BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 4 Issue 1 (2012), Pages 29-61.

HARMONIC ANALYSIS AND UNCERTAINTY PRINCIPLES FOR INTEGRAL TRANSFORMS GENERALIZING THE SPHERICAL MEAN OPERATOR

(COMMUNICATED BY HUSEIN BOR)

KHALED HLEILI, SLIM OMRI, LAKHDAR TANNECH RACHDI

ABSTRACT. For $m, n \in \mathbb{N}$; $m \ge n \ge 1$, we define an integral transform $\mathscr{R}_{m,n}$ that generalizes the spherical mean operator. We establish many harmonic analysis results for the Fourier transform $\mathscr{F}_{m,n}$ connected with $\mathscr{R}_{m,n}$. Next, we establish inversion formulas for the operator $\mathscr{R}_{m,n}$ and its dual ${}^{t}\mathscr{R}_{m,n}$. Finally, we prove some uncertainty principles related to the Fourier transform $\mathscr{F}_{m,n}$.

1. INTRODUCTION

The spherical mean operator \mathscr{R} is defined, for a function f on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, as

$$\mathscr{R}(f)(r,x) = \int_{S^n} f((0,x) + r\omega) d\sigma_n(\omega); \quad (r,x) \in \mathbb{R} \times \mathbb{R}^n.$$

where S^n is the unit sphere: $S^n = \{\omega \in \mathbb{R} \times \mathbb{R}^n ; |\omega| = 1\}$ and σ_n is the surface measure on S^n normalized to have total measure one.

The dual of the spherical mean operator ${}^t\mathscr{R}$ is defined by

$${}^{t}\mathscr{R}(g)(r,x) = rac{1}{(2\pi)^{rac{n}{2}}} \int_{\mathbb{R}^{n}} g(\sqrt{r^{2} + |x-y|^{2}}, y) dy,$$

where dy is the Lebesgue measure on \mathbb{R}^n .

The spherical mean operator \mathscr{R} and its dual ${}^{t}\mathscr{R}$ play an important role and have many applications, for example, in image processing of so-called synthetic aperture radar (SAR) data [13, 14], or in the linearized inverse scattering problem in acoustics [10]. Many aspects of such operator have been studied [2, 7, 16, 19, 20, 23, 24, 26].

In [3] Baccar, Ben Hamadi and Rachdi defined and studied the Riemann-Liouville operator \mathscr{R}_{α} which generalizes the spherical mean operator in dimension two, and

²⁰⁰⁰ Mathematics Subject Classification. 42B10, 42B35, 43A32.

Key words and phrases. Integral transform; Fourier transform; Inversion formula; Uncertainty principles.

^{©2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted November 2, 2011. Published December 11, 2011.

in the same work, the authors established several inversions formula connected with the operator \mathscr{R}_{α} . In [15] Hleili, Omri and Rachdi proved many importants uncertainty principles for the same operator \mathscr{R}_{α} .

Our purpose in this work is to define and study a class of integral transforms which generalizes the spherical mean operator \mathscr{R} in dimension n, and to establish several uncertainty principles for this class of integral transforms.

Namely, for every integers $m \ge n \ge 1$, we define the integral transform $\mathscr{R}_{m,n}$ by

$$\mathscr{R}_{m,n}(f)(r,x) = \begin{cases} \frac{2\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\Gamma(\frac{n+1}{2})} \int_0^1 \int_{S^n} f((0,x) + rt\omega) \\ \times (1-t^2)^{\frac{m-n}{2}-1} t^n dt d\sigma_n(\omega), & \text{if } m > n, \\ \int_{S^n} f((0,x) + r\omega) d\sigma_n(\omega), & \text{if } m = n, \end{cases}$$

where f is a continuous function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable.

The dual operator ${}^{t}\mathscr{R}_{m,n}$ is defined by

$${}^{t}\mathscr{R}_{m,n}(f)(s,y) = \begin{cases} \frac{1}{2^{\frac{m}{2}}\Gamma(\frac{m-n}{2})\pi^{\frac{n}{2}}} \int \int_{s^{2}+|z|^{2} < r^{2}} f(r,z+y) \\ \times (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} r dr dz & \text{if } m > n, \\ \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} f(\sqrt{s^{2}+|x-y|^{2}},x) dx & \text{if } m = n. \end{cases}$$

We associate to the operator $\mathscr{R}_{m,n}$, the Fourier transform $\mathscr{F}_{m,n}$ defined by

$$\forall (\mu, \lambda) \in \Upsilon \; ; \; \mathscr{F}_{m,n}(f)(\mu, \lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r, x) \varphi_{\mu, \lambda}(r, x) \, d\nu_{m,n}(r, x),$$

where

•
$$\varphi_{\mu,\lambda}(r,x) = \mathscr{R}_{m,n}\left(\cos(\mu)e^{-i\langle\lambda|.\rangle}\right)(r,x) = j_{\frac{m-1}{2}}\left(r\sqrt{\mu^2 + \lambda^2}\right)e^{-i\langle\lambda|x\rangle}$$
, and $j_{\frac{m-1}{2}}$ is the modified Bessel function of the first kind and index $\frac{m-1}{2}$.

• $d\nu_{m,n}$ is the measure defined on $[0, +\infty] \times \mathbb{R}^n$, by

$$d\nu_{m,n}(r,x) = \frac{r^m dr}{2^{\frac{m-1}{2}} \Gamma(\frac{m+1}{2})} \otimes \frac{dx}{(2\pi)^{\frac{n}{2}}}.$$

• Υ is the set given by

$$\Upsilon = \mathbb{R} \times \mathbb{R}^n \cup \left\{ (it, x) \mid (t, x) \in \mathbb{R} \times \mathbb{R}^n , |t| \leqslant |x| \right\}.$$

Then we have established the harmonic analysis related to the Fourier transform $\mathscr{F}_{m,n}$. Next, we define and study the fractional powers of the Bessel operator $\ell_{\alpha} = \frac{\partial^2}{\partial r^2} + \frac{2\alpha + 1}{r} \frac{\partial}{\partial r}, \ \alpha \ge -\frac{1}{2}$, and the Laplacian operator $\Delta = \frac{\partial^2}{\partial r^2} + \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$.

Using these fractional powers, we determine some subspaces of the schwartz space $S_e(\mathbb{R} \times \mathbb{R}^n)$ (the space of infinitely differentiable functions on $\mathbb{R} \times \mathbb{R}^n$ rapidly decreasing together with every their derivatives and even with respect to the first

variable) where $\mathscr{R}_{m,n}$ and ${}^{t}\mathscr{R}_{m,n}$ are topological isomorphisms and we give the inverse isomorphisms, more precisely we have the following inversion formulas

$$f = K_{m,n}^{1} {}^{t} \mathscr{R}_{m,n} \mathscr{R}_{m,n}(f),$$

$$g = \mathscr{R}_{m,n} K_{m,n}^{1} {}^{t} \mathscr{R}_{m,n}(g).$$

and

$$f = {}^{t}\mathscr{R}_{m,n}K^{2}_{m,n}\mathscr{R}_{m,n}(f),$$

$$g = K^{2}_{m,n}\mathscr{R}_{m,n} {}^{t}\mathscr{R}_{m,n}(g),$$

where the operators $K_{m,n}^1$ and $K_{m,n}^2$ are expressed in terms of the fractional powers of ℓ_{α} and Δ .

On the other hand, the uncertainty principles play an important role in harmonic analysis and have been studied by many authors and from many points of view [11, 12]. These principles state that a function f and its Fourier transform \hat{f} cannot be simultaneously sharply localized. Theorems of Hardy, Morgan, Beurling,... are established for several Fourier transforms [6, 18, 21, 22].

In this context, we have studied and established some important uncertainty principles for the Fourier transform $\mathscr{F}_{m,n}$. More precisely we have proved the following Beurling-Hrmander type theorem

• Let
$$f \in L^2(d\nu_{m,n})$$
, and let d be a real number, $d \ge 0$. If

$$\int \int_{\Upsilon_+} \int_0^{+\infty} \int_{\mathbb{R}^n} \frac{|f(r,x)| |\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|\theta(\mu,\lambda)|)^d} e^{|(r,x)||\theta(\mu,\lambda)|} d\nu_{m,n}(r,x) d\gamma_{m,n}(\mu,\lambda) < +\infty.$$

Then there exist a positive constant a and a polynomial P on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n, \quad f(r,x) = P(r,x)e^{-a(r^2 + |x|^2)},$$

with $deg(P) < \frac{d - (m + n + 1)}{2}$.

Where

- $d\gamma_{m,n}$ is the spectral measure that will be defined in the second section.
- Υ_+ is the subset of Υ , given by

$$\mathbf{f}_{+} = [0, +\infty[\times\mathbb{R}^{n} \cup \{(it, x) \mid (t, x) \in [0, +\infty[\times\mathbb{R}^{n}, t \leq |x|]\}.$$

• θ is the bijective function defined on the set Υ_+ by

$$\theta(\mu, \lambda) = (\sqrt{\mu^2 + |\lambda|^2}, \lambda).$$

The precedent theorem allows us to establish the Gelfand-Shilov and Cowling-Price theorems.

• (Gelfand-Shilov) Let p, q be two conjugate exponents, $p, q \in]1, +\infty[$ and let ξ, η be non negative real numbers such that $\xi\eta \ge 1$. Let f be a measurable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that $f \in L^2(d\nu_{m,n})$. If

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| e^{\frac{\xi^{p} |(r,x)|^{p}}{p}}}{(1+|(r,x)|)^{d}} d\nu_{m,n}(r,x) < +\infty,$$

and

$$\iint_{\Upsilon_{+}} \frac{|\mathscr{F}_{m,n}(f)(\mu,\lambda)| e^{\frac{\eta^{q} |\theta(\mu,\lambda)|^{q}}{q}}}{(1+|\theta(\mu,\lambda)|)^{d}} \, d\gamma_{m,n}(\mu,\lambda) < +\infty \; ; \; d \ge 0.$$

Then *i*) For $d \leq \frac{m+n+1}{2}$, f = 0. *ii*) For $d > \frac{m+n+1}{2}$, we have a) f = 0 for $\xi \overline{\eta} > 1$. b) f = 0 for $\xi \eta = 1$, and $p \neq 2$. c) $f(r, x) = P(r, x)e^{-a(r^2 + |x|^2)}$ for $\xi \eta = 1$ and p = q = 2, where a > 0 and P is a polynomial on $\mathbb{R} \times \mathbb{R}^n$ even with respect to the first variable,

with $deg(P) < d - \frac{m+n+1}{2}$

• (Cowling-Price) Let $\xi, \eta, \omega_1, \omega_2$ be non negative real numbers such that $\xi \eta \ge \frac{1}{4}$. Let p, q be two exponents, $p, q \in [1, +\infty]$, and let f be a measurable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable such that $f \in L^2(d\nu_{m,n})$. If

$$\left\|\frac{e^{\xi|(.,.)|^2}}{(1+|(.,.)|)^{\omega_1}}f\right\|_{p,\nu_{m,n}} < +\infty,$$

and

$$\left\|\frac{e^{\eta|\theta(.,.)|^2}}{(1+|\theta(.,.)|)^{\omega_2}}\mathscr{F}_{m,n}(f)\right\|_{q,\gamma_{m,n}}<+\infty,$$

then

then *i*) For $\xi\eta > \frac{1}{4}$, f = 0. *ii*) For $\xi\eta = \frac{1}{4}$, there exist a positive constant *a* and a polynomial *P* on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that

$$f(r,x) = P(r,x)e^{-a(r^2 + |x|^2)}.$$

2. The operators $\mathscr{R}_{m,n}$ and its dual ${}^{t}\mathscr{R}_{m,n}$

In this section, we define the operators $\mathscr{R}_{m,n}$ and its dual ${}^{t}\mathscr{R}_{m,n}$ and we give some properties.

Let m, n be two integers such that $m \ge n \ge 1$.

For every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, the system

$$\begin{aligned} \frac{\partial}{\partial x_j} u(r,x) &= -i\lambda_j u(r,x), \text{ if } 1 \leq j \leq n, \\ \Xi u(r,x) &= -\mu^2 u(r,x), \\ u(0,0) &= 1; \frac{\partial}{\partial r} u(0,x) = 0, \forall x \in \mathbb{R}^n, \end{aligned}$$

admits a unique solution $\varphi_{\mu,\lambda}$, given by

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n; \quad \varphi_{\mu,\lambda}(r,x) = j_{\frac{m-1}{2}}(r\sqrt{\mu^2 + \lambda^2})e^{-i\langle\lambda|x\rangle}, \tag{2.1}$$

where

- $\begin{aligned} \bullet & \lambda^2 = \lambda_1^2 + \ldots + \lambda_n^2; \quad \lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n, \\ \bullet & \langle \lambda | x \rangle = \lambda_1 x_1 + \ldots + \lambda_n x_n; \quad x = (x_1, \ldots, x_n) \in \mathbb{R}^n, \end{aligned}$
- Ξ is the operator given by

$$\Xi = \frac{\partial^2}{\partial r^2} + \frac{m}{r}\frac{\partial}{\partial r} - \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}.$$
 (2.2)

• $j_{\frac{m-1}{2}}$ is the modified Bessel function defined by

$$j_{\frac{m-1}{2}}(z) = \frac{2^{\frac{m-1}{2}}\Gamma(\frac{m+1}{2})}{z^{\frac{m-1}{2}}} J_{\frac{m-1}{2}}(z) = \Gamma(\frac{m+1}{2}) \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!\Gamma(\frac{m+1}{2}+k)} (\frac{z}{2})^{2k}, \quad z \in \mathbb{C},$$
(2.3)

and $J_{\frac{m-1}{2}}$ is the Bessel function of the first kind and index $\frac{m-1}{2}$ [8, 9, 17, 25]. The modified Bessel function $j_{\frac{m-1}{2}}$ has the following integral representation [1, 17], for every $z \in \mathbb{C}$, we have

$$j_{\frac{m-1}{2}}(z) = \frac{2\Gamma(\frac{m+1}{2})}{\sqrt{\pi}\Gamma(\frac{m}{2})} \int_0^1 (1-t^2)^{\frac{m}{2}-1} \cos(zt) dt.$$
(2.4)

From relation (2.4), we deduce that for every $z \in \mathbb{C}$, and for every $k \in \mathbb{N}$, we have

$$\left|j_{\frac{m-1}{2}}^{(k)}(z)\right| \leqslant e^{|Im(z)|}.$$
 (2.5)

From the properties of the modified Bessel function $j_{\frac{m-1}{2}}$, we deduce that the eigenfunction $\varphi_{\mu,\lambda}$ is bounded on $\mathbb{R} \times \mathbb{R}^n$ if and only if (μ, λ) belongs to the set

$$\mathbf{f} = \mathbb{R} \times \mathbb{R}^n \cup \{ (it, x) \mid (t, x) \in \mathbb{R} \times \mathbb{R}^n , |t| \leq |x| \},$$
(2.6)

and in this case

$$\sup_{(r,x)\in\mathbb{R}\times\mathbb{R}^n} |\varphi_{\mu,\lambda}(r,x)| = 1,$$
(2.7)

where $|x| = \sqrt{x_1^2 + \ldots + x_n^2}$; $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$.

For real numbers $a \ge b \ge -1/2$, we define the Sonine transform $S_{a,b}$ by

$$S_{a,b}(f)(r,x) = \begin{cases} \frac{2\Gamma(a+1)}{\Gamma(a-b)\Gamma(b+1)} \int_0^1 f(rt,x)(1-t^2)^{a-b-1}t^{2b+1}dt, & \text{if } a > b; \\ f(r,x), & \text{if } a = b. \end{cases}$$
(2.8)

It is well known, see for example [1, 17], that for every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, we have

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n, \ S_{a,b} \big(j_b(\mu) e^{-i\langle \lambda | . \rangle} \big) (r,x) = j_a(r\mu) e^{-i\langle \lambda | x \rangle}.$$
(2.9)

Proposition 2.1. For every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, the eigenfunction $\varphi_{\mu,\lambda}$ has the following integral representation

$$\varphi_{\mu,\lambda}(r,x) = \begin{cases} \frac{2\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\Gamma(\frac{n+1}{2})} \int_0^1 \int_{S^n} (1-t^2)^{\frac{m-n}{2}-1} \cos(rt\mu\eta) \\ \times e^{-i\langle\lambda|x+rt\xi\rangle} t^n dt d\sigma_n(\eta,\xi), & \text{if } m > n, \\ \int_{S^n} \cos(r\mu\eta) e^{-i\langle\lambda|x+r\xi\rangle} d\sigma_n(\eta,\xi), & \text{if } m = n, \end{cases}$$

$$(2.10)$$

where $S^n = \{(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^n; \eta^2 + |\xi|^2 = 1\}$ is the unit sphere of $\mathbb{R} \times \mathbb{R}^n$, and σ_n is the surface measure on S^n normalized to have total measure one.

Proof. • If m > n, it is well known that for every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, we have

$$j_{\frac{n-1}{2}}(r\sqrt{\mu^2 + \lambda^2}) = \int_{S^n} \cos(r\mu\eta) e^{-i\langle\lambda|r\xi\rangle} d\sigma_n(\eta,\xi).$$
(2.11)

On the other hand and according to relation (2.9), we have for every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, and for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n$

$$S_{\frac{m-1}{2},\frac{n-1}{2}}(j_{\frac{n-1}{2}}(\sqrt{\mu^2 + \lambda^2})e^{-i\langle\lambda|.\rangle})(r,x) = j_{\frac{m-1}{2}}(r\sqrt{\mu^2 + \lambda^2})e^{-i\langle\lambda|x\rangle}.$$
 (2.12)

Hence by combining relations (2.8), (2.11) and (2.12), we get for every $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$ and for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n$,

$$\varphi_{\mu,\lambda}(r,x) = \frac{2\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\Gamma(\frac{n+1}{2})} \int_0^1 \int_{S^n} (1-t^2)^{\frac{m-n}{2}-1} \cos(rt\mu\eta) e^{-i\langle\lambda|x+rt\xi\rangle} t^n dt d\sigma_n(\eta,\xi)$$

• If m = n, then the result follows from relations (2.1) and (2.11).

The precedent Mehler integral representation of the eigenfunction $\varphi_{\mu,\lambda}$ allows us to define the integral transform $\mathscr{R}_{m,n}$, connected with operators $\frac{\partial}{\partial x_j}$; $1 \leq j \leq n$ and Ξ . More precisely, we have

Definition 2.2. We define the integral transform $\mathscr{R}_{m,n}$ associated with operators $\frac{\partial}{\partial x_i}$; $1 \leq j \leq n$ and Ξ to be

$$\mathscr{R}_{m,n}(f)(r,x) = \begin{cases} \frac{2\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\Gamma(\frac{n+1}{2})} \int_0^1 \int_{S^n} f((0,x) + rt\omega) \\ \times (1-t^2)^{\frac{m-n}{2}-1} t^n dt d\sigma_n(\omega), & \text{if } m > n, \\ \int_{S^n} f((0,x) + r\omega) d\sigma_n(\omega), & \text{if } m = n, \end{cases}$$

$$(2.13)$$

where f is a continuous function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable. **Remark 2.3.** *i*) From the Proposition 2.1 and Definition 2.2, we have

$$\varphi_{\mu,\lambda}(r,x) = \mathscr{R}_{m,n} \Big(\cos(\mu) \exp(-i\langle \lambda | . \rangle) \Big)(r,x).$$
(2.14)

ii) We can easily see, as in [5], that the integral transform $\mathscr{R}_{m,n}$ is continuous and injective from $\mathscr{E}_e(\mathbb{R}\times\mathbb{R}^n)$ (the space of infinitely differentiable functions on $\mathbb{R}\times\mathbb{R}^n$, even with respect to the first variable) into itself.

We denote by

• dm_{n+1} the measure defined on $[0, +\infty] \times \mathbb{R}^n$, by

$$dm_{n+1}(r,x) = \sqrt{\frac{2}{\pi}} \frac{1}{(2\pi)^{\frac{n}{2}}} dr \otimes dx, \qquad (2.15)$$

where dx is the Lebesgue measure on \mathbb{R}^n .

• $L^p(dm_{n+1})$ the space of measurable functions f on $[0, +\infty[\times\mathbb{R}^n, \text{ such that}$

$$||f||_{p,m_{n+1}} = \left(\int_0^{+\infty} \int_{\mathbb{R}^n} |f(r,x)|^p \, dm_{n+1}(r,x)\right)^{\frac{1}{p}} < +\infty, \quad \text{if } p \in [1,+\infty[x])$$

$$||f||_{\infty,m_{n+1}} = \underset{(r,x)\in[0,+\infty[\times\mathbb{R}^n]}{\text{ess sup}} |f(r,x)| < +\infty, \quad \text{if } p = +\infty.$$

• $d\nu_{m,n}$, the measure defined on $[0, +\infty] \times \mathbb{R}^n$, by

$$d\nu_{m,n}(r,x) = \frac{r^m dr}{2^{\frac{m-1}{2}} \Gamma(\frac{m+1}{2})} \otimes \frac{dx}{(2\pi)^{\frac{n}{2}}}.$$
(2.16)

• $L^p(d\nu_{m,n})$, the Lebesgue space of measurable functions f on $[0, +\infty[\times\mathbb{R}^n, \text{ such that } \|f\|_{p,\nu_{m,n}} < +\infty$.

• $S_e(\mathbb{R} \times \mathbb{R}^n)$ the Shwartz's space formed by the infinitely differentiable functions on $\mathbb{R} \times \mathbb{R}^n$, rapidly decreasing together with every their derivatives, and even with respect to the first variable.

• $C_e(\mathbb{R} \times \mathbb{R}^n)$ the space of continuous functions on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable.

Lemma 2.4. i) For every function $f \in L^1(d\nu_{m,n})$, the function ${}^t\mathscr{R}_{m,n}(f)$ defined by

$${}^{t}\mathscr{R}_{m,n}(f)(s,y) = \begin{cases} \frac{1}{2^{\frac{m}{2}}\Gamma(\frac{m-n}{2})\pi^{\frac{n}{2}}} \int \int_{s^{2}+|z|^{2} < r^{2}} f(r,z+y) \\ \times (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} r dr dz & \text{if } m > n, \\ \frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} f(\sqrt{s^{2}+|x-y|^{2}},x) dx & \text{if } m = n. \end{cases}$$

belongs to $L^1(dm_{n+1})$ and we have

$$\|{}^{t}\mathscr{R}_{m,n}(f)\|_{1,m_{n+1}} \leqslant \|f\|_{1,\nu_{m,n}}.$$
(2.17)

ii) For every bounded function $f \in C_e(\mathbb{R} \times \mathbb{R}^n)$, and for every function $g \in L^1(d\nu_{m,n})$, we have

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mathscr{R}_{m,n}(f)(r,x)g(r,x)d\nu_{m,n}(r,x)$$
$$= \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(s,y)^{t} \mathscr{R}_{m,n}(g)(s,y)dm_{n+1}(s,y),$$
(2.18)

Proof. i) Let $f \in L^1(d\nu_{m,n})$. • If m > n, we have

$$\left| \stackrel{t}{\mathscr{R}}_{m,n}(f)(s,y) \right| \\ \leqslant \frac{1}{2^{\frac{m}{2}} \Gamma(\frac{m-n}{2})\pi^{\frac{n}{2}}} \int \int_{s^2 + |z|^2 < r^2} |f(r,z+y)| (r^2 - s^2 - |z|^2)^{\frac{m-n}{2} - 1} r dr dz,$$

and using Fubini's theorem, we obtain

$$\begin{split} &\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Big|^{t} \mathscr{R}_{m,n}(f)(s,y) \Big| dm_{n+1}(s,y) \\ &\leqslant \frac{1}{2^{\frac{m}{2}} \Gamma(\frac{m-n}{2})(2\pi)^{\frac{n}{2}} \pi^{\frac{n}{2}}} \sqrt{\frac{2}{\pi}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \left(\int \int_{s^{2}+|z|^{2} < r^{2}} |f(r,z+y)| \right. \\ &\times (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} r dr dz \Big) ds dy \\ &= \frac{1}{2^{\frac{m+n-1}{2}} \Gamma(\frac{m-n}{2}) \pi^{n+\frac{1}{2}}} \int_{0}^{+\infty} \Big[\int \int_{s^{2}+|z|^{2} < r^{2}} \left(\int_{\mathbb{R}^{n}} |f(r,z+y)| \, dy \right) \\ &\times (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} r dr dz \Big] ds \\ &= \frac{1}{2^{\frac{m+n-1}{2}} \Gamma(\frac{m-n}{2}) \pi^{n+\frac{1}{2}}} \int_{0}^{+\infty} \Big[\int \int_{s^{2}+|z|^{2} < r^{2}} \left(\int_{\mathbb{R}^{n}} |f(r,y)| \, dy \right) \\ &\times (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} r dr dz \Big] ds \\ &= \frac{1}{2^{\frac{m+n-1}{2}} \Gamma(\frac{m-n}{2}) \pi^{n+\frac{1}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} |f(r,y)| \\ &\times \left(\int \int_{s^{2}+|z|^{2} < r^{2}} (r^{2}-s^{2}-|z|^{2})^{\frac{m-n}{2}-1} ds dz \right) r dr dy \\ &= \frac{1}{2^{\frac{m+n-1}{2}} \Gamma(\frac{m-n}{2}) \Gamma(\frac{n+1}{2}) \pi^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} |f(r,y)| \left(\int_{0}^{r} (r^{2}-t^{2})^{\frac{m-n}{2}-1} t^{n} dt \right) r dr dy. \end{split}$$

From the fact that

$$\int_0^r (r^2 - t^2)^{\frac{m-n}{2} - 1} t^n dt = \frac{\Gamma(\frac{m-n}{2})\Gamma(\frac{n+1}{2})}{2\Gamma(\frac{m+1}{2})} r^{m-1},$$

we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Big|^{t} \mathscr{R}_{m,n}(f)(s,y) \Big| dm_{n+1}(s,y) \leq \frac{1}{2^{\frac{m-1}{2}} \Gamma(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} |f(r,y)| r^{m} dr dy = \|f\|_{1,\nu_{m,n}}.$$

• The case m = n may be treated similarly .

 $ii) \bullet$ If m > n, then by relation (2.13), we have

$$\begin{aligned} \mathscr{R}_{m,n}(f)(r,x) &= \frac{\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\pi^{\frac{n+1}{2}}} r^{1-m} \int \int_{s^2+|y|^2 < r^2} f(s,x+y) (r^2 - s^2 - |y|^2)^{\frac{m-n}{2} - 1} ds dy \\ &= \frac{\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m-n}{2})\pi^{\frac{n+1}{2}}} r^{1-m} \int \int_{s^2+|x-y|^2 < r^2} f(s,y) (r^2 - s^2 - |x-y|^2)^{\frac{m-n}{2} - 1} ds dy \end{aligned}$$

and by Fubini's theorem, we get

$$\begin{split} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mathscr{R}_{m,n}(f)(r,x)g(r,x)d\nu_{m,n}(r,x) \\ &= \frac{1}{2^{\frac{m-1}{2}}\Gamma(\frac{m-n}{2})\pi^{\frac{n+1}{2}}(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} g(r,x) \\ &\times \Big(\int \int_{s^{2}+|x-y|^{2} < r^{2}} f(s,y)(r^{2}-s^{2}-|x-y|^{2})^{\frac{m-n}{2}-1} ds dy\Big) r dr dx \\ &= \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(s,y) \Big(\frac{1}{2^{\frac{m}{2}}\Gamma(\frac{m-n}{2})\pi^{\frac{n}{2}}} \int \int_{s^{2}+|x-y|^{2} < r^{2}} g(r,x) \\ &\times (r^{2}-s^{2}-|x-y|^{2})^{\frac{m-n}{2}-1} r dr dx\Big) dm_{n+1}(s,y). \end{split}$$

• If m = n, we have

$$\int_0^{+\infty} \int_{\mathbb{R}^n} \mathscr{R}_{n,n}(f)(r,x)g(r,x)d\nu_{n,n}(r,x)$$

= $\frac{1}{2^{\frac{n-1}{2}}\Gamma(\frac{n+1}{2})(2\pi)^{\frac{n}{2}}} \int_0^{+\infty} \int_{\mathbb{R}^n} \left(\int_{S^n} f(r\omega + (0,x))d\sigma_n(\omega) \right)$
 $\times g(r,x)r^n dr dx,$

and by Fubini's theorem,

$$\begin{split} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mathscr{R}_{n,n}(f)(r,x)g(r,x)d\nu_{n,n}(r,x) \\ &= \frac{1}{2^{\frac{n-1}{2}}\Gamma(\frac{n+1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \left(\int_{0}^{+\infty} \int_{S^{n}} f(r\omega + (0,x)) \right) \\ &\times g(r,x)r^{n}drd\sigma_{n}(\omega) dx \\ &= \frac{\Gamma(\frac{n+1}{2})}{2\pi^{\frac{n+1}{2}}2^{\frac{n-1}{2}}\Gamma(\frac{n+1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n+1}} f((s,y) + (0,x)) \right) \\ &\times g(\sqrt{s^{2} + |y|^{2}}, x)dsdy dx \\ &= \frac{\Gamma(\frac{n+1}{2})}{2\pi^{\frac{n+1}{2}}2^{\frac{n-1}{2}}\Gamma(\frac{n+1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n+1}} f(s,y) \right) \\ &\times g(\sqrt{s^{2} + |y - x|^{2}}, x)dsdy dx \\ &= \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(s,y) \left(\frac{1}{(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} g(\sqrt{s^{2} + |y - x|^{2}}, x)dx \right) dm_{n+1}(s,y). \end{split}$$

We denote by

 $\bullet \ \mathcal{B}_{\Upsilon_+}$ the $\sigma\text{-algebra defined on }\Upsilon_+$ by

$$\mathscr{B}_{\Upsilon_+} = \{ \theta^{-1}(B) , B \in \mathscr{B}_{Bor}([0, +\infty[\times \mathbb{R}^n)]\},$$

where the set Υ_+ and the function θ are defined in the introduction. • $d\gamma_{m,n}$ the measure defined on \mathscr{B}_{Υ_+} by

$$\forall A \in \mathscr{B}_{\Upsilon_+}; \ \gamma_{m,n}(A) = \nu_{m,n}(\theta(A)).$$

• $L^p(d\gamma_{m,n})$ the Lebesgue space of measurable functions f on Υ_+ , such that $\|f\|_{p,\gamma_{m,n}} < +\infty$.

Then we have the following properties

Proposition 2.5. *i*) For every nonnegative measurable function g on Υ_+ , we have

$$\begin{split} \int \int_{\Upsilon_{+}} g(\mu,\lambda) \, d\gamma_{m,n}(\mu,\lambda) \\ &= \frac{1}{2^{\frac{m-1}{2}} \Gamma(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \Big(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} g(\mu,\lambda) (\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} \mu \, d\mu \, d\lambda \\ &+ \int_{\mathbb{R}^{n}} \int_{0}^{|\lambda|} g(i\mu,\lambda) (|\lambda|^{2} - \mu^{2})^{\frac{m-1}{2}} \mu \, d\mu \, d\lambda \Big). \end{split}$$

ii) For every nonnegative measurable function f on $[0, +\infty[\times\mathbb{R}^n \text{ (respectively integrable on } [0, +\infty[\times\mathbb{R}^n \text{ with respect to the measure } d\nu_{m,n}), fo\theta is a measurable nonnegative function on <math>\Upsilon_+$, (respectively integrable on Υ_+ with respect to the measure $d\gamma_{m,n}$) and we have

$$\int \int_{\Upsilon_+} (f \circ \theta)(\mu, \lambda) \, d\gamma_{m,n}(\mu, \lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r, x) \, d\nu_{m,n}(r, x). \tag{2.19}$$

3. The Fourier transform associated with the operator $\mathscr{R}_{m,n}$

In the next, we shall define the translation operator and the convolution product associated with the integral transform $\mathscr{R}_{m,n}$. For this we need the following product formula satisfied by the function $\varphi_{\mu,\lambda}$, that is for every $(r, x), (s, y) \in [0, +\infty[\times\mathbb{R}^n,$

$$\varphi_{\mu,\lambda}(r,x)\varphi_{\mu,\lambda}(s,y) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{\pi}\Gamma(\frac{m}{2})} \int_0^\pi \varphi_{\mu,\lambda}(\sqrt{r^2 + s^2 + 2rs\cos\theta}, x+y)\sin^{m-1}(\theta)d\theta.$$
(3.1)

Definition 3.1. i) For every $(r, x) \in [0, +\infty[\times \mathbb{R}^n]$, the translation operator $\tau_{(r,x)}$ associated with the integral transform $\mathscr{R}_{m,n}$ is defined on $L^p(d\nu_{m,n})$, $p \in [1, +\infty]$, by

$$\tau_{(r,x)}f(s,y) = \frac{\Gamma(\frac{m+1}{2})}{\sqrt{\pi}\Gamma(\frac{m}{2})} \int_0^{\pi} f(\sqrt{r^2 + s^2 + 2rs\cos\theta}, x+y)\sin^{m-1}(\theta)d\theta.$$

ii) The convolution product of $f, g \in L^1(d\nu_{m,n})$ is defined by

$$\forall (r,x) \in [0,+\infty[\times\mathbb{R}^n; f * g(r,x) = \int_0^{+\infty} \int_{\mathbb{R}^n} \tau_{(r,-x)}(\check{f})(s,y)g(s,y)d\nu_{m,n}(s,y),$$

where f(s, y) = f(s, -y).

We have the following properties

- relation (3.1) can be written: $\tau_{(r,x)}\varphi_{\mu,\lambda}(s,y) = \varphi_{\mu,\lambda}(r,x)\varphi_{\mu,\lambda}(s,y).$
- If $f \in L^p(d\nu_{m,n})$, $1 \leq p \leq +\infty$, then for every $(r, x) \in [0, +\infty[\times \mathbb{R}^n]$, the function $\tau_{(r,x)}f$ belongs to $L^p(d\nu_{m,n})$ and we have

$$||\tau_{(r,x)}f||_{p,\nu_{m,n}} \leqslant ||f||_{p,\nu_{m,n}}.$$
(3.2)

In particular, for every $f \in L^1(d\nu_{m,n})$ and $(s,y) \in [0, +\infty[\times\mathbb{R}^n]$, the function $\tau_{(r,x)}f$ belongs to $L^1(d\nu_{m,n})$ and we have

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \tau_{(s,y)} f(r,x) d\nu_{m,n}(r,x) = \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r,x) d\nu_{m,n}(r,x).$$
(3.3)

• Let $p,q,r \in [1,+\infty]$ such that $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. For every $f \in L^p(d\nu_{m,n})$, and $g \in L^q(d\nu_{m,n})$, the function f * g belongs to $L^r(d\nu_{m,n})$ and we have

$$||f * g||_{r,\nu_{m,n}} \leq ||f||_{p,\nu_{m,n}} ||g||_{q,\nu_{m,n}}.$$
(3.4)

In the following, we will define the Fourier transform $\mathscr{F}_{m,n}$ connected with $\mathscr{R}_{m,n}$ and we give its connection with the translation operator and the convolution product defined above. Next, we shall give some properties that we need in the coming sections.

Definition 3.2. The Fourier transform $\mathscr{F}_{m,n}$ associated with the integral transform $\mathscr{R}_{m,n}$ is defined on $L^1(d\nu_{m,n})$ by

$$\forall (\mu, \lambda) \in \Upsilon \; ; \; \mathscr{F}_{m,n}(f)(\mu, \lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r, x) \varphi_{\mu, \lambda}(r, x) \, d\nu_{m,n}(r, x),$$

where $\varphi_{\mu,\lambda}$ is the function given by (2.1) and Υ is the set defined by (2.6).

The Fourier transform $\mathscr{F}_{m,n}$ satisfies the properties

• For every $f \in L^1(d\nu_{m,n})$ and $(r, x) \in [0, +\infty[\times \mathbb{R}^n, we have$

$$\forall (\mu, \lambda) \in \Upsilon, \ \mathscr{F}_{m,n}(\tau_{(r,-x)}f)(\mu, \lambda) = \varphi_{\mu,\lambda}(r, x)\mathscr{F}_{m,n}(f)(\mu, \lambda).$$
(3.5)

• For every $f, g \in L^1(d\nu_{m,n})$, we have

$$\mathscr{I}(\mu,\lambda)\in\Upsilon, \ \mathscr{F}_{m,n}(f\ast g)(\mu,\lambda)=\mathscr{F}_{m,n}(f)(\mu,\lambda)\mathscr{F}_{m,n}(g)(\mu,\lambda).$$

• For every $f \in L^1(d\nu_{m,n})$, and $(\mu, \lambda) \in \Upsilon$

$$\mathscr{F}_{m,n}(f)(\mu,\lambda) = \widetilde{\mathscr{F}}_{m,n}(f) \circ \theta(\mu,\lambda), \qquad (3.6)$$

where for every $(\mu, \lambda) \in [0, +\infty[\times \mathbb{R}^n,$

$$\widetilde{\mathscr{F}}_{m,n}(f)(\mu,\lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r,x) j_{\frac{m-1}{2}}(r\mu) e^{-i\langle\lambda|x\rangle} d\nu_{m,n}(r,x).$$
(3.7)

Moreover, relation (2.7) implies that the Fourier transform $\mathscr{F}_{m,n}$ is a bounded linear operator from $L^1(d\nu_{m,n})$ into $L^{\infty}(d\gamma_{m,n})$, and that for every $f \in L^1(d\nu_{m,n})$, we have

$$\|\mathscr{F}_{m,n}(f)\|_{\infty,\gamma_{m,n}} \leqslant \|f\|_{1,\nu_{m,n}}.$$
(3.8)

Theorem 3.3 (Inversion formula). Let $f \in L^1(d\nu_{m,n})$ such that $\mathscr{F}_{m,n}(f) \in L^1(d\gamma_{m,n})$, then for almost every $(r, x) \in [0, +\infty[\times \mathbb{R}^n, we have$

$$\begin{split} f(r,x) &= \int \int_{\Upsilon_{+}} \mathscr{F}_{m,n}(f)(\mu,\lambda) \overline{\varphi_{\mu,\lambda}(r,x)} \, d\gamma_{m,n}(\mu,\lambda) \\ &= \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \widetilde{\mathscr{F}}_{m,n}(f)(\mu,\lambda) j_{\frac{m-1}{2}}(r\mu) e^{i\langle\lambda|x\rangle} \, d\nu_{m,n}(\mu,\lambda) \end{split}$$

Theorem 3.4 (Plancherel theorem). The Fourier transform $\mathscr{F}_{m,n}$ can be extended to an isometric isomorphism from $L^2(d\nu_{m,n})$ onto $L^2(d\gamma_{m,n})$. In particular, we have the Parseval equality, for every $f, g \in L^2(d\nu_{m,n})$

$$\begin{split} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r,x) \overline{g(r,x)} d\nu_{m,n}(r,x) \\ &= \int \int_{\Upsilon_{+}} \mathscr{F}_{m,n}(f)(\mu,\lambda) \overline{\mathscr{F}_{m,n}(g)(\mu,\lambda)} d\gamma_{m,n}(\mu,\lambda) \end{split}$$

Remark 3.5. i) Let $f \in L^1(d\nu_{m,n})$ and $g \in L^2(d\nu_{m,n})$, by relation (3.3), the function f * g belongs to $L^2(d\nu_{m,n})$; moreover

$$\mathscr{F}_{m,n}(f*g) = \mathscr{F}_{m,n}(f)\mathscr{F}_{m,n}(g).$$
(3.9)

ii) For every $f, g \in L^2(d\nu_{m,n})$; the function f * g belongs to the space $\mathcal{C}_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ consisting of continuous functions h on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable and such that

$$\lim_{r^2+|x|^2\to+\infty}h(r,x)=0.$$

Moreover,

$$f * g = \mathscr{F}_{m,n}^{-1}(\mathscr{F}_{m,n}(f)\mathscr{F}_{m,n}(g)), \qquad (3.10)$$

where $\mathscr{F}_{m,n}^{-1}$ is the mapping defined on $L^1(d\gamma_{m,n})$ by

$$\mathscr{F}_{m,n}^{-1}(g)(r,x) = \int \int_{\Upsilon_+} g(\mu,\lambda) \overline{\varphi_{\mu,\lambda}(r,x)} d\gamma_{m,n}(\mu,\lambda).$$

Remark 3.6. From Lemma 2.4 and relation (2.14), we deduce that for every $f \in L^1(d\nu_{m,n})$, we have

$$\forall (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n, \quad \mathscr{F}_{m,n}(f)(\mu, \lambda) = \Lambda_{n+1} \circ {}^t\mathscr{R}_{m,n}(f)(\mu, \lambda),$$

where Λ_{n+1} is the usual Fourier transform defined on $[0, +\infty[\times\mathbb{R}^n, by]]$

$$\Lambda_{n+1}(f)(\mu,\lambda) = \int_0^{+\infty} \int_{\mathbb{R}^n} f(r,x) \cos(r\mu) e^{-i\langle\lambda|x\rangle} dm_{n+1}(r,x).$$
(3.11)

The following result is an immediate consequence of Fubini's theorem.

Lemma 3.7. For a bounded function $g \in C_e(\mathbb{R} \times \mathbb{R}^n)$, and a function $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} f(r,x) S_{\frac{m-1}{2},\frac{n-1}{2}}(g)(r,x) \, d\nu_{m,n}(r,x) = \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} {}^{t} S_{\frac{m-1}{2},\frac{n-1}{2}}(f)(r,x) g(r,x) \, d\nu_{n,n}(r,x),$$
(3.12)

where ${}^{t}S_{a,b}$ is the dual of the Sonine transform defined for $f \in S_{e}(\mathbb{R} \times \mathbb{R}^{n})$, by

$${}^{t}S_{a,b}(f)(r,x) = \begin{cases} \frac{1}{2^{a-b-1}\Gamma(a-b)} \int_{r}^{+\infty} (t^{2}-r^{2})^{a-b-1}f(t,x)t \, dt, & \text{if } a > b; \\ f(r,x), & \text{if } a = b. \end{cases}$$
(3.13)

Proposition 3.8. For every $f \in L^1(d\nu_{m,n})$, the function ${}^tS_{\frac{m-1}{2},\frac{n-1}{2}}(f)$ belongs to $L^1(d\nu_{n,n})$, and we have

$$\|^{t}S_{\frac{m-1}{2},\frac{n-1}{2}}(f)\|_{1,\nu_{n,n}} \leq \|f\|_{1,\nu_{m,n}}.$$
(3.14)

Moreover, for every $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$ we have

$$\forall (\mu, \lambda) \in [0, +\infty[\times \mathbb{R}^n, \ \widetilde{\mathscr{F}}_{m,n}(f)(\mu, \lambda) = \widetilde{\mathscr{F}}_{n,n} \circ {}^tS_{\frac{m-1}{2}, \frac{n-1}{2}}(f)(\mu, \lambda).$$
(3.15)

The relation (3.15) follows from (2.12) and Lemma (3.7).

Remark 3.9. Since for every $m \ge n$, the Fourier transform $\widehat{\mathscr{F}}_{m,n}$ is a topological isomorphism from $S_e(\mathbb{R} \times \mathbb{R}^n)$ onto itself, then by relation (3.15) we deduce that the dual transform ${}^tS_{\frac{m-1}{2},\frac{n-1}{2}}$ is also a topological isomorphism from $S_e(\mathbb{R} \times \mathbb{R}^n)$ onto itself.

4. FRACTIONAL POWERS OF BESSEL AND THE LAPLACIAN OPERATORS

In the next section, we will establish inversion formulas for the operators $\mathscr{R}_{m,n}$ and its dual ${}^{t}\mathscr{R}_{m,n}$. More precisely, we define some functions spaces where the operators $\mathscr{R}_{m,n}$ and ${}^{t}\mathscr{R}_{m,n}$ are topological isomorphisms, and we exhibit the inverse operators in terms of integro-differential operators. For this we define and study in this section, the fractional powers of Bessel and Laplacian operators.

We denote by

- $\mathscr{E}_e(\mathbb{R})$ the space of even infinitely differentiable functions on \mathbb{R} .
- $S_e(\mathbb{R})$ the subspace of $\mathscr{E}_e(\mathbb{R})$, consisting of functions rapidly decreasing together with every their derivatives.
- $S'_e(\mathbb{R})$ the space of even tempered distributions on \mathbb{R} .
- $S_e^{\bar{i}}(\mathbb{R} \times \mathbb{R}^n)$ the space of tempered distributions on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable.
- Each of these spaces is equipped with its usual topology.
- For $\alpha \in \mathbb{R}$, $\alpha \ge \frac{-1}{2}$, $d\omega_{\alpha}$ the measure defined on $[0, +\infty)$ by

$$d\omega_{\alpha}(r) = \frac{1}{2^{\alpha}\Gamma(\alpha+1)}r^{2\alpha+1}dr.$$
(4.1)

• ℓ_{α} the Bessel operator defined on $]0, +\infty[$ by

$$\ell_{\alpha} = \frac{\partial^2}{\partial r^2} + \frac{2\alpha + 1}{r} \frac{\partial}{\partial r}, \quad \alpha \ge -\frac{1}{2}.$$
(4.2)

 \bullet For an even measurable function f on $\mathbb R,$ $T_f^{\omega_\alpha}$ denotes the even tempered distribution defined by

$$\forall \varphi \in S_e(\mathbb{R}), \ \langle T_f^{\omega_\alpha}, \varphi \rangle = \int_0^{+\infty} f(r)\varphi(r)d\omega_\alpha(r).$$
(4.3)

• For a measurable function g on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, $T_g^{m_{n+1}}$ (resp. $T_g^{\nu_{m,n}}$) denotes the even tempered distribution, defined by

$$\forall \varphi \in S'_e(\mathbb{R} \times \mathbb{R}^n), \ \langle T_g^{m_{n+1}}, \varphi \rangle = \int_0^{+\infty} \int_{\mathbb{R}^n} g(r, x) \varphi(r, x) dm_{n+1}(r, x),$$

$$\left(resp. \langle T_g^{\nu_{m,n}}, \varphi \rangle = \int_0^{+\infty} \int_{\mathbb{R}^n} g(r, x) \varphi(r, x) d\nu_{m,n}(r, x) \right),$$

$$(4.4)$$

where dm_{n+1} and $d\nu_{m,n}$ are the measures given by relations (2.15) and (2.16).

Let $a \in \mathbb{C}$, such that $\operatorname{Re}(a) > -2(\alpha + 1)$, then the function $r \mapsto |r|^a$ defines an even tempered distribution $T^{\omega_{\alpha}}_{|r|^a}$ on \mathbb{R} . Indeed, let $m \in \mathbb{N}$ satisfying

$$\int_{0}^{+\infty} \frac{r^{Re(a)+2\alpha+1}}{(1+r^2)^m} dr < +\infty,$$

then for every $\varphi \in S_e(\mathbb{R})$;

$$|\langle T^{\omega_{\alpha}}_{|r|^{a}}, \varphi \rangle| \leqslant C_{m,\alpha,a} P_{m}(\varphi),$$

where

$$C_{m,\alpha,a} = \frac{1}{2^{\alpha}\Gamma(\alpha+1)} \int_{0}^{+\infty} \frac{r^{Re(a)+2\alpha+1}}{(1+r^2)^m} dr,$$

and

$$P_m(\varphi) = \sup_{\substack{k_1, k_2 \le m \\ x \in \mathbb{R}}} (1 + x^2)^{k_1} |\varphi^{(k_2)}(x)|.$$

Now let $a \in \mathbb{C} \setminus \{-2(\alpha+1)-k, k \in \mathbb{N}\}$ and $m \in \mathbb{N}^*$ such that $\operatorname{Re}(a) > -m-2(\alpha+1)$, then the value of the following expression

$$\int_0^1 \left(\varphi(r) - \sum_{j=0}^{m-1} \frac{\varphi^{(j)}(0)}{j!} r^j \right) r^a d\omega_\alpha(r) + \frac{1}{2^\alpha \Gamma(\alpha+1)} \sum_{j=0}^{m-1} \frac{\varphi^{(j)}(0)}{j! (j+a+2\alpha+2)},$$

is independent of the choice of the parameter m. Hence the mapping

$$a \mapsto T^{\omega_{\alpha}}_{|r|^{\alpha}}$$

may be extended on $\mathbb{C} \setminus \{-2(\alpha + 1) - k, k \in \mathbb{N}\}$, by setting

$$\langle T^{\omega_{\alpha}}_{|r|^{a}}, \varphi \rangle = \int_{0}^{1} \left(\varphi(r) - \sum_{j=0}^{m-1} \frac{\varphi^{(j)}(0)}{j!} r^{j} \right) r^{a} d\omega_{\alpha}(r) + \int_{1}^{+\infty} r^{a} \varphi(r) d\omega_{\alpha}(r) + \frac{1}{2^{\alpha} \Gamma(\alpha+1)} \sum_{j=0}^{m-1} \frac{\varphi^{(j)}(0)}{j! (j+a+2\alpha+2)}$$

where m is an any integer satisfying $\operatorname{Re}(a) > -m - 2(\alpha + 1)$, and therefore $T_{|r|^a}^{\omega_{\alpha}}$ is an even tempered distribution on \mathbb{R} . Thus the mapping

$$a \mapsto T^{\omega_{\alpha}}_{|r|^a}$$

can be extended to a valued function in $S_{e}^{'}(\mathbb{R})$, analytic on $\mathbb{C}\setminus\{-2(\alpha+1)-k, k\in\mathbb{N}\}$. On the other hand, the points $-2(\alpha+1)-k, k\in\mathbb{N}$ are simples poles for $T_{|r|^{\alpha}}^{\omega_{\alpha}}$ and we have

$$\operatorname{Res}(T^{\omega_{\alpha}}_{|r|^{a}}, -2(\alpha+1)-k) = \frac{(-1)^{k}}{2^{\alpha}\Gamma(\alpha+1)} \frac{\delta^{(k)}}{k!},$$

in particular

$$\operatorname{Res}(T_{|r|^{\alpha}}^{\omega_{\alpha}}, -2(\alpha+1) - 2k - 1) = \frac{-1}{2^{\alpha}\Gamma(\alpha+1)} \frac{\delta^{(2k+1)}}{(2k+1)!} = 0, \quad \text{over } S_e(\mathbb{R}).$$

This means that the mapping

$$a \mapsto T^{\omega_{\alpha}}_{|r|^a}$$

is analytic on $\mathbb{C}\backslash\{-2(\alpha+k+1),k\in\mathbb{N}\}$ and

$$\operatorname{Res}(T^{\omega_{\alpha}}_{|r|^{a}}, -2(\alpha+k+1)) = \frac{1}{2^{\alpha}\Gamma(\alpha+1)} \frac{\delta^{(2k)}}{(2k)!}.$$

Definition 4.1. i) The Bessel translation operator τ_r^{α} is defined on $S_e(\mathbb{R})$ by

$$\tau_r^{\alpha}(f)(s) = \begin{cases} \frac{\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha+\frac{1}{2})} \int_0^{\pi} f(\sqrt{r^2+s^2+2rs\cos\theta})\sin^{2\alpha}(\theta)d\theta, & \text{if } \alpha > -\frac{1}{2};\\ \frac{1}{2}[f(r+s)+f(r-s)], & \text{if } \alpha = -\frac{1}{2}. \end{cases}$$

ii) The Bessel convolution product of $f \in S_e(\mathbb{R})$ and $T \in S'_e(\mathbb{R})$ is the function defined by

$$\forall r \in \mathbb{R}, \quad T *_{\alpha} f(r) = \langle T, \tau_r^{\alpha}(f) \rangle.$$
(4.5)

iii) The Fourier-Bessel transform is defined on $S_e(\mathbb{R})$ by

$$\forall \mu \in \mathbb{R}, \quad F_{\alpha}(f)(\mu) = \int_{0}^{+\infty} f(r) j_{\alpha}(r\mu) d\omega_{\alpha}(r), \tag{4.6}$$

and on $S_{e}^{'}(\mathbb{R})$ by

$$\forall \varphi \in S_e(\mathbb{R}), \quad \langle F_\alpha(T), \varphi \rangle = \langle T, F_\alpha(\varphi) \rangle. \tag{4.7}$$

We have the following properties

• F_{α} is an isomorphism from $S_e(\mathbb{R})$ (resp. $S'_e(\mathbb{R})$) onto itself, and we have

$$F_{\alpha}^{-1} = F_{\alpha}. \tag{4.8}$$

• For $f \in S_e(\mathbb{R})$, and $r \in \mathbb{R}$, the function $\tau_r^{\alpha}(f)$ belongs to $S_e(\mathbb{R})$ and we have

$$F_{\alpha}(\tau_r^{\alpha}f)(\mu) = j_{\alpha}(r\mu)F_{\alpha}(f)(\mu).$$
(4.9)

• For $f \in S_e(\mathbb{R})$ and $T \in S'_e(\mathbb{R})$, the function $T *_{\alpha} f$ belongs to $\mathscr{E}_e(\mathbb{R})$, and is slowly increasing, moreover

$$F_{\alpha}(T^{\omega_{\alpha}}_{T*_{\alpha}f}) = F_{\alpha}(f)F_{\alpha}(T).$$
(4.10)

Proposition 4.2. The mappings

$$a \mapsto T^{\omega_{\alpha}}_{|r|^{a}}, \ a \mapsto T^{\omega_{\alpha}}_{\frac{\Gamma\left(\frac{a}{2}+\alpha+1\right)}{\Gamma\left(\frac{-a}{2}\right)}} 2^{a+\alpha+1} |r|^{-a-2\alpha-2}$$

$$\tag{4.11}$$

defined initially for $-2(\alpha + 1) < Re(a) < 0$, can be extended to a valued functions in $S'_e(\mathbb{R})$, analytic on $\mathbb{C} \setminus \{-2(\alpha + k + 1), k \in \mathbb{N}\}$, and we have

$$F_{\alpha}(T^{\omega_{\alpha}}_{|r|^{a}}) = T^{\omega_{\alpha}}_{\frac{\Gamma(\frac{a}{2} + \alpha + 1)}{\Gamma(\frac{-a}{2})}} 2^{a + \alpha + 1} |r|^{-a - 2\alpha - 2}.$$
(4.12)

Proof. Let $a \in \mathbb{C}$, $-2(\alpha + 1) < \operatorname{Re}(a) < 0$ and let ψ_t be the function defined by

$$\psi_t(r) = e^{\frac{-tr^2}{2}}, \ t > 0.$$

We have

$$F_{\alpha}(\psi_t)(\lambda) = t^{-\alpha - 1} e^{\frac{-\lambda^2}{2t}}.$$
(4.13)

On the other hand, for every $\varphi \in S_e(\mathbb{R})$, we have

$$\int_{0}^{+\infty} F_{\alpha}(\psi_{t})(r)\varphi(r)d\omega_{\alpha}(r) = \int_{0}^{+\infty} F_{\alpha}(\varphi)(r)\psi_{t}(r)d\omega_{\alpha}(r), \qquad (4.14)$$

from relations (4.13) and (4.14), we obtain

$$\int_0^{+\infty} t^{-\alpha-1} e^{\frac{-r^2}{2t}} \varphi(r) d\omega_\alpha(r) = \int_0^{+\infty} F_\alpha(\varphi)(r) e^{\frac{-tr^2}{2}} d\omega_\alpha(r)$$

Multiplying both sides by $t^{-\frac{a+2}{2}}$ and integrating over $]0, +\infty[$, we obtain

$$\int_{0}^{+\infty} \int_{0}^{+\infty} t^{-\alpha-1} t^{-\frac{a+2}{2}} e^{\frac{-\lambda^2}{2t}} \varphi(r) d\omega_{\alpha}(r) dt \qquad (4.15)$$

$$= \int_{0}^{+\infty} \int_{0}^{+\infty} F_{\alpha}(\varphi)(r) e^{\frac{-tr^{2}}{2}} t^{-\frac{a+2}{2}} d\omega_{\alpha}(r) dt,$$
(4.16)

and by using Fubini's theorem, we deduce that

$$\int_0^{+\infty} F_\alpha(\varphi)(r) r^a d\omega_\alpha(r) = 2^{a+\alpha+1} \frac{\Gamma(\frac{a}{2}+\alpha+1)}{\Gamma(\frac{-a}{2})} \int_0^{+\infty} \varphi(r) r^{-a-2\alpha-2} d\omega_\alpha(r).$$

This shows that for every $a \in \mathbb{C}$, such that $-2(\alpha + 1) < \operatorname{Re}(a) < 0$, we have

$$F_{\alpha}(T_{|r|^{a}}^{\omega_{\alpha}}) = T \frac{\Gamma(\frac{a}{2} + \alpha + 1)}{\Gamma(\frac{-a}{2})} 2^{a + \alpha + 1} |r|^{-a - 2\alpha - 2}.$$

The result is then obtained by analytic continuation.

Definition 4.3. For $a \in \mathbb{C} \setminus \{-(\alpha + k + 1), k \in \mathbb{N}\}$, the fractional power of Bessel operator ℓ_{α} is defined on $S_e(\mathbb{R})$ by

$$(-\ell_{\alpha})^{a}f(r) = \left(T\frac{\Gamma(a+\alpha+1)}{\Gamma(-a)}2^{2a+\alpha+1}|s|^{-2a-2\alpha-2} *_{\alpha}f\right)(r).$$
(4.17)

It is well known that for $f \in S_e(\mathbb{R})$, the function $(-\ell_{\alpha})^a f$ belongs to $\mathscr{E}_e(\mathbb{R})$ and is slowly increasing, moreover by relations (4.10) and (4.12), we deduce that for $f \in S_e(\mathbb{R})$ and $a \in \mathbb{C} \setminus \{-(\alpha + k + 1), k \in \mathbb{N}\}$, we have

$$F_{\alpha}(T^{\omega_{\alpha}}_{(-\ell_{\alpha})^{a}f}) = F_{\alpha}(f)T^{\omega_{\alpha}}_{|r|^{2a}}.$$
(4.18)

Let \mathscr{A} be the transform defined on $S_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$\mathscr{A}(\varphi)(\rho) = \int_{S^n} \varphi(\rho\omega) d\sigma_n(\omega),$$

then \mathscr{A} is a continuous mapping from $S_e(\mathbb{R} \times \mathbb{R}^n)$ into $S_e(\mathbb{R})$.

Let $a \in \mathbb{C}$, such that $\operatorname{Re}(a) > -\frac{n+1}{2}$, then the function $(r, x) \mapsto (r^2 + |x|^2)^a$ defines an even tempered distribution $T^{m_{n+1}}_{(r^2+|x|^2)^a}$ on $\mathbb{R} \times \mathbb{R}^n$ and we have

$$\langle T_{(r^2+|x|^2)^a}^{m_{n+1}}, \varphi \rangle = \int_0^{+\infty} \int_{\mathbb{R}^n} (r^2+|x|^2)^a \varphi(r,x) dm_{n+1}(r,x)$$

= $\langle T_{|r|^{2a}}^{\omega \frac{n-1}{2}}, \mathscr{A}(\varphi) \rangle.$ (4.19)

From relation (4.19) and Proposition 4.2, we deduce that the valued function in $S'_e(\mathbb{R}\times\mathbb{R}^n)$ defined by

$$a \mapsto T^{m_{n+1}}_{(r^2 + |x|^2)^a}$$

is analytic on $\mathbb{C} \setminus \{-(\frac{n+1}{2}+k), k \in \mathbb{N}\}$. Moreover, we have

Proposition 4.4. the mappings

$$a \mapsto T^{m_{n+1}}_{(r^2+|x|^2)^a}, \ a \mapsto T^{m_{n+1}}_{\frac{\Gamma(\frac{n+1}{2}+a)}{\Gamma(-a)}} 2^{\frac{n+1}{2}+2a} (r^2+|x|^2)^{-(\frac{n+1}{2}+a)}$$
(4.20)

defined firstly for $-\frac{n+1}{2} < Re(a) < 0$, can be extended to valued functions in $S'_e(\mathbb{R} \times \mathbb{R}^n)$, analytic on $\mathbb{C} \setminus \{-(\frac{n+1}{2}+k), k \in \mathbb{N}\}$, and we have

$$\Lambda_{n+1}(T^{m_{n+1}}_{(r^2+|x|^2)^a}) = T^{m_{n+1}}_{\frac{\Gamma(\frac{n+1}{2}+a)}{\Gamma(-a)}} 2^{\frac{n+1}{2}+2a} (r^2+|x|^2)^{-(\frac{n+1}{2}+a)},$$
(4.21)

where Λ_{n+1} is defined on $S'_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$\langle \Lambda_{n+1}(T), \varphi \rangle = \langle T, \Lambda_{n+1}(\varphi) \rangle, \quad \varphi \in S_e(\mathbb{R} \times \mathbb{R}^n),$$
(4.22)

and $\Lambda_{n+1}(\varphi)$ is given by relation (3.11).

Proof. Let $a \in \mathbb{C}$, such that $-(\frac{n+1}{2}) < \operatorname{Re}(a) < 0$, and let ψ_t , t > 0, be the function defined on $\mathbb{R} \times \mathbb{R}^n$, by

$$\psi_t(r,x) = e^{-\frac{t}{2}(r^2 + |x|^2)}.$$

We have

$$\Lambda_{n+1}(\psi_t)(\mu,\lambda) = t^{-\frac{n+1}{2}} e^{-\frac{1}{2t}(\mu^2 + |\lambda|^2)}.$$

On the other hand, for every $\varphi \in S_e(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\int_0^{+\infty} \int_{\mathbb{R}^n} \Lambda_{n+1}(\psi_t)(r, x)\varphi(r, x)dm_{n+1}(r, x)$$
$$= \int_0^{+\infty} \int_{\mathbb{R}^n} \psi_t(r, x)\Lambda_{n+1}(\varphi)(r, x)dm_{n+1}(r, x),$$

hence,

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} t^{-\frac{n+1}{2}} e^{-\frac{1}{2t}(r^{2}+|x|^{2})} \varphi(r,x) dm_{n+1}(r,x) = \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} e^{-\frac{t}{2}(r^{2}+|x|^{2})} \Lambda_{n+1}(\varphi)(r,x) dm_{n+1}(r,x).$$

Multiplying both sides by $t^{-(a+1)}$ and integrating over $]0, +\infty[$, we obtain

$$\int_{0}^{+\infty} \Big(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2t}(r^{2}+|x|^{2})} \varphi(r,x) dm_{n+1}(r,x) \Big) t^{-(\frac{n+1}{2}+a+1)} dt$$
$$= \int_{0}^{+\infty} \Big(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} e^{-\frac{t}{2}(r^{2}+|x|^{2})} \Lambda_{n+1}(\varphi)(r,x) dm_{n+1}(r,x) \Big) t^{-(a+1)} dt$$

using Fubini's theorem, we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \Lambda_{n+1}(\varphi)(r,x)(r^{2}+|x|^{2})^{a} dm_{n+1}(r,x)$$
$$= \frac{\Gamma(\frac{n+1}{2}+a)}{\Gamma(-a)} 2^{\frac{n+1}{2}+2a} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \varphi(r,x)(r^{2}+|x|^{2})^{-(\frac{n+1}{2}+a)} dm_{n+1}(r,x).$$

This shows that for every $a \in \mathbb{C}$, such that $-\frac{n+1}{2} < \operatorname{Re}(a) < 0$, we have

$$\Lambda_{n+1}(T^{m_{n+1}}_{(r^2+|x|^2)^a}) = T^{m_{n+1}}_{\frac{\Gamma(\frac{n+1}{2}+a)}{\Gamma(-a)}} 2^{\frac{n+1}{2}+2a} (r^2+|x|^2)^{-(\frac{n+1}{2}+a)}.$$

Then the proof is complete by analytic continuation .

Definition 4.5. For $a \in \mathbb{C} \setminus \{-(\frac{n+1}{2}+k), k \in \mathbb{N}\}$, the fractional power of the Laplacian operator $\Delta = \frac{\partial^2}{\partial r^2} + \sum_{j=1}^n (\frac{\partial}{\partial x_j})^2$ is defined on $S_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$(-\Delta)^{a} f(r,x) = \left(T \frac{\Gamma(\frac{n+1}{2}+a)}{\Gamma(-a)} 2^{\frac{n+1}{2}+2a} (s^{2}+|y|^{2})^{-(\frac{n+1}{2}+a)} \star f \right)(r,x), \quad (4.23)$$

where

i) \star is the usual convolution product defined by

$$T \star f(r, x) = \langle T, \sigma_{(r, -x)}(\check{f}) \rangle, \ T \in S'_e(\mathbb{R} \times \mathbb{R}^n), \ f \in S_e(\mathbb{R} \times \mathbb{R}^n);$$
(4.24)

ii) $\sigma_{(r,x)}$ is the translation operator associated with Λ_{n+1} and given by

$$\sigma_{(r,x)}(f)(s,y) = \frac{1}{2} \Big[f(r+s,x+y) + f(r-s,x+y) \Big], \quad f \in S_e(\mathbb{R} \times \mathbb{R}^n).$$
(4.25)

It is well known that for $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$ and $T \in S'_e(\mathbb{R} \times \mathbb{R}^n)$, the function $T \star f$ belongs to $\mathscr{E}_e(\mathbb{R} \times \mathbb{R}^n)$ and is slowly increasing. Moreover

$$\Lambda_{n+1}(T_{T\star f}^{m_{n+1}}) = \Lambda_{n+1}(f)\Lambda_{n+1}(T), \qquad (4.26)$$

thus from relations (4.21) and (4.26), we deduce that for $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$ and $a \in \mathbb{C} \setminus \{-(\frac{n+1}{2}+k), k \in \mathbb{N}\},\$

$$\Lambda_{n+1}(T^{m_{n+1}}_{(-\Delta)^a f}) = \Lambda_{n+1}(f)T^{m_{n+1}}_{(r^2+|x|^2)^a}.$$
(4.27)

5. Inversion formulas for $\mathscr{R}_{m,n}$ and ${}^{t}\mathscr{R}_{m,n}$

In this section, we will define some subspaces of $S_e(\mathbb{R} \times \mathbb{R}^n)$ where the operator $\mathscr{R}_{m,n}$ and its dual ${}^t\mathscr{R}_{m,n}$ are topological isomorphisms. Using the fractional powers defined in the precedent section we give nice expression of the inverse operators.

We denote by

• \mathcal{N} the subspace of $S_e(\mathbb{R} \times \mathbb{R}^n)$, consisting of functions f satisfying

$$\forall k \in \mathbb{N}, \forall x \in \mathbb{R}^n, \ (\frac{\partial}{\partial r^2})^k f(0, x) = 0,$$
(5.1)

where $\frac{\partial}{\partial r^2}$ is the singular partial differential operator defined by

$$\frac{\partial}{\partial r^2} = \frac{1}{r} \frac{\partial}{\partial r}.$$
(5.2)

• $S_{e,0}(\mathbb{R}\times\mathbb{R}^n)$ the subspace of $S_e(\mathbb{R}\times\mathbb{R}^n)$, constituted by the functions f satisfying

1.00

$$\forall k \in \mathbb{N}, \forall x \in \mathbb{R}^n, \quad \int_0^{+\infty} f(r, x) r^{2k} dr = 0.$$
(5.3)

• $S_e^0(\mathbb{R}\times\mathbb{R}^n)$ the subspace of $S_e(\mathbb{R}\times\mathbb{R}^n)$, constituted by the functions f satisfying

$$\operatorname{supp}(\widetilde{\mathscr{F}}_{m,n}(f)) \subset \Big\{ (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n; \ |\mu| \ge |\lambda| \Big\}.$$
(5.4)

Lemma 5.1. i) The usual Fourier transform Λ_{n+1} defined by relation (3.11) is an isomorphism from $S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ onto \mathcal{N} . ii) The subspace \mathcal{N} can be written as

$$\mathcal{N} = \left\{ f \in S_e(\mathbb{R} \times \mathbb{R}^n); \forall k \in \mathbb{N}, \forall x \in \mathbb{R}^n, (\frac{\partial}{\partial r})^{2k} f(0, x) = 0 \right\}.$$
 (5.5)

Proof. Let $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$. i) For $m \ge 0$, we have

$$\left(\frac{\partial}{\partial\mu^2}\right)^k (j_{\frac{m-1}{2}})(r\mu) = \frac{(-1)^k \Gamma(\frac{m+1}{2})}{2^k \Gamma(\frac{m+1}{2}+k)} r^{2k} j_{\frac{m-1}{2}+k}(r\mu), \tag{5.6}$$

thus, from the expression of Λ_{n+1} , given in Remark 3.6, and the fact that $j_{\frac{-1}{2}}(s) = \cos s$, we obtain

$$\left(\frac{\partial}{\partial\mu^{2}}\right)^{k}(\Lambda_{n+1}(f))(0,\lambda) = \frac{(-1)^{k}}{2^{k-\frac{1}{2}}\Gamma(k+\frac{1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} \int_{0}^{+\infty} f(r,x)r^{2k}e^{-i\langle\lambda|x\rangle}drdx,$$
(5.7)

which gives the result.

ii) The proof of ii) is immediate.

Theorem 5.2. i) For every real number a, the transforms $\mathscr{A}_a(f)$ and $\mathscr{B}_a(f)$ defined respectively on \mathscr{N} by

$$\mathscr{A}_{a}(f)(r,x) = (r^{2} + |x|^{2})^{a} f(r,x),$$

and

$$\mathscr{B}_a(f)(r,x) = |r|^a f(r,x),$$

are isomorphisms from the space \mathcal{N} onto itself. ii) For $f \in \mathcal{N}$, the function $B^{-1}(f)$ defined by

$$B^{-1}(f)(r,x) = \begin{cases} f(\sqrt{r^2 - |x|^2}, x), & \text{if } |r| \ge |x|, \\ 0, & \text{otherwise,} \end{cases}$$

belongs to the space $S_e(\mathbb{R} \times \mathbb{R}^n)$.

Proof. i) Let a be a real number, by induction for every $k \in \mathbb{N}$, there is a polynomial P_k of n + 1 variables such that

$$\left(\frac{\partial}{\partial r}\right)^k (r^2 + |x|^2)^a = P_k(r, x)(r^2 + |x|^2)^{a-k}.$$

Hence, for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, there is a polynomial $P_{k,\alpha}$ satisfying for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n \setminus \{(0, 0)\},\$

$$\left(\frac{\partial}{\partial r}\right)^{k} D_{x}^{\alpha} (r^{2} + |x|^{2})^{a} = P_{k,\alpha}(r,x)(r^{2} + |x|^{2})^{a-k-|\alpha|}.$$
(5.8)

Let f be a function of the space \mathscr{N} , and let $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, then by Leibniz's formula, we deduce that for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n \setminus \{(0, 0)\}$, we have

$$(\frac{\partial}{\partial r})^k D_x^{\alpha}((r^2 + |x|^2)^a f(r, x)) = \sum_{(k_1, \beta) \leqslant (k, \alpha)} \frac{(k, \alpha)!}{(k_1, \beta)! (k - k_1, \alpha - \beta)!} \times (\frac{\partial}{\partial r})^{k_1} D_x^{\beta} (r^2 + |x|^2)^a (\frac{\partial}{\partial r})^{k - k_1} D_x^{\alpha - \beta} (f)(r, x),$$

and from relation (5.8), we get

$$(\frac{\partial}{\partial r})^k D_x^{\alpha}((r^2 + |x|^2)^a f(r, x)) = \sum_{(k_1, \beta) \le (k, \alpha)} \frac{(k, \alpha)!}{(k_1, \beta)! (k - k_1, \alpha - \beta)!} P_{k_1, \beta}(r, x)$$
$$\times (r^2 + |x|^2)^{a - k_1 - |\beta|} (\frac{\partial}{\partial r})^{k - k_1} D_x^{\alpha - \beta}(f)(r, x).$$

Let $m, \ell \in \mathbb{N}$ satisfying $a - m + \ell > 0$, and let $k, k' \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$ such that $k' \leq m$ and $k + |\alpha| \leq m$. Since f belongs to the space \mathscr{N} , then by using Taylor's formula we have

$$\begin{split} &(\frac{\partial}{\partial r})^k D_x^{\alpha}((r^2+|x|^2)^a f(r,x)) \\ &= \sum_{(k_1,\beta) \leqslant (k,\alpha)} \frac{(k,\alpha)!}{(k_1,\beta)!(k-k_1,\alpha-\beta)!} P_{k_1,\beta}(r,x)(r^2+|x|^2)^{a-k_1-|\beta|} \\ &\times \frac{r^{2\ell}}{(2\ell-1)!} \int_0^1 (1-t)^{2\ell-1} (\frac{\partial}{\partial r})^{2\ell+k-k_1} D_x^{\alpha-\beta}(f)(rt,x) dt; \ if \ |r| \leqslant 1, \end{split}$$

and

$$\begin{aligned} (\frac{\partial}{\partial r})^k D_x^{\alpha}((r^2 + |x|^2)^a f(r, x)) \\ &= -\sum_{(k_1, \beta) \leqslant (k, \alpha)} \frac{(k, \alpha)!}{(k_1, \beta)! (k - k_1, \alpha - \beta)!} P_{k_1, \beta}(r, x) (r^2 + |x|^2)^{a - k_1 - |\beta|} \\ &\times \frac{r^{2\ell}}{(2\ell - 1)!} \int_1^{+\infty} (1 - t)^{2\ell - 1} (\frac{\partial}{\partial r})^{2\ell + k - k_1} D_x^{\alpha - \beta}(f)(rt, x) dt; \ if \ |r| > 1 \end{aligned}$$

This shows that the function $\mathscr{A}_a(f)$ is infinitely differentiable on $\mathbb{R} \times \mathbb{R}^n$, even with respect the first variable and for every $k \in \mathbb{N}$ and $x \in \mathbb{R}^n$,

$$\left(\frac{\partial}{\partial r}\right)^k \left[\mathscr{A}_a(f)(r,x)\right]_{r=0} = 0.$$

Furthermore, there exist $m_0 \in \mathbb{N}$ and a constant C > 0 such that for every $(k_1, \beta) \leq (k, \alpha), k + |\alpha| \leq m$, we have

$$|P_{k_1,\beta}(r,x)| \leq C(1+r^2+|x|^2)^{m_0}.$$

• For $(r, x) \in \mathbb{R} \times \mathbb{R}^n$; $|r| \leq 1$, we have

$$\begin{aligned} (1+r^{2}+|x|^{2})^{k'} \left| \left(\frac{\partial}{\partial r}\right)^{k} D_{x}^{\alpha}((r^{2}+|x|^{2})^{a}f(r,x)) \right| \\ &\leqslant C \sum_{(k_{1},\beta)\leqslant(k,\alpha)} \frac{(k,\alpha)!}{(k_{1},\beta)!(k-k_{1},\alpha-\beta)!} (1+r^{2}+|x|^{2})^{k'+[a]+1-m+\ell+m_{0}} \\ &\times \int_{0}^{1} \left| \left(\frac{\partial}{\partial r}\right)^{2\ell+k-k_{1}} D_{x}^{\alpha-\beta}(f)(rt,x) \right| dt \\ &\leqslant C 2^{[a]+1+\ell} \sum_{(k_{1},\beta)\leqslant(k,\alpha)} \frac{(k,\alpha)!}{(k_{1},\beta)!(k-k_{1},\alpha-\beta)!} \\ &\times \int_{0}^{1} (1+(rt)^{2}+|x|^{2})^{[a]+1+\ell+m_{0}} \left| \left(\frac{\partial}{\partial r}\right)^{2\ell+k-k_{1}} D_{x}^{\alpha-\beta}(f)(rt,x) \right| dt \\ &\leqslant C 2^{[a]+1+\ell+m} \mathscr{P}_{2\ell+m+[a]+m_{0}+1}(f). \end{aligned}$$
(5.9)

• For $(r, x) \in \mathbb{R} \times \mathbb{R}^n$; |r| > 1, we have

$$\begin{aligned} (1+r^{2}+|x|^{2})^{k'} \Big| (\frac{\partial}{\partial r})^{k} D_{x}^{\alpha} ((r^{2}+|x|^{2})^{a} f(r,x)) \Big| \\ &\leqslant C \sum_{(k_{1},\beta) \leqslant (k,\alpha)} \frac{(k,\alpha)!}{(k_{1},\beta)!(k-k_{1},\alpha-\beta)!} \\ &\times \int_{1}^{+\infty} (1+(rt)^{2}+|x|^{2})^{[a]+1+3\ell+m_{0}} \Big| (\frac{\partial}{\partial r})^{2\ell+k-k_{1}} D_{x}^{\alpha-\beta}(f)(rt,x) \Big| \frac{dt}{1+t^{2}} \\ &\leqslant C\pi 2^{m} \mathscr{P}_{3\ell+m+m_{0}+[a]+1}(f). \end{aligned}$$
(5.10)

Combining relations (5.9) and (5.10), we deduce that $\mathscr{A}_a(f)$ belongs to the space \mathcal{N} , and for every $m \in \mathbb{N}$,

$$\mathscr{P}_m(\mathscr{A}_a(f)) \leqslant 2^{m+\ell+[a]+2} \mathscr{P}_{3\ell+m+m_0+[a]+1}(f).$$

$$(5.11)$$

where $\mathscr{P}_m(\varphi) = \sup_{\substack{(r,x)\in\mathbb{R}\times\mathbb{R}^n\\k_1\leqslant m\\k_2+|\alpha|\leqslant m}} (1+r^2+|x|^2)^{k_1} \Big| (\frac{\partial}{\partial r})^{k_2} D_x^{\alpha} \varphi(r,x) \Big|,$

 $\varphi \in S_e(\mathbb{R} \times \mathbb{R}^n).$

Hence, for every $a \in \mathbb{R}$, the transform \mathscr{A}_a is continuous from the space \mathscr{N} into itself, and consequently \mathscr{A}_a is an isomorphism from \mathscr{N} onto itself, and $\mathscr{A}_a^{-1} = \mathscr{A}_{-a}$. Similarly, one can prove that for every $a \in \mathbb{R}$ the transform \mathscr{B}_a is an isomorphism from \mathscr{N} onto itself, and $\mathscr{B}_a^{-1} = \mathscr{B}_{-a}$. ii) Let $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$ and let

$$g(r,x) = B^{-1}(f)(r,x) = \begin{cases} f(\sqrt{r^2 - |x|^2}, x), & \text{if } |r| \ge |x|, \\ 0, & \text{otherwise.} \end{cases}$$

Then by induction for every $k \in \mathbb{N}$, there exist real polynomials P_k , $0 \leq k \leq n$, such that

$$(\frac{\partial}{\partial r})^k(g)(r,x) = \sum_{\ell=0}^k P_\ell(r)(\frac{\partial}{\partial r^2})^\ell(f)(\sqrt{r^2 - |x|^2}, x).$$

On the other hand, for every $j \in \{1, ..., n\}$ and again by induction on $\alpha_j \in \mathbb{N}$, we get

$$\left(\frac{\partial}{\partial x_j}\right)^{\alpha_j} \left(\frac{\partial}{\partial r}\right)^k(g)(r,x) = \sum_{\ell=0}^k P_\ell(r) C_j^{\alpha_j} \left(\left(\frac{\partial}{\partial r^2}\right)^\ell(f)\right) \left(\sqrt{r^2 - |x|^2}, x\right),$$

where

$$C_j = -x_j \frac{\partial}{\partial r^2} + \frac{\partial}{\partial x_j}.$$

Hence, for every $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, we have

$$(\frac{\partial}{\partial r})^k D_x^{\alpha}(g)(r,x) = \sum_{\ell=0}^k P_\ell(r) C_1^{\alpha_1} \dots C_n^{\alpha_n} ((\frac{\partial}{\partial r^2})^\ell(f)) (\sqrt{r^2 - |x|^2}, x),$$

this shows that $B^{-1}(f)$ is a C^{∞} function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable.

Let $m \in \mathbb{N}$, $k, k' \in \mathbb{N}$ and $\alpha \in \mathbb{N}^n$ satisfying $k + |\alpha| \leq m$ and $k' \leq m$, then for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n$, we get

$$\begin{split} (1+r^2+|x|^2)^{k'} &(\frac{\partial}{\partial r})^k D_x^{\alpha} (B^{-1}(f))(r,x) \\ &= (1+r^2+|x|^2)^{k'} \sum_{\ell=0}^k P_\ell(r) C_1^{\alpha_1} \dots C_n^{\alpha_n} ((\frac{\partial}{\partial r^2})^\ell(f)) (\sqrt{r^2-|x|^2},x). \end{split}$$

Let $m_0 \in \mathbb{N}$ and M > 0 such that for every $\ell \leqslant k \leqslant m$

$$|P_{\ell}(r)| \leq M(1+r^2)^{m_0} \leq M(1+r^2+|x|^2)^{m_0},$$

then for every $(r, x) \in \mathbb{R} \times \mathbb{R}^n$, we have

$$(1+r^{2}+|x|^{2})^{k'} \left| \left(\frac{\partial}{\partial r}\right)^{k} D_{x}^{\alpha} (B^{-1}(f))(r,x) \right|$$

$$\leq M \sum_{\ell=0}^{k} (1+r^{2}+|x|^{2})^{k'+m_{0}} \left| C_{1}^{\alpha_{1}} ... C_{n}^{\alpha_{n}} \left(\left(\frac{\partial}{\partial r^{2}}\right)^{\ell}(f) \right) (\sqrt{r^{2}-|x|^{2}},x) \right|$$

$$\leq M \sum_{\ell=0}^{k} (1+r^{2}+2|x|^{2})^{k'+m_{0}} \left| C_{1}^{\alpha_{1}} ... C_{n}^{\alpha_{n}} \left(\left(\frac{\partial}{\partial r^{2}}\right)^{\ell}(f) \right) (\sqrt{r^{2}-|x|^{2}},x) \right|$$

$$\leq M \sum_{\ell=0}^{k} \mathscr{P}_{m+m_{0}} \left(C_{1}^{\alpha_{1}} ... C_{n}^{\alpha_{n}} \left(\left(\frac{\partial}{\partial r^{2}}\right)^{\ell}(f) \right) \right).$$
(5.12)

Therefore the function $B^{-1}(f)$ belongs to the space $S_e(\mathbb{R} \times \mathbb{R}^n)$.

Theorem 5.3. The Fourier transform $\mathscr{F}_{m,n}$ associated with the integral transform $\mathscr{R}_{m,n}$ is an isomorphism from $S_e^0(\mathbb{R}\times\mathbb{R}^n)$ onto \mathscr{N} .

Proof. Let $f \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$. From relation (3.6), we get

$$(\frac{\partial}{\partial\mu^2})^k (\mathscr{F}_{m,n}(f))(0,\lambda) = (\frac{\partial}{\partial\mu^2})^k (\widetilde{\mathscr{F}}_{m,n}(f) \circ \theta)(0,\lambda)$$

$$= \left(\left(\frac{\partial}{\partial\mu^2}\right)^k \widetilde{\mathscr{F}}_{m,n}(f) \right) \circ \theta(0,\lambda)$$

$$= \left(\frac{\partial}{\partial\mu^2}\right)^k (\widetilde{\mathscr{F}}_{m,n}(f))(|\lambda|,\lambda) = 0,$$

$$(5.13)$$

because $\operatorname{supp}(\widetilde{\mathscr{F}}_{m,n}(f)) \subset \left\{ (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n; \ |\mu| \ge |\lambda| \right\}$. This shows that $\mathscr{F}_{m,n}$ maps injectively $S^0_e(\mathbb{R} \times \mathbb{R}^n)$ onto \mathscr{N} . On the other hand, let $h \in \mathscr{N}$ and

$$g(r,x) = \begin{cases} h(\sqrt{r^2 - |x|^2}, x), & \text{if } |r| \ge |x|, \\ 0, & \text{otherwise.} \end{cases}$$

From Theorem 5.2 ii), it follows that g belongs to $S_e(\mathbb{R} \times \mathbb{R}^n)$, then there exists $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$ such that $\widetilde{\mathscr{F}}_{m,n}(f) = g$. Consequently, $f \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$ and $\mathscr{F}_{m,n}(f) = h$.

From Lemma 5.1, and Theorem 5.3, we deduce the following result

Corollary 5.4. The dual transform ${}^{t}\mathscr{R}_{m,n}$ is an isomorphism from $S_{e}^{0}(\mathbb{R} \times \mathbb{R}^{n})$ onto $S_{e,0}(\mathbb{R} \times \mathbb{R}^{n})$.

Theorem 5.5. The operator $K_{m,n}^1$ defined by

$$K_{m,n}^{1}(f) = \frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})} (-\frac{\partial^{2}}{\partial r^{2}})^{\frac{1}{2}} (-\Delta)^{\frac{m-1}{2}} f, \qquad (5.14)$$

is an isomorphism from $S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ onto itself, where

$$\left(-\frac{\partial^2}{\partial r^2}\right)^{\frac{1}{2}} f(r,x) = \left(-\ell_{\frac{-1}{2}}\right)^{\frac{1}{2}} (f(.,x))(r).$$
(5.15)

Proof. Let $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ and $\varphi \in S_e(\mathbb{R} \times \mathbb{R}^n)$. Using Fubini's theorem, we get

$$\begin{split} \langle \Lambda_{n+1} (T^{m_{n+1}}_{(-\frac{\partial^2}{\partial r^2})^{\frac{1}{2}}f}), \varphi \rangle \\ &= \int_0^{+\infty} \int_{\mathbb{R}^n} (-\frac{\partial^2}{\partial r^2})^{\frac{1}{2}} f(r, x) \Lambda_{n+1}(\varphi)(r, x) dm_{n+1}(r, x) \\ &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left\langle T^{\omega_{-\frac{1}{2}}}_{(-\ell_{-\frac{1}{2}})^{\frac{1}{2}}(f(., x))}, F_{-\frac{1}{2}}(\varphi(., y)) \right\rangle e^{-i\langle x|y \rangle} dx dy, \end{split}$$

and by relation (4.18), we obtain

$$\begin{split} \langle \Lambda_{n+1} (T_{(-\frac{\partial}{\partial r^2})^{\frac{1}{2}}f}^{m_{n+1}}), \varphi \rangle \\ &= \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left\langle F_{\frac{-1}{2}}(f(.,x)) T_{|r|}^{\omega_{-1}}, \varphi(.,y) \right\rangle e^{-i\langle x|y \rangle} dx dy \\ &= \int_0^{+\infty} \int_{\mathbb{R}^n} s\varphi(s,y) \Big(\int_0^{+\infty} \int_{\mathbb{R}^n} f(r,x) \cos(rs) e^{-i\langle x|y \rangle} dm_{n+1}(r,x) \Big) dm_{n+1}(s,y), \end{split}$$

this shows that

$$\Lambda_{n+1}(T^{m_{n+1}}_{(-\frac{\partial^2}{\partial r^2})^{\frac{1}{2}}f}) = T^{m_{n+1}}_{|r|\Lambda_{n+1}(f)}.$$
(5.16)

Now, from Lemma 5.1, we deduce that the function

$$(\mu, \lambda) \to |\mu| \Lambda_{n+1}(f)(\mu, \lambda)$$
 (5.17)

belongs to the subspace \mathscr{N} , then from relation (5.16), it follows that the function $(-\frac{\partial^2}{\partial r^2})^{\frac{1}{2}}f$ belongs to the subspace $S_{e,0}(\mathbb{R}\times\mathbb{R}^n)$, and we have

$$\forall (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n, \quad \Lambda_{n+1}((-\frac{\partial^2}{\partial r^2})^{\frac{1}{2}}f)(\mu, \lambda) = |\mu|\Lambda_{n+1}(f)(\mu, \lambda). \tag{5.18}$$

By the same way, and using relation (4.27), we deduce that for every $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$, the function $(-\Delta)^{\frac{m-1}{2}}f$ belongs to the subspace $S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$, and for every $(\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n$,

$$\Lambda_{n+1}((-\Delta)^{\frac{m-1}{2}}f)(\mu,\lambda) = (\mu^2 + |\lambda|^2)^{\frac{m-1}{2}}\Lambda_{n+1}(f)(\mu,\lambda).$$
(5.19)

From relations (5.18) and (5.19), we deduce that

$$K_{m,n}^{1}(f)(r,x) = \frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})} \Lambda_{n+1}^{-1} \Big((\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} |\mu| \Lambda_{n+1}(f) \Big)(r,x).$$
(5.20)

Hence, the Theorem follows from Lemma 5.1 and Theorem 5.2.

We denote by

• For $T \in S'_e(\mathbb{R} \times \mathbb{R}^n), \varphi \in S_e(\mathbb{R} \times \mathbb{R}^n),$

$$\langle S_{a,b}(T), \varphi \rangle = \langle T, {}^{t}S_{a,b}(\varphi) \rangle,$$

$$(5.21)$$

where $S_{a,b}$; $a \ge b \ge -\frac{1}{2}$, is the Sonine transform defined by relation (2.8). • For $T \in S'_e(\mathbb{R} \times \mathbb{R}^n)$, $\varphi \in S_e(\mathbb{R} \times \mathbb{R}^n)$,

$$T * \varphi(r, x) = \langle T, \tau_{(r, -x)} \check{\varphi} \rangle, \qquad (5.22)$$

where $\tau_{(r,x)}$ is the translation operator given by Definition 3.1.

• $\widetilde{\mathscr{F}}_{m,n}$ is the mapping defined on $S'_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$\widetilde{\mathscr{F}}_{m,n}(T),\varphi\rangle = \langle T, \widetilde{\mathscr{F}}_{m,n}(\varphi)\rangle; \quad \varphi \in S_e(\mathbb{R} \times \mathbb{R}^n).$$
(5.23)

• $L_{\frac{m-1}{2}}$ is the operator defined on $S_e(\mathbb{R} \times \mathbb{R}^n)$ by

$$L_{\frac{m-1}{2}}(f)(r,x) = \left(-\ell_{\frac{m-1}{2}}\right)^{m-1}(f(.,x))(r),$$
(5.24)

where $(-\ell_{\frac{m-1}{2}})^a$ is the fractional power of Bessel operator given by Definition 4.3.

Theorem 5.6. The operator $K_{m,n}^2$ defined by

$$K_{m,n}^{2}(f)(r,x) = S_{\frac{m-1}{2},\frac{n-1}{2}}(T) * ((-\Xi)L_{\frac{m-1}{2}}(\check{f}))(r,-x)$$
(5.25)

is an isomorphism from $S_e^0(\mathbb{R} \times \mathbb{R}^n)$ onto itself, where • T is the distribution defined by

$$\langle T, \varphi \rangle = \frac{\pi}{2^m \Gamma^2(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} \varphi(|y|, y) dy, \qquad (5.26)$$

• Ξ is the operator given by relation (2.2).

 $\begin{array}{lll} \textit{Proof. For } f \in S_e^0(\mathbb{R} \times \mathbb{R}^n), \text{ we have} \\ K_{m,n}^2(f)(r,x) &= & \langle S_{\frac{m-1}{2},\frac{n-1}{2}}(T), \tau_{(r,x)}(-\Xi)L_{\frac{m-1}{2}}f \rangle \\ &= & \frac{\pi}{2^m \Gamma^2(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{\mathbb{R}^n} {}^t S_{\frac{m-1}{2},\frac{n-1}{2}}(\tau_{(r,x)}(-\Xi)L_{\frac{m-1}{2}}f)(|y|,y)dy. \end{array}$

Using inversion formula for the Fourier Bessel transform $F_{\frac{n-1}{2}}$ and applying the Fubini's theorem, we deduce that

$$\times \int \frac{n-1}{2} (\iota s) \int \frac{n-1}{2} (s|g|) d\omega_n(\iota) d\omega_n(\iota)$$

From the fact that

$$\frac{\sqrt{\pi}}{2^{\frac{n}{2}}\Gamma(\frac{n+1}{2})}s^{n-1}j_{\frac{n-1}{2}}(s|y|) = \frac{1}{(2\pi)^{\frac{n}{2}}}\int_{|\lambda| < s} \frac{e^{-i\langle\lambda|y\rangle}}{\sqrt{s^2 - |\lambda|^2}}d\lambda,$$
(5.28)

and again by Fubini's theorem, we obtain

$$\begin{aligned} K_{m,n}^{2}(f)(r,x) &= \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}\Gamma^{2}(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{|\lambda| < s} \left[\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} {}^{t}S_{\frac{m-1}{2},\frac{n-1}{2}} \Big(\tau_{(r,x)}(-\Xi)L_{\frac{m-1}{2}}f \Big)(t,y) \right] \\ &\times j_{\frac{n-1}{2}}(ts)e^{-i\langle\lambda|y\rangle} d\nu_{n,n}(t,y) \Big] \frac{sdsd\lambda}{\sqrt{s^{2} - |\lambda|^{2}}}. \end{aligned}$$
(5.29)

Using relation (3.15), we get

$$K_{m,n}^{2}(f)(r,x) = \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}\Gamma^{2}(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{|\lambda| < s} \widetilde{\mathscr{F}}_{m,n}\Big(\tau_{(r,x)}(-\Xi)L_{\frac{m-1}{2}}f\Big)(s,\lambda)\frac{sdsd\lambda}{\sqrt{s^{2} - |\lambda|^{2}}}.$$
(5.30)

Since for every $f \in S_e(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\forall (r,x), (s,\lambda) \in \mathbb{R} \times \mathbb{R}^n, \quad \widetilde{\mathscr{F}}_{m,n}(\tau_{(r,x)}f)(s,\lambda) = j_{\frac{m-1}{2}}(rs)e^{i\langle\lambda|x\rangle}\widetilde{\mathscr{F}}_{m,n}(f)(s,\lambda),$$
(5.31)

we get

$$\begin{split} K_{m,n}^{2}(f)(r,x) &= \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}\Gamma^{2}(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{|\lambda| < s} \widetilde{\mathscr{F}}_{m,n}((-\Xi)L_{\frac{m-1}{2}}f)(s,\lambda) \\ &\times j_{\frac{m-1}{2}}(rs)e^{i\langle\lambda|x\rangle} \frac{sdsd\lambda}{\sqrt{s^{2}-|\lambda|^{2}}}. \end{split}$$
(5.32)

On the other hand, for $f \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$, the function $L_{\frac{m-1}{2}}f$ belongs to $\mathscr{E}_e(\mathbb{R} \times \mathbb{R}^n)$, and is slowly increasing. Moreover, we have

$$\widetilde{\mathscr{F}}_{m,n}(T^{\nu_{m,n}}_{(-\ell\frac{m-1}{2})^{m-1}f(.,x)(r)}) = T^{\nu_{m,n}}_{|r|^{2m-2}\widetilde{\mathscr{F}}_{m,n}(f)}.$$
(5.33)

But, for $f \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$, the function $\widetilde{\mathscr{F}}_{m,n}(f)$ belongs to the subspace \mathscr{N} , hence according to Theorem 5.2, we deduce that the function $L_{\frac{m-1}{2}}f$ belongs to $S_e(\mathbb{R} \times \mathbb{R}^n)$ \mathbb{R}^n), and we have

$$\forall (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n, \quad \widetilde{\mathscr{F}}_{m,n}(L_{\frac{m-1}{2}}f)(\mu, \lambda) = |\mu|^{2m-2} \widetilde{\mathscr{F}}_{m,n}(f)(\mu, \lambda). \tag{5.34}$$

This implies that

$$\begin{aligned}
K_{m,n}^{2}(f)(r,x) &= \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}\Gamma^{2}(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{|\lambda| < s} s^{2m-2}(s^{2} - |\lambda|^{2}) \\
&\times \quad \widetilde{\mathscr{F}}_{m,n}(f)(s,\lambda) j_{\frac{m-1}{2}}(rs) e^{i\langle\lambda|x\rangle} \frac{sdsd\lambda}{\sqrt{s^{2} - |\lambda|^{2}}}.
\end{aligned}$$
(5.35)

By a change of variables, and using Fubini's theorem, we get

$$\begin{aligned} K_{m,n}^{2}(f)(r,x) &= \frac{\sqrt{\pi}}{2^{m-\frac{1}{2}}\Gamma^{2}(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mu^{2}(\mu^{2}+|\lambda|^{2})^{m-1}\widetilde{\mathscr{F}}_{m,n}(f)(\sqrt{\mu^{2}+|\lambda|^{2}},\lambda) \\ &\times j_{\frac{m-1}{2}}(r\sqrt{\mu^{2}+|\lambda|^{2}})e^{i\langle\lambda|x\rangle}d\mu d\lambda. \end{aligned}$$
(5.36)

From relations (2.19) and (3.6), we deduce that

$$K_{m,n}^{2}(f)(r,x) = \frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})} \mathscr{F}_{m,n}^{-1} \Big((\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} |\mu| \mathscr{F}_{m,n}(f) \Big)(r,x).$$
(5.37)

Then the result follows from relation (5.37), Lemma 5.1, Theorems 5.2 and 5.3. \Box

Theorem 5.7. i) For $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ and $g \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$, there exists the inversion formulas for $\mathscr{R}_{m,n}$

$$f = K_{m,n}^{1} \, {}^{t} \mathscr{R}_{m,n} \mathscr{R}_{m,n}(f), \qquad g = \mathscr{R}_{m,n} K_{m,n}^{1} \, {}^{t} \mathscr{R}_{m,n}(g). \tag{5.38}$$

ii) For $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$ and $g \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$, there exist the inversion formulas for ${}^t\mathscr{R}_{m,n}$

$$f = {}^{t}\mathscr{R}_{m,n}K^{2}_{m,n}\mathscr{R}_{m,n}(f), \quad g = K^{2}_{m,n}\mathscr{R}_{m,n} {}^{t}\mathscr{R}_{m,n}(g).$$
(5.39)

Proof. i) Let $g \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$. From relations (2.14), (5.14), Theorem 3.3, Remark 3.6, and Theorem 5.3, we have

$$g(r,x) = \frac{1}{2^{\frac{m-1}{2}}\Gamma(\frac{m+1}{2})(2\pi)^{\frac{n}{2}}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mu(\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} \\ \times \mathscr{F}_{m,n}(g)(\mu,\lambda)\overline{\varphi_{\mu,\lambda}(r,x)}d\mu d\lambda \\ = \frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mu(\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} \mathscr{F}_{m,n}(g)(\mu,\lambda) \\ \times \mathscr{R}_{m,n}(\cos(\mu).e^{i\langle\lambda|.\rangle})dm_{n+1}(\mu,\lambda) \\ = \mathscr{R}_{m,n}\Big(\frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \mu(\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} \Lambda_{n+1} \circ {}^{t}\mathscr{R}_{m,n}(g)(\mu,\lambda) \\ \times \cos(\mu).e^{i\langle\lambda|.\rangle}dm_{n+1}(\mu,\lambda)\Big)(r,x) \\ = \mathscr{R}_{m,n}\Big(\Lambda_{n+1}^{-1}\Big(\frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})}\mu(\mu^{2} + |\lambda|^{2})^{\frac{m-1}{2}} \Lambda_{n+1} \circ {}^{t}\mathscr{R}_{m,n}(g)(\mu,\lambda)\Big)(r,x) \\ = \mathscr{R}_{m,n}K_{m,n}^{1}{}^{t}\mathscr{R}_{m,n}(g). \tag{5.40}$$

This relation, together with Corollary 5.4, relation (5.20) and Theorem 5.5, imply that the integral transform $\mathscr{R}_{m,n}$ is an isomorphism from $S_{e,0}(\mathbb{R}\times\mathbb{R}^n)$ onto $S_e^0(\mathbb{R}\times\mathbb{R}^n)$

 \mathbb{R}^n), and that $K_{m,n}^1 {}^t \mathscr{R}_{m,n}$ is its inverse, in particular for $S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$, we have

$$f = K_{m,n}^{1} \, {}^{t} \mathscr{R}_{m,n} \mathscr{R}_{m,n}(f).$$

$$(5.41)$$

ii) Let $f \in S_{e,0}(\mathbb{R} \times \mathbb{R}^n)$. From i), we have

$$F = K_{m,n}^1 {}^t \mathscr{R}_{m,n} \mathscr{R}_{m,n}(f).$$
(5.42)

Let $g = \mathscr{R}_{m,n}(f)$, then $g \in S_e^0(\mathbb{R} \times \mathbb{R}^n)$, and we have $\mathscr{R}_{m,n}^{-1}(g) = K_{m,n}^1 \, {}^t\mathscr{R}_{m,n}(g)$

$$\mathscr{R}_{m,n}^{-1}(g) = K_{m,n}^{1} \, {}^{t} \mathscr{R}_{m,n}(g), \tag{5.43}$$

and from Remark 3.6, it follows that

$$\mathscr{R}_{m,n}^{-1}(g) = \Lambda_{n+1}^{-1} \Big(\frac{\sqrt{\pi}}{2^{\frac{m}{2}} \Gamma(\frac{m+1}{2})} \mu(\mu^2 + |\lambda|^2)^{\frac{m-1}{2}} \mathscr{F}_{m,n}(g) \Big),$$
(5.44)

$$\mathscr{R}_{m,n}^{-1}\mathscr{R}_{m,n}^{-1}(g) = \mathscr{F}_{m,n}^{-1}\left(\frac{\sqrt{\pi}}{2^{\frac{m}{2}}\Gamma(\frac{m+1}{2})}\mu(\mu^2 + |\lambda|^2)^{\frac{m-1}{2}}\mathscr{F}_{m,n}(g)\right) = K_{m,n}^2(g),$$

which gives

$$f = {}^{t}\mathscr{R}_{m,n}K_{m,n}^{2}\mathscr{R}_{m,n}(f).$$

$$(5.45)$$

6. Uncertainty principles for the Fourier transform $\mathscr{F}_{m,n}$

In this section, we shall use the well known generalized Beurling-Hrmander theorem established by Bonami, Demange and Jaming in [4], to prove the same result for the Fourier transform $\mathscr{F}_{m,n}$. Next, we use this result to establish two other uncertainty principles for this transform.

Theorem 6.1. [4] Let f be a measurable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable such that $f \in L^2(dm_{n+1})$, and let d be a real number, $d \ge 0$. If

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| |\Lambda_{n+1}(f)(s,y)|}{(1+|(r,x)|+|(s,y)|)^{d}} e^{|(r,x)||(s,y)|} dm_{n+1}(r,x) dm_{n+1}(s,y) dm_{$$

then there exist a positive constant a and a polynomial P on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that

$$f(r,x) = P(r,x)e^{-a(r^2 + |x|^2)}$$

with $deg(P) < \frac{d - (n+1)}{2}$.

Theorem 6.2 (Hörmander-Beurling for $\mathscr{F}_{m,n}$). Let $f \in L^2(d\nu_{m,n})$, and let d be a real number, $d \ge 0$. If

$$\int \int_{\Upsilon_{+}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| |\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|\theta(\mu,\lambda)|)^{d}} e^{|(r,x)||\theta(\mu,\lambda)|} d\nu_{m,n}(r,x) d\gamma_{m,n}(\mu,\lambda)$$

$$< +\infty.$$

Then there exist a positive constant a and a polynomial P on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that

$$\begin{aligned} \forall (r,x)\in\mathbb{R}\times\mathbb{R}^n,\quad f(r,x)=P(r,x)e^{-a(r^2+|x|^2)},\\ with \ deg(P)<\frac{d-(m+n+1)}{2}. \end{aligned}$$

Proof. Let $d\lambda_{m+n+1}$ be the normalized Lebesgue measure defined on $\mathbb{R}^{m+1} \times \mathbb{R}^n$ by

$$d\lambda_{m+n+1}(y,x) = \frac{dy}{(2\pi)^{\frac{m+1}{2}}} \otimes \frac{dx}{(2\pi)^{\frac{n}{2}}},$$

and let $L^2(d\lambda_{m+n+1})$ be the space of square integrable functions on $\mathbb{R}^{m+1} \times \mathbb{R}^n$ with respect to the measure $d\lambda_{m+n+1}$.

For $f \in L^2(d\nu_{m,n})$, we denote by g the function defined on $\mathbb{R}^{m+1} \times \mathbb{R}^n$ by

$$\forall (y,x) \in \mathbb{R}^{m+1} \times \mathbb{R}^n, \quad g(y,x) = f(|y|,x),$$

then the function g belongs to $L^2(d\lambda_{m+n+1})$, and we have

$$||g||_{2,\lambda_{m+n+1}} = ||f||_{2,\nu_{m,n}}.$$

Furthermore,

$$\forall (\mu, \lambda) \in \mathbb{R}^{m+1} \times \mathbb{R}^n, \quad \Lambda_{m+n+1}(g)(\mu, \lambda) = \widetilde{\mathscr{F}}_{m,n}(f)(|\mu|, \lambda), \tag{6.1}$$

where Λ_{m+n+1} is the usual Fourier transform defined on $\mathbb{R}^{m+1} \times \mathbb{R}^n$ by

$$\Lambda_{m+n+1}(g)(\mu,\lambda) = \int_{\mathbb{R}^{m+1}} \int_{\mathbb{R}^n} g(y,x) e^{-i\langle \mu | y \rangle} e^{-i\langle \lambda | x \rangle} d\lambda_{m+n+1}(y,x).$$

If

$$\int \int_{\Upsilon_+} \int_0^{+\infty} \int_{\mathbb{R}^n} \frac{|f(r,x)| |\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|\theta(\mu,\lambda)|)^d} e^{|(r,x)||\theta(\mu,\lambda)|} \, d\nu_{m,n}(r,x) \, d\gamma_{m,n}(\mu,\lambda) < +\infty.$$

Then by relations (2.19) and (6.1), we have

$$\begin{split} \int_{\mathbb{R}^{m+1}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^{m+1}} \int_{\mathbb{R}^n} \frac{|g(y,x)| |\Lambda_{m+n+1}(g)(\zeta,\lambda)|}{(1+|(y,x)|+|(\zeta,\lambda)|)^d} e^{|(r,x)||(\zeta,\lambda)|} \, d\lambda_{m+n+1}(y,x) \, d\lambda_{m+n+1}(\zeta,\lambda) \\ &= \int_{0}^{+\infty} \int_{\mathbb{R}^n} \int_{0}^{+\infty} \int_{\mathbb{R}^n} \frac{|f(r,x)| |\widetilde{\mathscr{F}}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|(\mu,\lambda)|)^d} e^{|(r,x)||\mu,\lambda|} \, d\nu_{m,n}(r,x) \, d\nu_{m,n}(\mu,\lambda) \\ &= \int \int_{\Upsilon_+} \int_{0}^{+\infty} \int_{\mathbb{R}^n} \frac{|f(r,x)| |\widetilde{\mathscr{F}}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|\theta(\mu,\lambda)|)^d} e^{|(r,x)||\theta(\mu,\lambda)|} \, d\nu_{m,n}(r,x) \, d\gamma_{m,n}(\mu,\lambda) \\ &< +\infty, \end{split}$$

and therefore by applying Theorem 6.1, we deduce that there exists a positive constant a and a polynomial \widetilde{P} on $\mathbb{R}^{m+1} \times \mathbb{R}^n$, such that

$$g(y,x) = \widetilde{P}(y,x)e^{-a(|y|^2 + |x|^2)},$$

with $deg(\tilde{P}) < \frac{d - (m + n + 1)}{2}$. Now, the polynomial P defined on $\mathbb{R} \times \mathbb{R}^n$ by

$$P(r,x) = \widetilde{P}((r,0,\ldots,0),x),$$

is even with respect to the first variable with $deg(P) < \frac{d-(m+n+1)}{2}$ and

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n, \quad f(r,x) = P(r,x)e^{-a(r^2 + |x|^2)}.$$

Lemma 6.3. Let P be a polynomial on $\mathbb{R} \times \mathbb{R}^n$, $P \neq 0$, with deg(P) = k. Then there exist two positive constants A and C such that

$$\forall t \ge A, \quad p(t) = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})} \int_{S^n} |P(t\omega)| d\sigma_n(\omega) \ge Ct^k.$$

Proof. Let P be a polynomial on $\mathbb{R} \times \mathbb{R}^n$, $P \neq 0$, with deg(P) = k. Then, we have

$$p(t) = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})} \int_{S^n} \big| \sum_{j=0}^k a_j(\omega) t^j \big| d\sigma_n(\omega),$$

where the functions a_j , $0 \leq j \leq k$, are continuous on S^n . It's clear that the function p is continuous on $[0, +\infty[$, and by dominate convergence theorem's, we have

$$p(t) \sim C_k t^k \quad (t \longrightarrow +\infty),$$
 (6.2)

where $C_k = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})} \int_{S^n} |a_k(\omega)| d\sigma_n(\omega) > 0.$

Now relation (6.2) implies that there is a positive constant A such that

$$\forall t \ge A, \ p(t) \ge \frac{C_k}{2} t^k.$$

Theorem 6.4 (Gelfand-Shilov for $\mathscr{R}_{m,n}$). Let p, q be two conjugate exponents, $p,q \in]1, +\infty[$ and let ξ, η be non negative real numbers such that $\xi\eta \ge 1$. Let f be a measurable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, such that $f \in L^2(d\nu_{m,n}).$ If

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| e^{\frac{\xi^{p} |(r,x)|^{p}}{p}}}{(1+|(r,x)|)^{d}} d\nu_{m,n}(r,x) < +\infty,$$

and

$$\iint_{\Upsilon_+} \frac{|\mathscr{F}_{m,n}(f)(\mu,\lambda)| e^{\frac{\eta^q |\theta(\mu,\lambda)|^q}{q}}}{(1+|\theta(\mu,\lambda)|)^d} \, d\gamma_{m,n}(\mu,\lambda) < +\infty \; ; \; d \ge 0.$$

Then

$$\begin{array}{l} \text{in } fnen\\ i) \ \mbox{For } d \leqslant \frac{m+n+1}{2}, \ f=0. \\ ii) \ \mbox{For } d > \frac{m+n+1}{2}, \ we \ have \\ a) \ f=0 \ \mbox{for } \xi\eta > 1. \\ b) \ f=0 \ \mbox{for } \xi\eta = 1, \ and \ p \neq 2. \\ c) \ \mbox{f}(r,x) = P(r,x)e^{-a(r^2+|x|^2)} \ \mbox{for } \xi\eta = 1 \ and \ p=q=2, \\ where \ a > 0 \ and \ P \ is \ a \ polynomial \ on \ \mathbb{R} \times \mathbb{R}^n \ even \ with \ respect \ to \ the \ first \ variable \\ with \ \ deg(P) < d - \frac{m+n+1}{2}. \end{array}$$

Proof. Let f be a function satisfying the hypothesis. Since $\xi \eta \ge 1$, and by a convexity argument, we have

$$\begin{aligned}
\iint_{\Upsilon_{+}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| |\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|+|\theta(\mu,\lambda)|)^{2d}} e^{|(r,x)||\theta(\mu,\lambda)|} d\nu_{m,n}(r,x) d\gamma_{m,n}(\mu,\lambda) \\
&\leqslant \iint_{\Upsilon_{+}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| |\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|(r,x)|)^{d}(1+|\theta(\mu,\lambda)|)^{d}} e^{\xi\eta|(r,x)||\theta(\mu,\lambda)|} d\nu_{m,n}(r,x) d\gamma_{m,n}(\mu,\lambda) \\
&\leqslant \left(\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)|}{(1+|(r,x)|)^{d}} e^{\frac{\xi^{p}|(r,x)|^{p}}{p}} d\nu_{m,n}(r,x) \right) \\
&\times \left(\iint_{\Upsilon_{+}} \frac{|\mathscr{F}_{m,n}(f)(\mu,\lambda)|}{(1+|\theta(\mu,\lambda)|)^{d}} e^{\frac{\eta^{q}|\theta(\mu,\lambda)|^{q}}{q}} d\gamma_{m,n}(\mu,\lambda) \right) \\
&< +\infty.
\end{aligned}$$
(6.3)

Then from the Beurling-Hörmander theorem, we deduce that there exist a positive constant a and a polynomial P such that

$$f(r,x) = P(r,x)e^{-a(r^2 + |x|^2)},$$
(6.4)

with $deg(P) < d - \frac{m+n+1}{2}$. In particular if $d \leq \frac{m+n+1}{2}$, then f vanishes almost everywhere.

Suppose now that $d > \frac{m+n+1}{2}$. By a standard computation, we obtain

$$\widetilde{\mathscr{F}}_{m,n}(f)(\mu,\lambda) = Q(\mu,\lambda)e^{-\frac{1}{4a}(\mu^2 + |\lambda|^2)},\tag{6.5}$$

where Q is a polynomial on $\mathbb{R}\times\mathbb{R}^n,$ even with respect to the first variable, with

$$deg(P) = deg(Q).$$

On the other hand, from relations (2.19), (3.6), (6.3), (6.4) and (6.5), we get

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|P(r,x)| |Q(\mu,\lambda)|}{(1+|(r,x)|)^{d}(1+|(\mu,\lambda)|)^{d}} e^{\xi \eta |(r,x)| |(\mu,\lambda)| - a(r^{2}+|x|^{2})} \times e^{-\frac{1}{4a}(\mu^{2}+|\lambda|^{2})} d\nu_{m,n}(r,x) d\nu_{m,n}(\mu,\lambda) < +\infty,$$

hence,

$$\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{\varphi(s)}{(1+s)^{d}} \frac{\psi(\rho)}{(1+\rho)^{d}} e^{\xi\eta s\rho} e^{-as^{2}} e^{-\frac{1}{4a}\rho^{2}} s^{m+n} \rho^{m+n} ds d\rho < +\infty, \quad (6.6)$$

where

$$\varphi(s) = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})} \int_{S^n} |P(s\omega)| |\omega_1|^m d\sigma_n(\omega), \quad \omega = (\omega_1, \dots, \omega_n)$$

and

$$\psi(\rho) = \frac{2\pi^{\frac{n+1}{2}}}{\Gamma(\frac{n+1}{2})} \int_{S^n} \left| Q(\rho\omega) \right| |\omega_1|^m d\sigma_n(\omega).$$

• Suppose that $\xi \eta > 1$. If $f \neq 0$, then each of polynomials P and Q is not identically zero, let k = deg(P) = deg(Q).

From lemma 6.3, there exist two positive constants A and C such that

$$\forall t \geqslant A, \quad \varphi(s) \geqslant Cs^k,$$

and

$$\forall \rho \ge A, \quad \psi(\rho) \ge C\rho^k.$$

Then, the inequality (6.6) leads to

$$\int_{A}^{+\infty} \int_{A}^{+\infty} \frac{e^{\xi \eta s \rho}}{(1+s)^d (1+\rho)^d} e^{-as^2} e^{-\frac{1}{4a}\rho^2} ds d\rho < +\infty.$$
(6.7)

Let $\varepsilon > 0$, such that $\xi \eta - \varepsilon = \sigma > 1$. relation (6.7) implies that

$$\int_{A}^{+\infty} \int_{A}^{+\infty} \frac{e^{\varepsilon s\rho}}{(1+s)^d (1+\rho)^d} e^{\sigma s\rho} e^{-as^2} e^{-\frac{1}{4a}\rho^2} ds d\rho < +\infty.$$
(6.8)

However, for every $s \ge A \ge \frac{d}{\varepsilon}$ and $\rho \ge A$, we have

$$\frac{e^{\varepsilon\rho s}}{(1+s)^d(1+\rho)^d} \ge \frac{e^{\varepsilon A^2}}{(1+A)^{2d}},$$

and by relation (6.8) it follows that

$$\int_{A}^{+\infty} \int_{A}^{+\infty} e^{\sigma s\rho} e^{-as^2} e^{-\frac{1}{4a}\rho^2} ds d\rho < +\infty.$$

$$(6.9)$$

Let $F(s) = \int_{A}^{+\infty} e^{\sigma \rho s - \frac{1}{4a}\rho^2} d\rho$, then F can be written

$$F(s) = e^{a\sigma^2 s^2} \Big(\int_A^{+\infty} e^{-\frac{1}{4a}\rho^2} d\rho + 2a\sigma e^{-\frac{A^2}{4a}} \int_0^s e^{A\sigma w - a\sigma^2 w^2} dw \Big),$$

in particular

$$F(s) \ge e^{a\sigma^2 s^2} \int_A^{+\infty} e^{-\frac{1}{4a}\rho^2} d\rho.$$

Since $\sigma > 1$, then

$$\int_{A}^{+\infty} \int_{A}^{+\infty} e^{\sigma s\rho} e^{-as^{2}} e^{-\frac{1}{4a}\rho^{2}} ds d\rho = \int_{A}^{+\infty} e^{-as^{2}} F(s) ds$$
$$\geqslant \int_{A}^{+\infty} e^{-\frac{1}{4a}\rho^{2}} d\rho \int_{A}^{+\infty} e^{a(\sigma^{2}-1)s^{2}} ds = +\infty.$$

This contradicts relation (6.9) and shows that f = 0.

• Suppose that $\xi \eta = 1$ and $p \neq 2$. In this case we have p > 2 or q > 2. Suppose that q > 2, then from the second hypothesis and relation (6.5), we have

$$\int_{0}^{+\infty} \frac{\psi(\rho)e^{-\frac{\rho^2}{4a}}e^{\frac{\eta^2\rho^q}{q}}}{(1+\rho)^d}\rho d\rho < +\infty.$$
(6.10)

If $f \neq 0$, then the polynomial Q is not identically zero, and by Lemma 6.3 and by relation (6.10), it follows that

$$\int_{0}^{+\infty} \frac{e^{-\frac{\rho^{2}}{4a}} e^{\frac{\eta^{q} \rho^{q}}{q}}}{(1+\rho)^{d}} d\rho < +\infty$$

which is impossible since q > 2 and the proof of Theorem 6.4 is complete.

Theorem 6.5 (Cowling-Price for $\mathscr{R}_{m,n}$). Let $\xi, \eta, \omega_1, \omega_2$ be non negative real numbers such that $\xi\eta \geq \frac{1}{4}$. Let p, q be two exponents, $p, q \in [1, +\infty]$, and let f be a measurable function on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable such that

 $f \in L^2(d\nu_{m,n}).$ If

$$\left\|\frac{e^{\xi|(.,.)|^2}}{(1+|(.,.)|)^{\omega_1}}f\right\|_{p,\nu_{m,n}} < +\infty,$$
(6.11)

and

$$\left\|\frac{e^{\eta|\theta(.,.)|^2}}{(1+|\theta(.,.)|)^{\omega_2}}\mathscr{F}_{m,n}(f)\right\|_{q,\gamma_{m,n}} < +\infty,$$
(6.12)

then

i) For $\xi\eta > \frac{1}{4}$, f = 0. ii) For $\xi\eta = \frac{1}{4}$, there exist a positive constant a and a polynomial P on $\mathbb{R} \times \mathbb{R}^n$,

even with respect to the first variable, such that

$$f(r,x) = P(r,x)e^{-a(r^2+|x|^2)}$$

Proof. Let p' and q' be the conjugate exponents of p respectively q. Let us pick $d_1, d_2 \in \mathbb{R}$, such that $d_1 > m + n + 1$ and $d_2 > m + n + 1$. Finally, let d be a positive real number such that $d > max(\omega_1 + \frac{d_1}{p'}, \omega_2 + \frac{d_2}{q'}, \frac{m + n + 1}{2})$. From Hölder's inequality and relations (6.11) and (6.12), we deduce that

From Hölder's inequality and relations
$$(6.11)$$
 and (6.12) , we deduce that

$$\int_{0}^{+\infty} \int_{\mathbb{R}^{n}} \frac{|f(r,x)| e^{\xi |(r,x)|^{2}}}{(1+|(r,x)|)^{\omega_{1}+\frac{d_{1}}{p'}}} \, d\nu_{m,n}(r,x) < +\infty,$$

and

$$\iint_{\Upsilon_{+}} \frac{|\mathscr{F}_{m,n}(f)(\mu,\lambda)|e^{\eta|\theta(\mu,\lambda)|^2}}{(1+|\theta(\mu,\lambda)|)^{\omega_2+\frac{d_2}{q'}}} \, d\gamma_{m,n}(\mu,\lambda) < +\infty.$$

Consequently, we have

$$\int_0^{+\infty} \int_{\mathbb{R}^n} \frac{|f(r,x)| e^{\xi |(r,x)|^2}}{(1+|(r,x)|)^d} \, d\nu_{m,n}(r,x) < +\infty,$$

and

$$\int \int_{\Upsilon_+} \frac{|\mathscr{F}_{m,n}(f)(\mu,\lambda)|e^{\eta|\theta(\mu,\lambda)|^2}}{(1+|\theta(\mu,\lambda)|)^d} \, d\gamma_{m,n}(\mu,\lambda) < +\infty.$$

Then, the desired result follows from Theorem 6.4.

Remark 6.6. Hardy's Theorem is a special case of Theorem 6.5 when $p = q = +\infty$.

References

- G. Andrews, R. Askey, and R. Roy, Special functions, Cambridge University Press, New-York, 1999.
- [2] C. Baccar, S. Omri, and L. T. Rachdi, Fock spaces connected with spherical mean operator and associated operators, Mediterr. J. Math., 6 1 (2009) 1-25.
- [3] C. Baccar, N.B. Hamadi, L.T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci., Article ID 86238, 2006 (2006) 1-26.
- [4] A. Bonami, B. Demange, and P. Jaming, Hermite functions and uncertainty priciples for the Fourier and the widowed Fourier transforms, Rev. Mat. Iberoamericana., 19 (2003) 23-55.
- [5] R. Courant and D. Hilbert, *Methods of mathematical physics*, Vol. II: Partial differential equations, Wiley Interscience, New-York, 1962.

- [6] M. G. Cowling and J. F. Price, Generalization of Heisenberg's inequality in harmonic analysis, (Cortona, 1982), Lecture Notes in math., 992 (1983) 443-449.
- [7] M. Dziri, M. Jelassi, and L. T. Rachdi, Spaces of DLp type and a convolution product associated with the spherical mean operator, Int. J. Math. Math. Sci., 3 (2005) 357-381.
- [8] A. Erdely and all, Tables of integral transforms, Mc Graw-Hill Book Compagny., New-York, 1954.
- [9] A. Erdely and all, Asymptotic expansions, Dover publications., New-York, 1956.
- [10] J. A. Fawcett, Inversion of N-dimensional spherical means, SIAM. J. Appl. Math., 45 (1985) 336-341.
- [11] G. B. Folland and A. Sitaram, The uncertainty principle: A mathematical survey, J. Fourier Anal. Appl., 3 (1997) 207-238.
- [12] V. Havin and B. Jöricke, An uncertainty principle in harmonic analysis, Springer Verlag., Berlin, 1994.
- [13] H. Helesten, L. E. Andersson, An inverse method for the processing of synthetic aperture radar data, Inverse Problems, 4 (1987) 111-124.
- [14] M. Herberthson, A numerical implementation of an inverse formula for CARABAS Raw Data, Internal Report D 30430-3.2, National Defense Research Institute, FOA, Box 1165, S-581 11, Linköping, sweden, 1986.
- [15] K. Hleili, S. Omri, L. T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo, 13 03 (2011) 119126.
- [16] M. Jelassi, L. T. Rachdi, On the range of the Fourier transform associated with the spherical mean operator, Fract. Calc. Appl. Anal., 7 4 (2004) 379-402.
- [17] N.N. Lebedev, Special functions and their applications, Dover publications, Inc., New-York, 1972.
- [18] G. W. Morgan, A note on Fourier transforms, J. London. Math. Soc., 9 (1934) 178-192.
- [19] N. Msehli, L.T. Rachdi, Beurling-Hörmander Uncertainty Principle for the spherical mean operator, J. Inequal. Pure Appl. Math., 10 2 (2009) Art. 38.
- [20] M. Nessibi, L. T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its Dual, J. Math. Anal. Appl., 196 (1995) 861-884.
- [21] S. Omri, Local uncertainty principle for the Hankel transform, Integral Transforms Spec. Funct., 21 9 (2010) 703-712.
- [22] S. Omri, L. T. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann- Liouvill operator, J. Inequal. Pure Appl. Math., 9 3 (2008) Art. 88.
- [23] L. Peng, J. Zhao, Wavelet and Weyl transforms associated with the spherical mean operator, Integr. equ. oper. theory., 50 (2004) 279-290.
- [24] L. T. Rachdi, K. Trimèche, Weyl transforms associated with the spherical mean operator, Anal. Appl., 1 2 (2003) 141-164.
- [25] G.N. Watson, A treatise on the Theory of Bessel Functions, 2nd ed. Cambridge Univ. Press., London/New-York, 1966.
- [26] J. Zhao, Localization operators associated with the sphercial mean operator, Anal. Theory Appl., 21 4 (2005) 317-325.

Khaled Hleili

DEPARTMENT OF MATHEMATICS AND INFORMATICS, NATIONAL INSTITUTE OF APPLIED SCIENCE AND TECHNOLOGY OF TUNIS, CENTRE URBAIN NORD BP 676 - 1080 TUNIS CEDEX, TUNISIA *E-mail address:* khaled.hleili@gmail.com

SLIM OMRI

PREPARATORY INSTITUTE OF ENGINEERS STUDY, CAMPUS UNIVERSITAIRE, MERAZKA, 8000 NABEUL, TUNISIA

E-mail address: slim.omri@ipein.rnu.tn

Lakhdar Tannech Rachdi

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES OF TUNIS, 2092 EL MANAR 2 TUNIS, TUNISIA

E-mail address: lakhdartannech.rachdi@fst.rnu.tn