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OPERATORS POSSESSING PROPERTIES (gb) AND (gw)

(COMMUNICATED BY VLADIMER MULLER)

F. LOMBARKIA, H. ZARIOUH

Abstract. This article treatises several problems relevant to property (gb)
for bounded linear operators on Banach spaces. Sufficient conditions for an
operator T to possess property (gb) and property (gw) are given. We also

prove some perturbation results concerning property (b) and property (gw).
The theory is exemplified in the case of some special classes of operators.

1. Introduction

Throughout this paper, let L(X) denote the Banach algebra of all bounded
linear operators acting on an infinite-dimensional complex Banach space X. For
T ∈ L(X), let T ∗, ker(T ), R(T ), σ(T ), σa(T ) and σp(T ) denote the dual, the null
space, the range, the spectrum, the approximate point spectrum and the point
spectrum of T , respectively. Let α(T ) and β(T ) be the nullity and the deficiency of
T defined by α(T ) = dimker(T ) and β(T ) = codimR(T ). Recall that an operator
T ∈ L(X) is called an upper semi-Fredholm if α(T ) < ∞ and R(T ) is closed,
while T ∈ L(X) is called a lower semi-Fredholm if β(T ) < ∞. Let SF+(X) denote
the class of all upper semi-Fredholm operators. If T ∈ L(X) is an upper or a
lower semi-Fredholm operator, then T is called a semi-Fredholm operator, and
the index of T is defined by ind(T) = α(T ) − β(T ). If both α(T ) and β(T ) are
finite, then T is called a Fredholm operator. An operator T ∈ L(X) is called
a Weyl operator if it is a Fredholm operator of index zero. Define SF−

+ (X) =
{T ∈ SF+(X) : ind(T) ≤ 0}. The classes of operators defined above generate the
following spectra: the Weyl spectrum σW (T ) of T ∈ L(X) defined by σW (T ) =
{λ ∈ C : T − λI is not a Weyl opertor}, and the Weyl essential approximate point
spectrum σSF−

+
(T ) of T defined by σSF−

+
(T ) = {λ ∈ C : T − λI /∈ SF−

+ (X)}. For
T ∈ L(X), let ∆(T ) = σ(T ) \ σW (T ) and let ∆a(T ) = σa(T ) \ σSF−

+
(T ). Following

Coburn [19], we say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) = E0(T ),
where E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI) < ∞}. Here and elsewhere in this
paper, for A ⊂ C, isoA is the set of all isolated points of A.
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According to Rakočević [27], an operator T ∈ L(X) is said to satisfy a-Weyl’s
theorem if ∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) < ∞}.

It is well known [27] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but not conversely.

Recall that the ascent a(T ), of an operator T , is defined by a(T ) = inf{n ∈ N :
ker(Tn) = ker(Tn+1)} and the descent δ(T ) of T , is defined by δ(T ) = inf{n ∈ N :
R(Tn) = R(Tn+1)}, with inf ∅ = ∞. It is well known that if a(T ) and δ(T ) are both
finite then they are equal, see [25, Corollary 20.5]. An operator T ∈ L(X) is called
Drazin invertible if it has a finite ascent and descent. The Drazin spectrum σD(T )
of an operator T is defined by σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.
An operator T ∈ L(X) is called Browder if it is Fredholm of finite ascent and
descent. The Browder spectrum σb(T ) of T is defined by σb(T ) = {λ ∈ C : T −
λI is not Browder}.

Define also the set LD(X) by

LD(X) = {T ∈ L(X) : a(T ) < ∞ and R(T a(T )+1) is closed}.

Following [11], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈
LD(X). The left Drazin spectrum σLD(T ) of T is defined by σLD(T ) = {λ ∈ C :
T − λI ̸∈ LD(X)}. We say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X),
and that λ ∈ σa(T ) is a left pole of T of finite rank if λ is a left pole of T and
α(T − λI) < ∞. Let Πa(T ) denote the set of all left poles of T and let Π0

a(T )
denote the set of all left poles of T of finite rank.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be the set of all
poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈ Π(T ) : α(T − λI) <
∞}. According to [23], a complex number λ is a pole of the resolvent of T if T −λI
has ascent and descent finite and greater than 0 (this implies that are equal !).

For T ∈ L(X) and a nonnegative integer n, define T[n] to be the restriction of T
to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If for
some integer n the range space R(Tn) is closed and T[n] is an upper (resp. a lower)
semi -Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm
operator. In this case the index of T is defined as the index of the semi-Fredholm
operator T[n], see [13]. Moreover, if T[n] is a Fredholm operator, then T is called a
B-Fredholm operator, see [8]. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. An operator T ∈ L(X) is said to be a B-Weyl operator
if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW (T ) of T is
defined by σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

For T ∈ L(X), let ∆g(T ) = σ(T ) \ σBW (T ). According to [11], an operator
T ∈ L(X) is said to satisfy generalized Weyl’s theorem if ∆g(T ) = E(T ), where
E(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λI)}.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators, SBF−
+ (X) =

{T ∈ SBF+(X) : ind(T ) ≤ 0} and let SBF−(X) be the class of all lower semi-
B-Fredholm operators, SBF+

− (X) = {T ∈ SBF−(X) : ind(T ) ≥ 0}. The upper

B-Weyl spectrum of T is defined by σSBF−
+
(T ) = {λ ∈ C : T − λI ̸∈ SBF−

+ (X)},
while the lower B-Weyl spectrum of T is defined by σSBF+

−
(T ) = {λ ∈ C : T −λI ̸∈

SBF+
− (X)}. For T ∈ L(X), let ∆g

a(T ) = σa(T ) \ σSBF−
+
(T ). According to [11],

we say that T ∈ L(X) obeys generalized a-Browder’s theorem if ∆g
a(T ) = Πa(T ).

According also to [11], an operator T ∈ L(X) is said to satisfy generalized a-Weyl’s
theorem if ∆g

a(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) : α(T − λI) > 0}. It is
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known [11] that an operator obeying generalized a-Weyl’s theorem obeys generalized
Weyl’s theorem, but the converse is not true in general.

Following [7, Definition 2.1], an operator T ∈ L(X) is said to possess property
(gw) if ∆g

a(T ) = E(T ) which extends property (w) introduced by Rakočević in
[26] to the context of B-Fredholm theory. Recall that an operator T ∈ L(X) is
said to possess property (w) if ∆a(T ) = E0(T ). It is known in [7, Theorem 2.4]
that an operator possessing property (gw) satisfies generalized Weyl’s theorem,
but the converse is not true in general and in [7, Theorem 2.3] that an operator
possessing property (gw) possesses property (w), but not conversely. According
to [15, Definition 2.1], an operator T ∈ L(X) is said to possess property (b) if
∆a(T ) = Π0(T ) and is said to possess property (gb) if ∆g

a(T ) = Π(T ) which is an
extension to the context of B-Fredholm theory of property (b). It is proved in [15,
Theorem 2.3] that an operator possessing property (gb) possesses property (b), but
the converse does not hold in general and in [15, Theorem 2.15] that an operator
possessing property (gw) possesses property (gb), but the converse does not hold in
general. It is also proved in [15, Theorem 2.13] that an operator possessing property
(w) possesses property (b), but the converse is not true in general. Weaker variant
of property (gb) has been introduced and studied very recently by M. Berkani and
H. Zariouh in [16], called property (gab). Recall that an operator T ∈ L(X) is said
to possess property (gab) if ∆g(T ) = Πa(T ).

In this paper we give certain sufficient conditions for an operator T ∈ L(X) to
possess property (gw) or property (gb). In the second section, we prove in Theorem
2.1 that if T ∈ L(X) has no eigenvalues and if f is an analytic function near the
spectrum σ(T ) of T , then f(T ) possesses property (gw) or equivalently property
(gb). As a consequence, we show in Corollary 2.2 that if there exists a complex
number λ0 satisfies the equality K(T − λ0I) = ker(T − λ0I) = {0}, then f(T )
possesses property (gw) or equivalently property (gb) for all analytic function f
near the spectrum σ(T ). We also show in Theorem 2.6 that if the dual T ∗ of
T ∈ L(X) has the SVEP on the complement of σSBF−

+
(T ) and if E(T ) = Π(T ),

then T possesses property (gw) extending [7, Theorem 2.10]. In the third section of
this paper, we study the variants of Weyl’s theorem for perturbations by algebraic,
nilpotent and compact operators. In particular, we show in Theorem 3.1 that if T ∗

has the SVEP and if E(T ) = Π(T ), then T +N possesses property (gw) for every
nilpotent operator N which commutes with T , and in Theorem 3.6, we prove that
if T ∈ L(X) is an operator possessing property (b) and K ∈ L(X) is a compact
operator commuting with T such that Π0

a(T +K) ⊂ σa(T ), then T +K possesses
property (b) extending Theorem 3.3 and Theorem 3.4 of [17]. We finish this section
by some remarks concerning some results given by P. Aiena and M. T. Biondi in
[3] (see Remark 3.7).

2. Properties (gb) and (gw)

An operator T ∈ L(X) is said to have the single valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0), if for every open neighborhood U of λ0, the
only analytic function f : U −→ X which satisfies the equation (T − λI)f(λ) = 0
for all U is the function f ≡ 0. An operator T ∈ L(X) is said to have the SVEP
if T has this property at every λ ∈ C (see [24]). If T ∗ has the SVEP on the
complement of σSBF−

+
(T ), then it is known [14, Lemma 2.4] that σa(T ) = σ(T ) and
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σBW (T ) = σSBF−
+
(T ), this implies that E(T ) = Ea(T ) and Π(T ) = Πa(T ). A local

spectral characterization of operators satisfying generalized a-Browder’s theorem is
given in [5, Theorem 2.4], more precisely we have T ∈ L(X) satisfies generalized
a-Browder’s theorem if and only if T has the SVEP at every λ ̸∈ σSBF−

+
(T ).

We denote by H(σ(T )) the set of all analytic functions defined on an open
neighborhood of σ(T ).

Theorem 2.1. Let T ∈ L(X) and let f ∈ H(σ(T )). If σp(T ) = ∅, then f(T )
possesses property (gw), or equivalently property (gb).

Proof. The hypothesis σp(T ) is empty entails from the proof of [4, Theorem 2.5]
that σp(f(T )) is empty. This implies in particular that f(T ) has the SVEP on the
complement of σSBF−

+
(f(T )). Consequently, f(T ) satisfies generalized a-Browder’s

theorem and so σSBF−
+
(f(T )) = σLD(f(T )). Since Ea(f(T )) = E(f(T )) = ∅,

then by [11, Theorem 3.1], we conclude that σa(f(T )) ⊂ σSBF−
+
(f(T )) and since

the opposite inclusion holds for every operator, it then follows that σa(f(T )) =
σSBF−

+
(f(T )). Hence f(T ) possesses property (gw). As we also have Π(f(T )) = ∅,

then properties (gw) and (gb) are equivalent for f(T ).

Let T ∈ L(X), the analytic core K(T ) of T is defined by K(T ) = {x ∈
X : there exits c > 0 and a sequence (xn)n≥1 ⊂ X such that Tx1 = x, Txn+1 =
xn for all n ∈ N and ∥xn∥ ≤ cn∥x∥
for all n ∈ N} and the quasinilpotent part H0(T ) of T is defined by

H0(T ) = {x ∈ X : lim
n→∞

∥Tn(x)∥ 1
n = 0}.

(See [1] for information on K(T ) and H0(T )).

Corollary 2.2. Let T ∈ L(X). If there exists λ0 ∈ C such that

K(T − λ0I) = {0} and ker(T − λ0I) = {0},

then f(T ) possesses property (gw), or equivalently property (gb) for all f ∈ H(σ(T )).

Proof. For all complex number λ ̸= λ0 we have Ker(T − λI) ⊂ K(T − λ0I).
Then Ker(T −λI) = {0} for all λ ∈ C, so that σp(T ) = ∅. From Theorem 2.1, f(T )
possesses property (gw), or equivalently property (gb).

Corollary 2.3. Let T ∈ L(X). If there exists λ0 ∈ C such that K(T − λ0I) =
{0} and ker(T − λ0I) = {0}, then

σa(f(T )) = σSF−
+
(f(T )) = σSBF−

+
(f(T )),

and

σBW (f(T )) = σW (f(T )) = σ(f(T )),

for all f ∈ H(σ(T )).

Proof. We have σSBF−
+
(f(T )) ⊆ σSF−

+
(f(T )) ⊆ σa(f(T )), (this holds for every

operator). Since the assumption entails that σp(T ), and hence σp(f(T )), is empty,
then the equality of these spectra follows from the proof of Theorem 2.1. Similarly
and immediately , we obtain the second assertion.
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The conditions of Corollary 2.2 are satisfied by any injective operator for which

the hyperrange T∞(X) =
∩
n≥0

Tn(X) is {0}. In fact, K(T ) ⊆ T∞(X) for all T ∈

L(X), so that K(T ) = {0}. In particular, the conditions of Corollary 2.2 are
satisfied by every weighted unilateral right shift operator T on ℓp(N) (1 ≤ p < ∞)

defined for each x = (xi) ∈ ℓp(N) by T (x) =
∞∑
i=1

αixiei+1, where α = (αi)i∈N is a

sequence of real numbers such that 0 < αi ≤ 1 and (ei)i∈N is the canonical basis of
ℓp(N), see [24] for details on this class of operators.

Definition 2.4. An operator T ∈ L(X) is called a-polaroid (resp. left a-polaroid)
if all isolated points of the approximate point spectrum are poles of the resolvent
of T , i.e. isoσa(T ) = Π(T ) (resp. are left poles of T , i.e. isoσa(T ) = Πa(T )).
Moreover, if isoσ(T ) = Π(T ), then we will say that T is polaroid operator.

From the Definition 2.4, we remark that every a-polaroid operator is polaroid but
the converse is not true in general. Indeed, if we consider the operator T = R⊕ U
defined on the Banach space ℓ2(N)⊕ℓ2(N), where R is the unilateral right shift oper-
ator on ℓ2(N) and U is defined on ℓ2(N) by U(x1, x2, x3, ...) = (x2/2, x3/3, x4/4, ...),
then σ(T ) = D(0, 1) is the closed unit disc in C and σa(T ) = C(0, 1) ∪ {0}, where
C(0, 1) is the unit circle of C. Consequently, isoσ(T ) = Π(T ) = ∅ and T is polaroid,
but it is not a-polaroid, since isoσa(T ) = {0}.

We also observe that every a-polaroid operator is left a-polaroid, but the converse
does not hold in general as shown by the following example: let T be defined on
the Banach space ℓ2(N)⊕ ℓ2(N) by T = 0⊕R, where R is the unilateral right shift
operator, then σ(T ) = D(0, 1) and σa(T ) = C(0, 1) ∪ {0} and Πa(T ) = {0}. So
isoσa(T ) = Πa(T ) and T is left a-polaroid, but T is not a-polaroid, since Π(T ) = ∅.
However in the following lemma we give sufficient conditions for an operator to be
a-polaroid.

Lemma 2.5. Let T ∈ L(X) be an operator.
(i) If T ∈ L(X) is a left a-polaroid possessing property (gab), then T is an a-
polaroid.
(ii) If T ∈ L(X) is polaroid and its dual has the SVEP on the complement of
σSF−

+
(T ), then T is an a-polaroid.

Proof. (i) Assume that T is a left a-polaroid possessing property (gab). Then
it follows from [16, Corollary 2.7] that Π(T ) = Πa(T ). Since Πa(T ) = isoσa(T ), it
follows that is an a-polaroid.
(ii) Assume that T is polaroid and its dual T ∗ has the SVEP on the complement
of σSF−

+
(T ). Then it follows from [14, Lemma 2.1] that σ(T ) = σa(T ). Since

Π(T ) = isoσ(T ), it then follows that T is an a-polaroid.

We know from [14, Theorem 2.5] that if T ∗ has the SVEP on the complement
of σSBF−

+
(T ), then T possesses property (gb), but this is not true for property

(gw). Indeed, let T be defined on the Hilbert space ℓ2(N) by T (x1, x2, x3, ...) =
(x3/3, x4/4, x5/5, ...). As T is quasinilpotent, T as well as its adjoint T ∗, has the
SVEP, but T does not possess property (gw), since σa(T ) = σSBF−

+
(T ) = {0} and

E(T ) = {0}.
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The two first parts of the following result have been proved by M. Amouch and
M. Berkani in [7, Theorem 2.10] under the hypothesis that T is a polaroid and that
T ∗ (resp. T ) has the SVEP. We show here that these results hold also under the
weaker hypothesis that E(T ) = Π(T ) (resp. E(T ∗) = Π(T ) and that T ∗ (resp.
T ) has the SVEP only on the complement of σSBF−

+
(T ) (resp. σSBF+

−
(T )). We

observe that if T is a polaroid, then E(T ) = Π(T ), but the converse does not
hold in general as shown by the following example: let S : ℓ2(N) −→ ℓ2(N) be
an injective quasinilpotent operator which is not nilpotent and we define T on the
Banach space ℓ2(N)⊕ℓ2(N) by T = I⊕S, where I is the identity operator on ℓ2(N).
Then σ(T ) = σa(T ) = {0, 1} and Π(T ) = E(T ) = {1}, but T is not polaroid, since
isoσ(T ) = {0, 1}.

We also observe that if T is a polaroid, then E(T ∗) = Π(T ), but the converse is
not true in general. To see this, consider the operator T defined on the Hilbert space
ℓ2(N) by T (x1, x2, x3, ...) = (x2/2, x3/3, x4/4, ...). Then its adjoint T ∗ is defined by
T ∗(x1, x2, x3, ...) = (0, x1/2, x2/3, x3/4, ...). So E(T ∗) = Π(T ) = ∅, but T is not
polaroid, since isoσ(T ) = {0}.
Theorem 2.6. Let T ∈ L(X) be an operator. Then the following statements hold.
(i) If E(T ) = Π(T ) and if T ∗ has SVEP at every λ ̸∈ σSBF−

+
(T ), then T possesses

property (gw).
(ii) If E(T ∗) = Π(T ) and if T has SVEP at every λ ̸∈ σSBF+

−
(T ), then T ∗ possesses

property (gw).
(iii) If T or T ∗ has the SVEP and isoσa(T ) = ∅, then T + F possesses property
(gw) for every finite rank operator F ∈ L(X) commuting with T .

Proof. (i) Assume that T ∗ has the SVEP at every λ ̸∈ σSBF−
+
(T ). Then it

follows from [14, Theorem 2.5] that T possesses property (gb), that is ∆g
a(T ) =

Π(T ). As by hypothesis E(T ) = Π(T ), then ∆g
a(T ) = E(T ) and T possesses

property (gw).
(ii) Assume that T has the SVEP at every λ ̸∈ σSBF+

−
(T ). Then it follows from [14,

Theorem 2.5] that T ∗ possesses property (gb), that is ∆g
a(T

∗) = Π(T ∗). Since we
know that Π(T ∗) = Π(T ) and by hypothesis, E(T ∗) = Π(T ), then ∆g

a(T
∗) = E(T ∗)

and T ∗ possesses property (gw).
(iii) Assume that T has the SVEP, then from [2, Lemma 2.8], T +F has the SVEP.
Therefore T + F satisfies generalized a-Browder’s theorem, that is ∆g

a(T + F ) =
Πa(T + F ). Since isoσa(T ) = ∅, from [2, Lemma 2.6], we have isoσa(T + F ) = ∅
and consequently, E(T + F ) = Πa(T + F ) = ∅. So ∆g

a(T + F ) = E(T + F ) and
T + F possesses property (gw). Similarly, if T ∗ has the SVEP, then T ∗ + F ∗ has
the SVEP which implies from [14, Corollary 2.7] that T + F satisfies generalized
a-Browder’s theorem. So ∆g

a(T + F ) = Πa(T + F ), and proceeding as in the first
case we see that T + F possesses property (gw).

Remark 2.7. 1)– The following example shows that the condition T ∗ has the
SVEP on the complement of σSBF−

+
(T ) assumed in the statement (i) of Theorem

2.6 cannot be replaced by the SVEP for T on the complement of σSBF−
+
(T ). Let R

be the unilateral right shift operator on ℓ2(N) and let the operator U be defined by
U(x1, x2, x3, ...) = (0, x2, x3, ...) for all (xi) ∈ ℓ2(N). Define T on the Banach space
ℓ2(N)⊕ ℓ2(N) by T = R⊕ U. Then σ(T ) = D(0, 1) is the closed unit disc in C and
Π(T ) = E(T ) = ∅. Moreover, we have σa(T ) = C(0, 1) ∪ {0}, where C(0, 1) is the
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unit circle of C. This implies that σa(T ) has an empty interior which implies that
T has the SVEP. But T does not possess property (gw), since σSBF−

+
(T ) = C(0, 1).

Now we have (T ∗)∗ = T has the SVEP on the complement of σSBF+
−
(T ∗) and

E((T ∗)∗) = Π(T ∗) = ∅, but (T ∗)∗ does not possess property (gw). This also shows
that in the statement (ii) of Theorem 2.6, we cannot replace the SVEP for T by
the SVEP for T ∗.
2)– Generally, the converse of the statement (i) of Theorem 2.6 does not hold.
Consider the operator T = R ⊕ U defined just after Definition 2.4, then σa(T ) =
C(0, 1) ∪ {0}, σSBF−

+
(T ) = C(0, 1) ∪ {0}, σBW (T ) = D(0, 1) and E(T ) = ∅. So T

possesses property (gw). But there exists at least one scalar λ0 ̸∈ σSBF−
+
(T ) such

that T ∗ does not have the SVEP at λ0, since the SVEP for T ∗ on the complement
of σSBF−

+
(T ) would imply that σBW (T ) = σSBF−

+
(T ) and this is a contradiction.

Now we have (T ∗)∗ = T possesses property (gw). But T ∗ does not have the SVEP
at λ0 ̸∈ σSBF+

−
(T ∗).

The next theorem has been proved in [15, Theorem 2.3], but the authors used in
its proof an auxiliary lemma [15, Lemma 2.2]. We give here a direct simple proof
without using this lemma.

Theorem 2.8. Let T ∈ L(X). If T possesses property (gb), then T possesses
property (b).

Proof. Suppose that T possesses property (gb), then ∆g
a(T ) = Π(T ). If

λ ∈ ∆a(T ), then λ ∈ ∆g
a(T ). As ∆g

a(T ) = Π(T ), then λ is a pole of the resolvent
of T . Since T − λI ∈ SF+(X), it follows that α(T − λI) < ∞ and so λ ∈ Π0(T ).
Hence ∆a(T ) ⊂ Π0(T ). Since we always have that ∆a(T ) ⊃ Π0(T ), we have
∆a(T ) = Π0(T ) and T possesses property (b).

In general, the property (gw) is not intermediate between generalized Weyl’s the-
orem and generalized a-Weyl’s theorem. Indeed, the operator T = R⊕U defined as
in part 2) of Remark 2.7 possesses property (gw), but it does not satisfy generalized
a-Weyl’s theorem, since Ea(T ) = {0} and the operator T = 0 ⊕ R defined above
satisfies generalized a-Weyl’s theorem, since σSBF−

+
(T ) = C(0, 1), Ea(T ) = {0},

but it does not possess property (gw), since E(T ) = ∅.
We also have that the property (gb) is not intermediate between property (w)

and property (b). To see this, the operator T = 0 ⊕ R possesses property (w),
since σSF−

+
(T ) = C(0, 1) ∪ {0}, E0(T ) = ∅, but it does not possesses property

(gb), because Π(T ) = ∅ and the operator T defined on ℓ2(N) by T (x1, x2, x3, ...) =
(x2/2, x3/3, x4/4, ...) possesses property (gb), but it does not possesses property
(w), because σa(T ) = σSF−

+
(T ) = {0} and E0(T ) = {0}. However, for the class of

a-polaroid operators we have the following result.

Proposition 2.9. Let T ∈ L(X) be an a-polaroid operator. Then the following
statements are equivalent.
(i) T satisfies generalized a-Browder’s theorem,
(ii) T possesses property (gb),
(iii) T possesses property (gw),
(iv) T satisfies generalized a-Weyl’s theorem,
(v) T possesses property (w),
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(vi) T possesses property (b),
(vii) T satisfies a-Weyl’s theorem.

Proof. Since T is an a-polaroid operator, it is easily seen that Π(T ) = E(T ) =
Ea(T ) = Πa(T ). Hence the equivalence between these statements follows directly
by [11], [12] and [15].

3. Weyl type theorems for perturbations

The following perturbation result improves Theorem 2.6.

Theorem 3.1. Let T ∈ L(X) be an operator and let N ∈ L(X) be a nilpotent
operator commuting with T . Then the following statements hold.
(i) If E(T ) = Π(T ) and if T ∗ has SVEP, then T +N possesses property (gw).
(ii) If E(T ∗) = Π(T ) and if T has SVEP, then T ∗ +N∗ possesses property (gw).

Proof. (i) Assume that T ∗ has the SVEP. As N∗ is nilpotent and commutes
with T ∗, then from [1, Corollary 2.12], T ∗ + N∗ has the SVEP. Therefore T + N
possesses property (gb), that is σa(T+N)\σSBF−

+
(T+N) = Π(T+N). On the other

hand, we know that E(T ) = E(T +N) and Π(T ) = Π(T +N). Since by hypothesis
we have E(T ) = Π(T ), it follows that σa(T +N) \σSBF−

+
(T +N) = E(T +N) and

T +N possesses property (gw).
(ii) Assume that T has the SVEP. As N is nilpotent and commutes with T , then
from [1, Corollary 2.12], T+N has the SVEP. Therefore T ∗+N∗ possesses property
(gb), that is σa(T

∗ +N∗) \ σSBF−
+
(T ∗ +N∗) = Π(T ∗ +N∗). Since by assumption

E(T ∗) = Π(T ), we conclude that E(T ∗ + N∗) = Π(T ∗ + N∗) and so T ∗ + N∗

possesses property (gw).

Remark 3.2. 1)– Generally, Theorem 3.1 does not extend to commuting quasinilpo-
tent perturbations. Indeed, let X = ℓ2(N) and let T and the quasinilpotent oper-
ator Q be defined by T = 0 and Q(x1, x2, x3, ...) = (0, x2/2, x3/3, x4/4, ...). Then
TQ = QT = 0, E(T ) = Π(T ) = {0} and T ∗ has the SVEP, but T + Q = Q does
not possess property (gw) because σa(T + Q) = {0}, σSBF−

+
(T + Q) = {0} and

E(T +Q) = {0}.
2)– The hypothesis of commutativity assumed in Theorem 3.1 is crucial. The fol-
lowing example shows that if we do not assume that N commutes with T , the result
may fail. Let X = ℓ2(N), and let T and N be defined by

T (x1, x2, x3, ....) = (0, x1/2, x2/3, ....) , N(x1, x2, x3, ....) = (0,−x1/2, 0, 0, ....).

Clearly N is a nilpotent operator which does not commute with T . Moreover, we
have E(T ) = Π(T ) = ∅ and T ∗ has the SVEP. But T +N does not possess property
(gw), since σa(T +N) = {0}, σSBF−

+
(T +N) = {0} and E(T +N) = {0}.

Corollary 3.3. Let T ∈ L(X) be a polaroid operator and let N ∈ L(X) be a
nilpotent operator commuting with T . If T ∗ has the SVEP, then f(T ) + N and
f(T + N) possess property (gw) for every f ∈ H(σ(T )), which is not constant on
any component of σ(T ).

Proof. Since T ∗ has the SVEP then f(T )∗ = f(T ∗) has the SVEP. As T is
polaroid, from [12, Theorem 3.3] we have E(f(T )) = Π(f(T )). It then follows from
Theorem 3.1 that f(T ) +N possesses property (gw). Now to show that f(T +N)
possesses property (gw). As we know that σ(T ) = σ(T+N) and Π(T ) = Π(T+N),
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then T + N is also polaroid. Therefore E(f(T + N)) = Π(f(T + N)). Since
f(T + N)∗ = f(T ∗ + N∗) has the SVEP, from Theorem 2.6 we have f(T + N)
possesses property (gw).

Theorem 3.4. Let T ∈ L(X) be an operator and let K ∈ L(X) be an algebraic
operator commuting with T . Then the following assertions hold.
(i) If E(T +K) = Π(T +K) and if T ∗ has SVEP, then T +K possesses property
(gw).
(ii) If E(T ∗+K∗) = Π(T+K) and if T has SVEP, then T ∗+K∗ possesses property
(gw).

Proof. (i) Suppose that T ∗ has the SVEP. Since K∗ is algebraic and commutes
with T ∗, it then follows by [6, Theorem 2.14] that T ∗ +K∗ has the SVEP. Hence
T +K possesses property (gb), that is ∆g

a(T +K) = Π(T +K). As by assumption
E(T +K) = Π(T +K), then ∆g

a(T +K) = E(T +K), i.e. T +K possesses property
(gw).
(ii) Suppose that T has the SVEP. Since K is algebraic and commutes with T ,
it then follows by [6, Theorem 2.14] that T + K has the SVEP. Hence T ∗ + K∗

possesses property (gb), that is ∆g
a(T

∗ + K∗) = Π(T ∗ + K∗). As by assumption
E(T ∗ +K∗) = Π(T +K), we then have ∆g

a(T
∗ +K∗) = E(T ∗ +K∗) and T ∗ +K∗

possesses property (gw).

Examples and applications 3.5. 1) Let R be the unilateral right shift operator
on ℓ2(N). Then σa(R) = C(0, 1). So isoσa(R) = ∅ and R has the SVEP. Hence if F
is a finite rank operator commuting with R, then R+ F possesses property (gw).
2) Let T be a not quasinilpotent weighted right shift operator on ℓp(N), it then
follows from [24, Proposition 1.6.15] that isoσa(T ) = ∅. Moreover, such operators
have the SVEP. Hence if F is a finite rank operator commuting with T , then T +F
possesses property (gw).
3) An operator T ∈ L(X) is said to have the property H(p) if for all λ ∈ C, there
exists p = p(λ) ∈ N such that H0(T − λI) = ker((T − λI)p). It is well known that
such operators have the SVEP. Moreover, if T has the property H(p) and K is an
algebraic operator commuting with T , then T + K is polaroid (see [6, Theorem
2.14]). So if T has the property H(p) and K is an algebraic operator commuting
with T , then T ∗ +K∗ possesses property (gw).
4) Let H be a Hilbert space, an operator T acting on H is called paranormal
if ∥Tx∥2 ≤ ∥T 2x∥∥x∥ for all x ∈ H. Examples of paranormal operators are p-
hyponormal operators or log-hyponormal operators (see [22]). It follows from [20,
Lemma 2.3] that a paranormal operator is polaroid. Consequently, if F is a finite
rank operator commuting with T , then T +F is also polaroid and so E(T ∗+F ∗) =
Π(T +F ). Moreover, a paranormal operator has the SVEP, see [18, Corollary 2.10].
So if T is a pranormal operator and F is a finite rank operator commuting with T ,
then T ∗ + F ∗ possesses property (gw).
5) Let A be a semi-simple regular Tauberian commutative Banach algebra and T be
a multiplier on A. It is well known that such operators have the SVEP. Also from
[1, Theorem 4.36], we know that T is polaroid. If F ∈ L(A) is a finite rank operator
commuting with T , then T +F is also polaroid. Hence T ∗ +F ∗ possesses property
(gw). On the other hand, since T has the SVEP, T satisfies generalized Browder’s
theorem that is ∆g(T ) = Π(T ). From [10, Theorem 2.8], T +F satisfies generalized
Browder’s theorem. Now if λ ∈ ∆g

a(T+F ) be arbitrary, then T+F−λI is an upper
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semi-B-Fredholm operator such that ind(T +F −λI) ≤ 0. Therefore T −λI is also
an upper semi-B-Fredholm operator such that ind(T − λI) = ind(T + F − λI). As
T is a multiplier, then from [9, Corollary 2.2] we know that T − λI is a B-Weyl
operator and so ind(T−λI) = ind(T+F−λI) = 0. Hence T+F possesses property
(gb), see [15, Theorem 2.12]. Since T + F is polaroid, T + F possesses property
(gw).

Theorem 3.6. Let T ∈ L(X) and let K ∈ L(X) be a compact operator commuting
with T such that Π0

a(T + K) ⊂ σa(T ). If T possesses property (b), then T + K
possesses property (b).

Proof. From [17, Theorem 3.1], we only have to show that Π0
a(T + K) =

Π0(T +K). Let λ ∈ Π0
a(T +K) be arbitrary, then λ ̸∈ σSF−

+
(T +K). Since K is a

compact operator and commutes with T , we know that σSF−
+
(T +K) = σSF−

+
(T ).

So λ ̸∈ σSF−
+
(T ). As by hypothesis λ ∈ σa(T ), then λ ∈ ∆a(T ) and since T

possesses property (b), we have λ ∈ Π0(T ) which implies that λ ̸∈ σb(T ). As
by [1, Corollary 3.49], we have σb(T ) = σb(T + K), then λ ̸∈ σb(T + K). Since
λ ∈ σ(T + K), it follows that λ ∈ Π0(T + K). Hence Π0

a(T + K) ⊂ Π0(T + K).
As we always have that Π0

a(T +K) ⊃ Π0(T +K), then Π0
a(T +K) = Π0(T +K).

Hence T +K possesses property (b).

Remark 3.7. 1) It is proved by M. Berkani and H. Zariouh in [17, Theorem
3.3] that if T ∈ L(X) is an operator possessing property (b) such that Π0

a(T +
F ) ⊂ σa(T ), where F is a finite rank operator commuting with T , then T + F
possesses property (b). So Theorem 3.6 extends this result to commuting compact
perturbations. It extends also [17, Theorem 3.4] which establishes the same result
under the stronger hypothesis that ∆a(T +K) ⊂ σa(T ) where K is compact and
commutes with T . We observe that if ∆a(T+K) ⊂ σa(T ) then Π0

a(T+K) ⊂ σa(T ).
We also remark that Theorem 3.6 extends a result of P. Aiena and M. T. Biondi
[3, Theorem 2.21] which establishes that if T is an operator possessing property (b)
and if F is a finite rank operator commuting with T such that σa(T ) = σa(T +F ),
then T + F possesses property (b). We observe that if σa(T ) = σa(T + F ) then
Π0

a(T + F ) ⊂ σa(T ).
2) It is proved by M. Berkani, M. Sarih and H. Zariouh in [14, Theorem 2.2] that
property (b) is satisfied by every operator T ∈ L(X) whenever its dual T ∗ has the
SVEP on the complement of σSF−

+
(T ). This result extends [3, Theorem 2.16] which

establishes that if T ∈ L(X) is an operator satisfying the supplementary condition
that H0(T − λI) = ker((T − λI)p) for all λ ∈ E0

a(T ) with p = p(λ) ∈ N and if T ∗

has the SVEP, then T possesses property (b).
3) As it had been already mentioned, we have that if T ∗ has the SVEP and if
F ∈ L(X) is a finite rank operator which commutes with T , then T ∗ + F ∗ has the
SVEP and so T + F possesses property (b). This result gives a stronger version of
[3, Theorem 2.22] where the assumptions that T is a polaroid operator and that T
possesses property (b) have been assumed.
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