1
2Γ2(m+1

2 )(2π)
n
2

∫ +∞

0

∫
|λ|<s

F̃m,n((−Ξ)Lm−1
2
f)(s, λ)

× jm−1
2

(rs)ei⟨λ|x⟩
sdsdλ√
s2 − |λ|2

.

(5.32)

On the other hand, for f ∈ S0
e (R×Rn), the function Lm−1

2
f belongs to Ee(R×Rn),

and is slowly increasing. Moreover, we have

F̃m,n(T
νm,n

(−ℓm−1
2

)m−1f(.,x)(r)) = T
νm,n

|r|2m−2F̃m,n(f)
. (5.33)

But, for f ∈ S0
e (R×Rn), the function F̃m,n(f) belongs to the subspace N , hence

according to Theorem 5.2, we deduce that the function Lm−1
2
f belongs to Se(R×

Rn), and we have

∀(µ, λ) ∈ R× Rn, F̃m,n(Lm−1
2
f)(µ, λ) = |µ|2m−2F̃m,n(f)(µ, λ). (5.34)
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This implies that

K2
m,n(f)(r, x) =

√
π

2m− 1
2Γ2(m+1

2 )(2π)
n
2

∫ +∞

0

∫
|λ|<s

s2m−2(s2 − |λ|2)

× F̃m,n(f)(s, λ)jm−1
2

(rs)ei⟨λ|x⟩
sdsdλ√
s2 − |λ|2

. (5.35)

By a change of variables, and using Fubini’s theorem, we get

K2
m,n(f)(r, x)

=

√
π

2m− 1
2Γ2(m+1

2 )(2π)
n
2

∫ +∞

0

∫
Rn

µ2(µ2 + |λ|2)m−1F̃m,n(f)(
√
µ2 + |λ|2, λ)

× jm−1
2

(r
√
µ2 + |λ|2)ei⟨λ|x⟩dµdλ. (5.36)

From relations (2.19) and (3.6), we deduce that

K2
m,n(f)(r, x) =

√
π

2
m
2 Γ(m+1

2 )
F−1

m,n

(
(µ2 + |λ|2)

m−1
2 |µ|Fm,n(f)

)
(r, x). (5.37)

Then the result follows from relation (5.37), Lemma 5.1, Theorems 5.2 and 5.3. �

Theorem 5.7. i) For f ∈ Se,0(R × Rn) and g ∈ S0
e (R × Rn), there exists the

inversion formulas for Rm,n

f = K1
m,n

tRm,nRm,n(f), g = Rm,nK
1
m,n

tRm,n(g). (5.38)

ii) For f ∈ Se,0(R × Rn) and g ∈ S0
e (R × Rn), there exist the inversion formulas

for tRm,n

f = tRm,nK
2
m,nRm,n(f), g = K2

m,nRm,n
tRm,n(g). (5.39)

Proof. i) Let g ∈ S0
e (R×Rn). From relations (2.14), (5.14), Theorem 3.3, Remark

3.6, and Theorem 5.3, we have

g(r, x) =
1

2
m−1

2 Γ(m+1
2 )(2π)

n
2

∫ +∞

0

∫
Rn

µ(µ2 + |λ|2)
m−1

2

× Fm,n(g)(µ, λ)φµ,λ(r, x)dµdλ

=

√
π

2
m
2 Γ(m+1

2 )

∫ +∞

0

∫
Rn

µ(µ2 + |λ|2)
m−1

2 Fm,n(g)(µ, λ)

× Rm,n(cos(µ.)e
i⟨λ|.⟩)dmn+1(µ, λ)

= Rm,n

( √
π

2
m
2 Γ(m+1

2 )

∫ +∞

0

∫
Rn

µ(µ2 + |λ|2)
m−1

2 Λn+1 ◦ tRm,n(g)(µ, λ)

× cos(µ.)ei⟨λ|.⟩dmn+1(µ, λ)
)
(r, x)

= Rm,n

(
Λ−1
n+1

( √
π

2
m
2 Γ(m+1

2 )
µ(µ2 + |λ|2)

m−1
2 Λn+1 ◦ tRm,n(g)(µ, λ)

))
(r, x)

= Rm,nK
1
m,n

tRm,n(g). (5.40)

This relation, together with Corollary 5.4, relation (5.20) and Theorem 5.5, imply
that the integral transform Rm,n is an isomorphism from Se,0(R×Rn) onto S0

e (R×
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Rn), and that K1
m,n

tRm,n is its inverse, in particular for Se,0(R× Rn), we have

f = K1
m,n

tRm,nRm,n(f). (5.41)

ii) Let f ∈ Se,0(R× Rn). From i), we have

f = K1
m,n

tRm,nRm,n(f). (5.42)

Let g = Rm,n(f), then g ∈ S0
e (R× Rn), and we have

R−1
m,n(g) = K1

m,n
tRm,n(g), (5.43)

and from Remark 3.6, it follows that

R−1
m,n(g) = Λ−1

n+1

( √
π

2
m
2 Γ(m+1

2 )
µ(µ2 + |λ|2)

m−1
2 Fm,n(g)

)
, (5.44)

R−1
m,nR−1

m,n(g) = F−1
m,n

( √
π

2
m
2 Γ(m+1

2 )
µ(µ2 + |λ|2)

m−1
2 Fm,n(g)

)
= K2

m,n(g),

which gives
f = tRm,nK

2
m,nRm,n(f). (5.45)

�

6. Uncertainty principles for the Fourier transform Fm,n

In this section, we shall use the well known generalized Beurling-Hrmander the-
orem established by Bonami, Demange and Jaming in [4], to prove the same result
for the Fourier transform Fm,n. Next, we use this result to establish two other
uncertainty principles for this transform.

Theorem 6.1. [4] Let f be a measurable function on R×Rn, even with respect to
the first variable such that f ∈ L2(dmn+1), and let d be a real number, d > 0. If∫ +∞

0

∫
Rn

∫ +∞

0

∫
Rn

|f(r, x)||Λn+1(f)(s, y)|
(1 + |(r, x)|+ |(s, y)|)d

e|(r,x)||(s,y)|dmn+1(r, x)dmn+1(s, y)

< +∞,

then there exist a positive constant a and a polynomial P on R × Rn, even with
respect to the first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2),

with deg(P ) <
d− (n+ 1)

2
.

Theorem 6.2 (Hörmander-Beurling for Fm,n). Let f ∈ L2(dνm,n), and let d be a
real number, d > 0. If∫ ∫

Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)d

e|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ)

< +∞.

Then there exist a positive constant a and a polynomial P on R × Rn, even with
respect to the first variable, such that

∀(r, x) ∈ R× Rn, f(r, x) = P (r, x)e−a(r2+|x|2),

with deg(P ) <
d− (m+ n+ 1)

2
.
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Proof. Let dλm+n+1 be the normalized Lebesgue measure defined on Rm+1 × Rn

by

dλm+n+1(y, x) =
dy

(2π)
m+1

2

⊗ dx

(2π)
n
2
,

and let L2(dλm+n+1) be the space of square integrable functions on Rm+1 × Rn

with respect to the measure dλm+n+1.
For f ∈ L2(dνm,n), we denote by g the function defined on Rm+1 × Rn by

∀(y, x) ∈ Rm+1 × Rn, g(y, x) = f(|y|, x),

then the function g belongs to L2(dλm+n+1), and we have

∥g∥2,λm+n+1 = ∥f∥2,νm,n .

Furthermore,

∀(µ, λ) ∈ Rm+1 × Rn, Λm+n+1(g)(µ, λ) = F̃m,n(f)(|µ|, λ), (6.1)

where Λm+n+1 is the usual Fourier transform defined on Rm+1 × Rn by

Λm+n+1(g)(µ, λ) =

∫
Rm+1

∫
Rn

g(y, x)e−i⟨µ|y⟩e−i⟨λ|x⟩dλm+n+1(y, x).

If∫ ∫
Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)d

e|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ) < +∞.

Then by relations (2.19) and (6.1), we have∫
Rm+1

∫
Rn

∫
Rm+1

∫
Rn

|g(y, x)||Λm+n+1(g)(ζ, λ)|
(1 + |(y, x)|+ |(ζ, λ)|)d

e|(r,x)||(ζ,λ)| dλm+n+1(y, x) dλm+n+1(ζ, λ)

=

∫ +∞

0

∫
Rn

∫ +∞

0

∫
Rn

|f(r, x)||F̃m,n(f)(µ, λ)|
(1 + |(r, x)|+ |(µ, λ)|)d

e|(r,x)||µ,λ| dνm,n(r, x) dνm,n(µ, λ)

=

∫ ∫
Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)d

e|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ)

< +∞,

and therefore by applying Theorem 6.1, we deduce that there exists a positive

constant a and a polynomial P̃ on Rm+1 × Rn, such that

g(y, x) = P̃ (y, x)e−a(|y|2+|x|2),

with deg(P̃ ) <
d− (m+ n+ 1)

2
.

Now, the polynomial P defined on R× Rn by

P (r, x) = P̃ ((r, 0, . . . , 0), x),

is even with respect to the first variable with deg(P ) <
d− (m+ n+ 1)

2
and

∀(r, x) ∈ R× Rn, f(r, x) = P (r, x)e−a(r2+|x|2).

�
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Lemma 6.3. Let P be a polynomial on R × Rn, P ̸= 0, with deg(P ) = k. Then
there exist two positive constants A and C such that

∀t > A, p(t) =
2π

n+1
2

Γ(n+1
2 )

∫
Sn

∣∣P (tω)∣∣dσn(ω) > Ctk.

Proof. Let P be a polynomial on R×Rn, P ̸= 0, with deg(P ) = k. Then, we have

p(t) =
2π

n+1
2

Γ(n+1
2 )

∫
Sn

∣∣ k∑
j=0

aj(ω)t
j
∣∣dσn(ω),

where the functions aj , 0 6 j 6 k, are continuous on Sn. It’s clear that the
function p is continuous on [0,+∞[, and by dominate convergence theorem’s, we
have

p(t) ∼ Ckt
k (t −→ +∞), (6.2)

where Ck =
2π

n+1
2

Γ(n+1
2 )

∫
Sn

|ak(ω)|dσn(ω) > 0.

Now relation (6.2) implies that there is a positive constant A such that

∀t > A, p(t) > Ck

2
tk.

�

Theorem 6.4 (Gelfand-Shilov for Rm,n). Let p, q be two conjugate exponents,
p, q ∈]1,+∞[ and let ξ, η be non negative real numbers such that ξη > 1. Let f be
a measurable function on R× Rn, even with respect to the first variable, such that
f ∈ L2(dνm,n).
If ∫ +∞

0

∫
Rn

|f(r, x)|e
ξp|(r,x)|p

p

(1 + |(r, x)|)d
dνm,n(r, x) < +∞,

and ∫ ∫
Υ+

|Fm,n(f)(µ, λ)|e
ηq|θ(µ,λ)|q

q

(1 + |θ(µ, λ)|)d
dγm,n(µ, λ) < +∞ ; d > 0.

Then

i) For d 6 m+ n+ 1

2
, f = 0.

ii) For d >
m+ n+ 1

2
, we have

a) f = 0 for ξη > 1.
b) f = 0 for ξη = 1, and p ̸= 2.

c) f(r, x) = P (r, x)e−a(r2+|x|2) for ξη = 1 and p = q = 2,
where a > 0 and P is a polynomial on R×Rn even with respect to the first variable,

with deg(P ) < d− m+ n+ 1

2
.
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Proof. Let f be a function satisfying the hypothesis. Since ξη > 1, and by a
convexity argument, we have∫ ∫

Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|+ |θ(µ, λ)|)2d

e|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ)

6
∫ ∫

Υ+

∫ +∞

0

∫
Rn

|f(r, x)||Fm,n(f)(µ, λ)|
(1 + |(r, x)|)d(1 + |θ(µ, λ)|)d

eξη|(r,x)||θ(µ,λ)| dνm,n(r, x) dγm,n(µ, λ)

6
(∫ +∞

0

∫
Rn

|f(r, x)|
(1 + |(r, x)|)d

e
ξp|(r,x)|p

p dνm,n(r, x)
)

×
(∫ ∫

Υ+

|Fm,n(f)(µ, λ)|
(1 + |θ(µ, λ)|)d

e
ηq|θ(µ,λ)|q

q dγm,n(µ, λ)
)

< +∞. (6.3)

Then from the Beurling-Hörmander theorem, we deduce that there exist a positive
constant a and a polynomial P such that

f(r, x) = P (r, x)e−a(r2+|x|2), (6.4)

with deg(P ) < d − m+ n+ 1

2
. In particular if d 6 m+ n+ 1

2
, then f vanishes

almost everywhere.

Suppose now that d >
m+ n+ 1

2
. By a standard computation, we obtain

F̃m,n(f)(µ, λ) = Q(µ, λ)e−
1
4a (µ2+|λ|2), (6.5)

where Q is a polynomial on R× Rn, even with respect to the first variable, with

deg(P ) = deg(Q).

On the other hand, from relations (2.19), (3.6), (6.3), (6.4) and (6.5), we get∫ +∞

0

∫
Rn

∫ +∞

0

∫
Rn

|P (r, x)||Q(µ, λ)|
(1 + |(r, x)|)d(1 + |(µ, λ)|)d

eξη|(r,x)||(µ,λ)|−a(r2+|x|2)

× e−
1
4a (µ2+|λ|2) dνm,n(r, x) dνm,n(µ, λ) < +∞,

hence,∫ +∞

0

∫ +∞

0

φ(s)

(1 + s)d
ψ(ρ)

(1 + ρ)d
eξηsρe−as2e−

1
4aρ2

sm+nρm+ndsdρ < +∞, (6.6)

where

φ(s) =
2π

n+1
2

Γ(n+1
2 )

∫
Sn

∣∣P (sω)∣∣|ω1|mdσn(ω), ω = (ω1, . . . , ωn)

and

ψ(ρ) =
2π

n+1
2

Γ(n+1
2 )

∫
Sn

∣∣Q(ρω)
∣∣|ω1|mdσn(ω).

• Suppose that ξη > 1. If f ̸= 0, then each of polynomials P and Q is not identically
zero, let k = deg(P ) = deg(Q).
From lemma 6.3, there exist two positive constants A and C such that

∀t > A, φ(s) > Csk,

and
∀ρ > A, ψ(ρ) > Cρk.
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Then, the inequality (6.6) leads to∫ +∞

A

∫ +∞

A

eξηsρ

(1 + s)d(1 + ρ)d
e−as2e−

1
4aρ2

dsdρ < +∞. (6.7)

Let ε > 0, such that ξη − ε = σ > 1. relation (6.7) implies that∫ +∞

A

∫ +∞

A

eεsρ

(1 + s)d(1 + ρ)d
eσsρe−as2e−

1
4aρ2

dsdρ < +∞. (6.8)

However, for every s > A > d

ε
and ρ > A, we have

eερs

(1 + s)d(1 + ρ)d
> eεA

2

(1 +A)2d
,

and by relation (6.8) it follows that∫ +∞

A

∫ +∞

A

eσsρe−as2e−
1
4aρ2

dsdρ < +∞. (6.9)

Let F (s) =

∫ +∞

A

eσρs−
1
4aρ2

dρ, then F can be written

F (s) = eaσ
2s2

(∫ +∞

A

e−
1
4aρ2

dρ+ 2aσe−
A2

4a

∫ s

0

eAσw−aσ2w2

dw
)
,

in particular

F (s) > eaσ
2s2

∫ +∞

A

e−
1
4aρ2

dρ.

Since σ > 1, then∫ +∞

A

∫ +∞

A

eσsρe−as2e−
1
4aρ2

dsdρ =

∫ +∞

A

e−as2F (s)ds

>
∫ +∞

A

e−
1
4aρ2

dρ

∫ +∞

A

ea(σ
2−1)s2ds = +∞.

This contradicts relation (6.9) and shows that f = 0.
• Suppose that ξη = 1 and p ̸= 2. In this case we have p > 2 or q > 2. Suppose
that q > 2, then from the second hypothesis and relation (6.5), we have∫ +∞

0

ψ(ρ)e−
ρ2

4a e
ηqρq

q

(1 + ρ)d
ρdρ < +∞. (6.10)

If f ̸= 0, then the polynomial Q is not identically zero, and by Lemma 6.3 and by
relation (6.10), it follows that∫ +∞

0

e−
ρ2

4a e
ηqρq

q

(1 + ρ)d
dρ < +∞,

which is impossible since q > 2 and the proof of Theorem 6.4 is complete. �

Theorem 6.5 (Cowling-Price for Rm,n). Let ξ, η, ω1, ω2 be non negative real num-

bers such that ξη > 1

4
. Let p, q be two exponents, p, q ∈ [1,+∞], and let f be a

measurable function on R × Rn, even with respect to the first variable such that
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f ∈ L2(dνm,n).
If ∥∥∥∥∥ eξ|(.,.)|

2

(1 + |(., .)|)ω1
f

∥∥∥∥∥
p,νm,n

< +∞, (6.11)

and ∥∥∥∥∥ eη|θ(.,.)|
2

(1 + |θ(., .)|)ω2
Fm,n(f)

∥∥∥∥∥
q,γm,n

< +∞, (6.12)

then

i) For ξη >
1

4
, f = 0.

ii) For ξη =
1

4
, there exist a positive constant a and a polynomial P on R × Rn,

even with respect to the first variable, such that

f(r, x) = P (r, x)e−a(r2+|x|2).

Proof. Let p′ and q′ be the conjugate exponents of p respectively q. Let us pick
d1, d2 ∈ R, such that d1 > m+n+1 and d2 > m+n+1. Finally, let d be a positive

real number such that d > max
(
ω1 +

d1
p′
, ω2 +

d2
q′
,
m+ n+ 1

2

)
.

From Hölder’s inequality and relations (6.11) and (6.12), we deduce that∫ +∞

0

∫
Rn

|f(r, x)|eξ|(r,x)|2

(1 + |(r, x)|)ω1+
d1
p′
dνm,n(r, x) < +∞,

and ∫ ∫
Υ+

|Fm,n(f)(µ, λ)|eη|θ(µ,λ)|
2

(1 + |θ(µ, λ)|)ω2+
d2
q′

dγm,n(µ, λ) < +∞.

Consequently, we have∫ +∞

0

∫
Rn

|f(r, x)|eξ|(r,x)|2

(1 + |(r, x)|)d
dνm,n(r, x) < +∞,

and ∫ ∫
Υ+

|Fm,n(f)(µ, λ)|eη|θ(µ,λ)|
2

(1 + |θ(µ, λ)|)d
dγm,n(µ, λ) < +∞.

Then, the desired result follows from Theorem 6.4. �

Remark 6.6. Hardy’s Theorem is a special case of Theorem 6.5 when p = q = +∞.
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