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A NOTE ON WALSH-FOURIER COEFFICIENTS

(COMMUNICATED BY SERGEY TIKHONOV)

K. N. DARJI AND R. G. VYAS

ABSTRACT. In this note we have estimate the order of magnitude of Walsh-
Fourier coefficients for functions of the class ABV (p(n) 1 oo, ¢).

1. Introduction

In 1949 N. J. Fine [1], using second mean value theorem, proved that if f is of
bounded variation over [0,1] then its Walsh-Fourier coefficients f(n) = O(%). U.
Goginava [2] has studied uniform convergence of Walsh-Fourier series of a function
of BV (p(n), ). In 2008 [3], the order of magnitude of Walsh-Fourier coefficients of
functions of ABV () and #ABV are estimated. Here we have estimate the order of

magnitude of Walsh-Fourier coefficients for a function of ABV (p(n) 1 oo, ¢).

Let f be a function defined on (—o0,00) with period 1. P is said to be a par-
tition with period 1 if

P <z i<xpy<z<..<zpy<..

satisfies x4 = xp + 1 for k = 0,£1, 42, ..., where m is a positive integer.

Definition 1.1. Let ¢(n) be a real sequence such that (1) > 2 and nimm p(n) =
o0o. For a given sequence A = {\,} (m = 1,2,...) of non-decreasing positive

real numbers X\, such that > _, % diverges and 1<p(n){ p as n— oo, where
1 < p < oo, we say that f € ABV (p(n) 1 p,) (that is, fis a function of p(n)-A-
bounded variation over [0,1]) if

sup  sup 1

where
. f z 7f Tk—1 p(n) 1/p(n
O S

2000 Mathematics Subject Classification. 42C10, 26D15.

Key words and phrases. Walsh-Fourier coefficients and the generalized Wiener -class
ABV (p(n) 1 00, ¢).

(©2012 Universiteti i Prishtinés, Prishtiné, Kosové.

Submitted January 3, 2012. Accepted March 9, 2012.

116



A NOTE ON WALSH-FOURIER COEFFICIENTS 117

and nf
in
piPy= "

For p = oo, we denote the class ABV (p(n) 1 00, ¢) by simply ABV (p(n), ¢).

|$k——$k_1|.

Note that, if p(n) = 2", Vn, and p = co then one gets the class ABV (p(n) 1 c0); if
Am =1, ¥Ym, then one gets the class BV (p(n) 1 p, ¢); if p(n) = p, Vn, one gets the
class ABV @),

Let {¢,} (n € Ng = {0,1,2,...}) denotes the complete orthonormal Walsh sys-
tem defined on the interval [0,1] in the Paley enumeration, where the subscript

denote the number of zeros (that is, sign-changes) in the interior of the interval
[0,1].

Any z € [0,1) can be written as

T = ka 2_(k+1), each x =0 or 1.
k=0
For any x € [0,1)\Q, there is only one expression of this form, where @Q is the class
of dyadic rationals in [0,1). When z € @ there are two expression of this form, one
which terminates in 0’s and one which terminates in 1’s. For any z,y € [0,1) their
dyadic sum is defined as
o0
ety => o —ypl2”*.
k=0
Observed that, for each n € Ny, ¢n(z +y) = én(2)dn(y), z+y ¢ Q.

For a 1-periodic function f € L'[0, 1], its Walsh-Fourier series is defined by

2)~ Y fn)gn(), (1.1)
n€Ny
where f fo ) dz, ¥V n € Ny, are the Walsh-Fourier coefficients of f.

2. Statement of the result

Here, we prove the following theorem.

Theorem 2.1. If I-periodic f € ABV (p(n) 1T 00,9,[0,1]),1 < p(n) T oo asn — oo,
then

N 1
fm) = O (S, ) /G ) )
where
7(m) = min{k : k € N,p(k) > m}, m > 1. (2.1)

©) to the class

Remark 1. Here A\, =1, for all n, reduces the class ABV (p(n),
T(m))

BV (p(n), ), and O(]/(Zz 13 )1/” T(m))) reduces to O(1/m)'/P(
We need the following lemma to prove the result.

Lemma 2.1. ([5, Lemma 3.1]). The class ABV (p(n) 1 p,¢,[0,1]) (1 <p<o0) C
B0, 1].
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3. Proof of result

Proof of Theorem 2.1 . In view of Lemma 2.1, f € ABV(p(n),y) over [0,1]
implies f is bounded and hence f € L'[0,1].

Fix k € Ng and h = Qk% If we put

g(z) = f(z + 2% + 2,%) — f(z), for all z.

Then g € L*[0,1]. For m = 2*, ¢,,,(h) = —1 and ¢y, (55) = 1 implies
X 1 .
g(m) = f(m)om (3 )¢m(h) = f(m) = =2f(m)
and

2l < [ 15+ g ) — S0

=[5+ g + <2ik+2,%>>—f<x+2kﬂl>|dx

! o1 1
= [ 15+ 50 - fo+ gplas.

Similarly, we get

3
2 f(m)] < / flat o) — Fla+ ol
and in general we have

1 . .
2| (m)] S/o |f(z+ 23_{_1) — flz+ (22]k7_‘_1))|dx forall j =1to 2" —1.

Dividing both the sides of the above inequality by A; and summing over j = 1 to
2k — 1, we get

2k_1

L ETADY

where f;(z) = f(z + 555) — f(z + (33;11)) and ¢(7(2%)) is the index conjugate of
p(7(2F)). Then by applying Holder’s inequality on the right side we have

12—1

If] z)|

=N Gy Yo

)dx),

20 (2S5 &)

1 2F-1 ok 2k _1
|fg( )P p(r(27) 1 ok 1y 2k
g/( W@ 7y 1peren (5 Lyraee) gy,
0 ; Aj ; j

j
For any = € R, all these points x + 2jh, = + (2§ — 1)h, for j = 1,2,...,2%F —
1 lie in the interval of length 1. Thus, f € ABV(p(n),¢) over [0,1] implies



A NOTE ON WALSH-FOURIER COEFFICIENTS 119

p(T k
(2 M)I/P(T@k)) = O(1). This together with Z?; % o

Jj=1 j J=1 A
and the above inequality implies

2k

FeH =03 jj)l/p“(?’“”).

Jj=1

This proves the theorem.
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