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ON BASES IN THE SPACE OF VECTOR VALUED ENTIRE
DIRICHLET SERIES OF TWO COMPLEX VARIABLES

(COMMUNICATED BY INDRAJIT LAHIRI)

G. S. SRIVASTAVA AND ARCHNA SHARMA

Abstract. The space of all entire functions represented by vector valued
Dirichlet series of two complex variables is considered in this paper. It is

equipped with two equivalent topologies. The main result of this paper is con-
cerned with finding the conditions for a base in Xto become a proper base and

certain continuous linear operators which are used to determine the proper

bases inX.

1. Introduction

Consider

f(s1, s2) =
∞∑

m,n=0

am,n exp(λms1 + µns2), (sj = σj + itj , j = 1, 2) (1)

where a′m,ns belong to a commutative Banach algebra (E, ||.||);0 = λ0 < λ1 < ... <
λm →∞ as m →∞ ,0 = µ0 < µ1 < ... < µn →∞ as n→∞ and

lim
m+n→∞

sup
log(m+ n)
λm + µn

= D < +∞ , (2)

lim
m+n→∞

sup
log(||am,n||)
λm + µn

= −∞ . (3)

Then the Dirichlet series given in (1) represents a vector valued entire function
f(s1, s2) in two complex variables (see[3]). Let Xdenote the space of all entire

functions f : C2 → Edefined as above by the vector valued Dirichlet series (1). In
[1] and [2], S.Daoud obtained the properties of space of entire functions defined by
Dirichlet
series of two complex variables. In this paper we study the properties of the space
X of all entire functions defined by vector valued Dirichlet series.
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2. Different Topologies and Bases in X

Let us assume that {σ(k)
1 }and {σ(k)

2 } are two non-decreasing sequences of positive
numbers, σ(k)

1 → ∞and σ
(k)
2 → ∞ with k → ∞.For each f ∈ Xgiven by (1), we

define

||f ;σ(k)
1 , σ

(k)
2 || =

∞∑
m,n=0

||am,n|| exp(λmσ
(k)
1 + µnσ

(k)
2 ). (4)

Now from (3) we obtain

lim
m+n→∞

inf log ||am,n||− 1/ (λm+µn) = +∞ .

Then for an arbitrarily large numberK ,we have for m+ n > N ′,

||am,n|| < exp[−K(λm + µn)] .

Hence ||f ;σ(k)
1 , σ

(k)
2 || =

∞∑
m,n=0

||am,n|| exp(λmσ
(k)
1 + µnσ

(k)
2 )

=
N ′∑

m+n=0

||am,n|| exp(λmσ
(k)
1 + µnσ

(k)
2 ) +

∞∑
m+n≥N ′

||am,n|| exp(λmσ
(k)
1 + µnσ

(k)
2 )

< O(1) +
∑∞
m+n≥N ′ exp[λm(σ(k)

1 −K) + µn(σ(k)
2 −K)]

< ∞ , since K >> σ
(k)
1 , σ

(k)
2 can be chosen.

Then the series on right hand side of (4) converges and ||f ;σ(k)
1 , σ

(k)
2 || defines a

norm on X for each k = 1, 2.....Further, from (4), it follows that

||f ;σ(k)
1 , σ

(k)
2 || ≤ ||f ;σ(k+1)

1 , σ
(k+1)
2 ||, for all k ≥ 1.

With these countable number of norms ||f ;σ(k)
1 , σ

(k)
2 || , (k ≥ 1),

we define a metric topology on Xwith metric ρ defined as

ρ(f, g) =
∑
k≥1

1
2k
.
||f − g;σ(k)

1 , σ
(k)
2 ||

1 + ||f − g;σ(k)
1 , σ

(k)
2 ||

, f, g ∈ X.

For each f ∈ X and0 < σ1, σ2 <∞, put

M(f ;σ1, σ2) = sup
−∞<t1,t2<∞

||f(σ1 + it1, σ2 + it2)|| (5)

Then M(f, σ1, σ2 ) defines a family of norms on X. Using this we define a metric
topology generated by norms (5) as

=(f, g) =
∞∑
j=1

1
2j

M(f − g, σ(j)
1 , σ

(j)
2 )

1 +M(f − g, σ(j)
1 , σ

(j)
2 )

, f, g ∈ X



ON BASES IN THE SPACE OF ENTIRE DIRICHLET SERIES 85

where {σ(j)
1 } and {σ(j)

2 } are two non decreasing sequences of positive numbers,
σ

(j)
1 →∞ and σ

(j)
2 →∞ as j →∞. It was proved earlier in [1] that for α> 0

M(f ;σ1, σ2) ≤ ||f ;σ1, σ2|| ≤ K(α) M(f ;σ1 + α, σ2 + α)
where K =

∑∞
m,n=0 exp[−α(λm + µn)] .Hence the two topologies defined on X

by ρ and = are equivalent.
Now we give the characterizations of certain types of bases in X.
A sequence{fm,n : m,n ≥ 0} ⊂ X is said to be a base for X if for each f ∈ X,
there exists a unique sequence {Cm,n : m,n ≥ 0} ⊂ E,such that f =

∑∞
m,n=0 Cm,n fm,n

where the convergence of the infinite series being with respect to the topology on
X.
Here {Cm,n} are called the base functions. If em,n ∈ X, em,n(s1, s2) = exp(s1λm+
µns2) , m, n ≥ 1then each f ∈ Xcan be expressed as in (1) with coefficients
{am,n}satisfying

lim
m+n→∞

sup
log(||am,n||)
λm + µn

= −∞ .

Therefore {em,n}is a base inX .
A base {fm,n}will be called a genuine base for X if the corresponding base functions
satisfy (3).A sequence {fm,n}will be called an absolute base for X if it is a base in
Xand the infinite series corresponding to each f ∈ Xis absolutely convergent

with respect to the topology on X.A sequence {fm,n}will be called a proper base
for X if it is a genuine and an absolute base for X.

3. Main Results

We now give the characterization of proper bases. We prove

Theorem 3.1. Let {Cm,n} be an arbitrary sequence contained in E satisfying

lim
m+n→∞

sup
log(||Cm,n||)
λm + µn

= −∞ . (6)

and {αm,n : m,n ≥ 0} ⊂ X, then the series ΣM(Cm,nαm,n ;σ1,σ2) converges if
and only if

lim
m+n→∞

logM(αm,n;σ1, σ2)
λm + µn

<∞ . (7)

for each σ1, σ2.

Proof. Let us assume that equation (7) is satisfied. Then for
σ1, σ2 > 0 there exists a constant ε1 = ε1(σ1,σ2)> 0 such that

logM(αm,n;σ1, σ2) < ε1(λm + µn) (8)
for m+ n ≥ N(ε1).
Let ε2 > ε1, then using (6) we find that exists N1 = N1(ε2), such that

||Cm,n|| ≤ exp{−ε2(λm + µn)} ; m+ n ≥ N1. (9)
From (8) and (9),we get

M(Cm,nαm,n ;σ1,σ2) = ||Cm,n||M(αm,n;σ1, σ2) ≤ exp(ε1 − ε2)(λm + µn)
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∀m+ n ≥ N2 =max(N,N1). In an earlier paper, we proved the following result
in [?] :

µ(f, σ1, σ2) ≤M(f, σ1, σ2) ≤ Kµ(f, σ1 + α, σ2 + α) whereK = K(α)

andµ(f, σ1, σ2) = max
m,n≥0

{||am,n|| exp(λmσ1 +µnσ2) }denotes the maximum term

of the entire function f(s1, s2). Using the above result, we find that∑∞
m+n=0M(Cm,nαm,n ;σ1,σ2) converges for every σ1, σ2.

Conversely, suppose that (7) is false. Hence for some σ1, σ2 > 0, there exist se-
quences {mp}and{nq} such that

logM(αmp,nq
;σ1, σ2) > (p+ q)(λmp

+ µnq
) , p, q ≥ 0. (10)

Now we define the sequence{Cm,n} ⊂ E such that

log ||Cm,n|| =
{
λm + µn − logM(αm,n;σ1, σ2) form = mp;n = nq
−∞ form 6= mp;n 6= nq

Then from (10), we have lim
m+n→∞

sup log(||Cm,n||)
λm+µn

= −∞ .Hence for the sequence

defined above, equation (6) holds but

M(Cm,nαm,n;σ1, σ2) =
{
Cmp,nq

M(αmp,nq
;σ1, σ2) = exp(λmp

+ µnq
),m = mp, n = nq,

0 form 6= mp , n 6= nq
and so ΣM(Cm,nαm,n ;σ1,σ2) does not converge. Hence equation (7) is true. This
completes the proof of Theorem 1. �

Remark 1. Theorem 3.1 above generalizes Theorem 3.2 of [1].
Next we prove

Theorem 3.2. Let{Cm,n} be an arbitrary sequence contained in E and {αm,n :
m,n ≥ 0} ⊂ Xsuch that the series ΣM(Cm,nαm,n ;σ1,σ2)converges. Then

lim
m+n→∞

sup
log(||Cm,n||)
λm + µn

= −∞ . (11)

if and only if

lim
σ1,σ2→∞

{
lim

m+n→∞
inf

logM(αm,n;σ1, σ2)
λm + µn

}
= +∞. (12)

Proof. Let us assume that the equation (12) holds and (11) does not hold.
Therefore for each σ1, σ2 >0, series ΣM(Cm,nαm,n ;σ1,σ2)converges but

lim
m+n→∞

sup
log(||Cm,n||)
λm + µn

6= −∞ .

Now there exist sequences {mp}, {nq} of positive integers such that

log(||Cm,n||) > α(λmp
+ µnq

);α > −∞
By (12) we can find σ1, σ2, such that

lim
m+n→∞

inf
logM(αm,n;σ1, σ2)

λm + µn
> 1− α
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and logM(Cmp,nqαmp,nq ;σ1,σ2)

λmp+µnq
> 1 , p, q ≥ 0 .

From this we find that ΣM(Cm,nαm,n ;σ1,σ2) does not converge .This proves the
first part of the result .Conversely, let us take (11) to be true but (12) be not true.
Then for some β > 0 and for each σ1, σ2 > 0

lim
σ1,σ2→∞

{
lim

m+n→∞
inf

logM(αm,n;σ1, σ2)
λm + µn

}
< β < +∞.

Since M(αm,n;σ1, σ2) is monotonically increasing in σ1, σ2 > 0 for each fixed pair
of integers(m,n) then there exist sequences {mp}, {nq} such that

logM(αmp,nq ;σ1, σ2) < β(λmp + µnq ).
Now we define {Cm,n} ⊂ E as follows

log ||Cm,n|| =
{
−β(λm + µn) form = mp;n = nq
−∞ form 6= mp;n 6= nq

Then for given σ1, σ2

∞∑
m,n=0

||Cm,n||M(αm,n;σ1, σ2) ≤
∞∑

m,n=0

exp[−β(λm + µn)] < +∞

and therefore
∑∞
m,n=0M(Cm,nαm,n ;σ1,σ2)converges for positive real numbersσ1, σ2.

Now from the above, we get,

lim
m+n→∞

sup
log(||Cm,n||)
λm + µn

= −β

that is, (11) does not hold. Hence (11) implies (12) and this proves the theorem.

Remark 2. Theorem 3.2 above generalizes Lemma 3.3 of [1]. Our next result
characterizes proper bases.

Theorem 3.3. Let{αm,n : m,n ≥ 0}be an absolute base inX, then {αm,n} is a
proper base if and only if (7) and (8) hold good.

Proof. Earlier we have shown that if {αm,n : m,n ≥ 0} is a proper base then

lim
m+n→∞

sup
logM(αm,n;σ1, σ2)

λm + µn
<∞ .

for each σ1, σ2.The result now follows on using the definitions of genuine and proper
bases and the results in Theorems 3.1and 3.2.
Now we obtain the characterizations of linear continuous operators .We prove

Theorem 3.4. Let {αm,n : m,n ≥ 0} ⊂ X. Suppose T is a linear operator from
Xinto X, such that T (δm,n) = αm,n m,n ≥ 0 where δm,n(s1, s2) = exp(λms1 +
µns2). Then T is a continuous operator on Xif for each σ1, σ2 ≥ 0

lim
m+n→∞

sup
logM(αm,n;σ1, σ2)

λm + µn
<∞ . (13)

Conversely, if equation (13) holds, then there exists a continuous linear operator
T : X → X such that

T (δm,n) = αm,n m,n ≥ 0.
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Proof. Suppose that T is a continuous linear operator from X into X with
T (δm,n) = αm,n.Then for given σ1, σ2> 0, there exists a positive constant K and
numbersσ

′

1 > 0, σ
′

2 > 0 such that

M(Tδm,n;σ1, σ2) = M(αm,n;σ1, σ2) ≤ KM(δm,n;σ
′

1, σ
′

2)

≤ K exp{(λm + µn)σ} , σ = max(σ
′

1, σ
′

2).
Hence

lim
m+n→∞

sup
logM(αm,n;σ1, σ2)

λm + µn
<∞ .

Thus equation (13) follows.
Conversely, assume that equation (13) is true. Let α ∈ X, then α is represented by

α =
∞∑

m,n=0

am,nδm,n

where the coefficients am,n’s satisfy equation (3).Since equation (13) holds, therefore
there exists an A0 = A0(σ1, σ2), depending on σ1, σ2 such that

lim
m+n→∞

logM(αm,n;σ1,σ2)
λm+µn

≤ A0 for all m+ n ≥ N
or
M(αm,n;σ1, σ2) ≤ expA0(λm + µn) for all m+ n ≥ N

Therefore, noticing that equation (3) is already valid for the coefficients am,n’s , we
find that

∑
am,nδm,n converges in Y and so it represents an elements of X.Hence

there is natural transformation T : X → X such that:

T (α) =
∞∑

m,n=0

am,nδm,n

with

α =
∞∑

m,n=0

am,nδm,n.

Clearly T (δm,n) = αm,n , m, n ≥ 0. We are now required to show that T is
continuous on X with respect to the toplogy T.It is sufficient to show that T is con-
tinuous on (X, ρ). The norms ||..., σ1, σ2|| are continuous on X , therefore given any
two numbers σ1, σ2 > 0, we find

||T (α), σ1, σ2|| = || lim
p+q→∞

p+q∑
m,n=0

am,n αm,n, σ1, σ2||

≤ lim
p+q→∞

p+q∑
m,n=0

||am,n|| ||αm,n;σ1, σ2||

≤ lim
p+q→∞

p+q∑
m,n=0

||am,n|| exp(λm + µn)σ = ||α;σ, σ||,

where σ = σ(σ1, σ2).Thus T : (X, ||..., σ, σ||)→ (X, ||..., σ1, σ2||) is continuous and
as σ1, σ2 are arbitrary, it follows that T : X → X is continuous.
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Lastly we prove

Theorem 3.5. If T is a linear operator from X into itself, such that T and T−1

are
continuous then {T (δm,n); m,n ≥ 0} is a proper base in the closed subspace T [X]
of X. Conversely if {αm,n : m,n ≥ 0} is a proper base in a closed subspace
Y ofX, then there exists a continuous linear operator T : X → X , such that
T (δm,n) = αm,n .

Proof. Suppose that T is the linear operator mentioned in the hypothesis. Then
T [X] is a closed subspace of X.
Let T (δm,n) = αm,n , m, n ≥ 0 and letf ∈ T [X], then

T−1(f) =
∞∑

m,n=0

am,nδm,n

where am,n’s satisfy equation (3) . Now

p+q∑
m,n=0

am,nδm,n → T−1(f) (14)

in X as p+ q →∞.
Now T is continuous and linear, and equation (14) implies

f =
∞∑

m,n=0

am,nαm,n (15)

Since equation (13) holds, then
∑
M(am,nαm,n, σ1, σ2) converges for every real and

positiveσ1, σ2and the representation of f in (15) is unique. Since T−1 is continuous.
We conclude that {αm,n : m,n ≥ 0} is a proper base for T [X].
Conversely: let {αm,n : m,n ≥ 0} be a proper base for a closed subspace Y of X
Hence equation (13) holds. Therefore by Theorem 3.4, there exists a continuous
linear operator T on X into itself, such that T (δm,n) = αm,n, m, n ≥ 0.
Now let f ∈ X, f 6= 0, then f is represented by equation (1) whose coefficients
am,n’s satisfy equation (3). Thus

T (f) =
∞∑

m,n=0

am,nαm,n 6= 0

Therefore T is one-to-one. Hence T is a continuous algebraic isomorphism from X
into X .Now apply the well known theorem of Banach ([1]) we find that T−1exists

and is continuous .Hence proof of the theorem is complete. �
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