A NOTE ON Ψ-BOUNDED SOLUTIONS FOR NON-HOMOGENEOUS MATRIX DIFFERENCE EQUATIONS

(COMMUNICATED BY AGACIK ZAFER)

G.SURESH KUMAR ${ }^{1}$, T.SRINIVASA RAO ${ }^{1}$ AND M.S.N.MURTY ${ }^{2, *}$

Abstract

This paper deals with obtaing necessary and sufficient conditions for the existence of at least one Ψ-bounded solution for the non-homogeneous matrix difference equation $X(n+1)=A(n) X(n) B(n)+F(n)$, where $F(n)$ is a Ψ-bounded matrix valued function on \mathbb{Z}^{+}. Finally, we prove a result relating to the asymptotic behavior of the Ψ-bounded solutions of this equation on \mathbb{Z}^{+}.

1. Introduction

The theory of difference equations is a lot richer than the corresponding theory of differential equations. Many authors have studied several problems related to difference equations, such as existence and uniqueness theorem [11], transmission of information [6], signal processing, oscillation [16], control and dynamic systems $[10,14]$. The application of theory of difference equations is already extended to various fields such as numerical analysis, finite element techniques, control theory and computer science $[1,2,8]$. This paper deals with the linear matrix difference equation

$$
\begin{equation*}
X(n+1)=A(n) X(n) B(n)+F(n), \tag{1.1}
\end{equation*}
$$

where $A(n), B(n)$, and $F(n)$ are $m \times m$ matrix-valued functions on $\mathbb{Z}^{+}=\{1,2, \ldots\}$.

The Ψ-bounded solutions for system of difference equations were developed by Han and Hong [9], Diamandescu [3, 5]. The existence and uniqueness of solutions of matrix difference equation (1.1) was studied by Murty, Anand and Lakshmi [11]. Murty and Suresh Kumar [12, 13] and Dimandescu [4] obtained results on Ψ-bounded solutions for matrix Lyapunov systems. Recently in [15], we obtained a necessary and sufficient condition for the existence of Ψ-bounded solution of the matrix difference equation (1.1), provided $F(n)$ is Ψ-summable in \mathbb{Z}.

The aim of this paper is to provide a necessary and sufficient condition for the existence of Ψ-bounded solution of the non homogeneous matrix difference equation (1.1) via Ψ-bounded sequences. The introduction of the matrix function Ψ permits

[^0]to obtain a mixed asymptotic behavior of the components of the solutions. Here, Ψ is a matrix-valued function. This paper include the results of Diamandescu[5] as a particular case when $B=I, X$ and F are column vectors.

2. Preliminaries

In this section we present some basic definitions, notations and results which are useful for later discussion.

Let \mathbb{R}^{m} be the Euclidean m-space. For $u=\left(u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right)^{T} \in \mathbb{R}^{m}$, let $\|u\|=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|,\left|u_{3}\right|, \ldots,\left|u_{m}\right|\right\}$ be the norm of u. Let $\mathbb{R}^{m \times m}$ be the linear space of all $m \times m$ real valued matrices. For an $m \times m$ real matrix $A=\left[a_{i j}\right]$, we use the matrix norm $|A|=\sup _{\|u\| \leq 1}\|A u\|$.

Let $\Psi_{k}: \mathbb{Z}^{+} \rightarrow \mathbb{R}-\{0\}(\mathbb{R}-\{0\}$ is the set of all nonzero real numbers), $k=1,2, \ldots m$, and let

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots, \Psi_{m}\right]
$$

Then the matrix $\Psi(n)$ is an invertible square matrix of order m, for all $n \in \mathbb{Z}^{+}$.
Definition 2.1. A matrix function $X(n)$ is said to be Ψ-bounded solution of (1.1) if $X(n)$ satisfies the equation (1.1) and also $\Psi(n) X(n)$ is bounded for all $n \in \mathbb{Z}^{+}$.

Definition 2.2. [7] Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, then the Kronecker product of A and B is written as $A \otimes B$ and is defined to be the partitioned matrix

$$
A \otimes B=\left[\begin{array}{cccccc}
a_{11} B & a_{12} B & . & . & . & a_{1 n} B \\
a_{21} B & a_{22} B & . & . & . & a_{2 n} B \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{m 1} B & a_{m 2} B & . & . & . & a_{m n} B
\end{array}\right]
$$

which is an $m p \times n q$ matrix and in $\mathbb{R}^{m p \times n q}$.
Definition 2.3. [7] Let $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$, then the vectorization operator $V e c: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{m n}$ is defined as

$$
\hat{A}=V e c A=\left[\begin{array}{c}
A_{.1} \\
A_{.2} \\
\cdot \\
\cdot \\
A_{. n}
\end{array}\right] \text {, where } A_{. j}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\cdot \\
\cdot \\
a_{m j}
\end{array}\right],(1 \leq j \leq n)
$$

Lemma 2.1. The vectorization operator $V e c: \mathbb{R}^{m \times m} \rightarrow \mathbb{R}^{m^{2}}$, is a linear and one-to-one operator. In addition, Vec and Vec ${ }^{-1}$ are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is immediate. Now, for $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times m}$, we have

$$
\|V e c(A)\|=\max _{1 \leq i, j \leq m}\left\{\left|a_{i j}\right|\right\} \leq \max _{1 \leq i \leq m}\left\{\sum_{j=1}^{m}\left|a_{i j}\right|\right\}=|A| .
$$

Thus, the vectorization operator is continuous and $\|V e c\| \leq 1$.
In addition, for $A=I_{m}$ (identity $m \times m$ matrix) we have $\left\|\operatorname{Vec}\left(I_{m}\right)\right\|=1=\left|I_{m}\right|$ and then $\|V e c\|=1$.

Obviously, the inverse of the vectorization operator, $V e c^{-1}: \mathbb{R}^{m^{2}} \rightarrow \mathbb{R}^{m \times m}$, is defined by

$$
\operatorname{Vec}^{-1}(u)=\left[\begin{array}{cccccc}
u_{1} & u_{m+1} & . & . & . & u_{m^{2}-m+1} \\
u_{2} & u_{m+2} & . & . & . & u_{m^{2}-m+2} \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
u_{m} & u_{2 m} & . & . & . & u_{m^{2}}
\end{array}\right]
$$

where $u=\left(u_{1}, u_{2}, u_{3}, \ldots ., u_{m^{2}}\right)^{T} \in \mathbb{R}^{m^{2}}$. We have

$$
\left|V e c^{-1}(u)\right|=\max _{1 \leq i \leq m}\left\{\sum_{j=0}^{m-1}\left|u_{m j+i}\right|\right\} \leq m \max _{1 \leq i \leq m}\left\{\left|u_{i}\right|\right\}=m\|u\|
$$

Thus, $V e c^{-1}$ is a continuous operator. Also, if we take $u=V e c A$ in the above inequality, then the following inequality holds

$$
|A| \leq m\|V e c A\|
$$

for every $A \in \mathbb{R}^{m \times m}$.
Regarding properties and rules for Kronecker product of matrices we refer to [7].
Now by applying the Vec operator to the linear nonhomogeneous matrix difference equation (1.1) and using Kronecker product properties, we have

$$
\begin{equation*}
\hat{X}(n+1)=G(n) \hat{X}(n)+\hat{F}(n), \tag{2.1}
\end{equation*}
$$

where $G(n)=B^{T}(n) \otimes A(n)$ is a $m^{2} \times m^{2}$ matrix and $\hat{F}(n)=V e c F(n)$ is a column matrix of order m^{2}. The equation (2.1) is called the Kronecker product difference equation associated with (1.1).
The corresponding homogeneous difference equation of (2.1) is

$$
\begin{equation*}
\hat{X}(n+1)=G(n) \hat{X}(n) \tag{2.2}
\end{equation*}
$$

Definition 2.4. [3] A function $\phi: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m}$ is said to be Ψ - bounded on \mathbb{Z}^{+}if $\Psi(n) \phi(n)$ is bounded on \mathbb{Z}^{+}(i.e., there exists $L>0$ such that $\|\Psi(n) \phi(n)\| \leq L$, for all $n \in \mathbb{Z}^{+}$).

Extend this definition for matrix functions.
Definition 2.5. A matrix function $F: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m \times m}$ is said to be Ψ-bounded on \mathbb{Z}^{+}if the matrix function ΨF is bounded on \mathbb{Z}^{+}(i.e., there exists $L>0$ such that $|\Psi(n) F(n)| \leq L$, for all $\left.n \in \mathbb{Z}^{+}\right)$.

Now we shall assume that $A(n)$ and $B(n)$ are invertable $m \times m$ matrices on \mathbb{Z}^{+} and $F(n)$ is a Ψ-bounded matrix function on \mathbb{Z}^{+}.

The following lemmas play a vital role in the proof of main result.
Lemma 2.2. The matrix function $F: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m \times m}$ is Ψ-bounded on \mathbb{Z}^{+}if and only if the vector function $\operatorname{VecF}(n)$ is $I_{m} \otimes \Psi$-bounded on \mathbb{Z}^{+}.

Proof. From the proof of Lemma 2.1, it follows that

$$
\frac{1}{m}|A| \leq\|V e c A\|_{\mathbb{R}^{m^{2}}} \leq|A|
$$

for every $A \in \mathbb{R}^{m \times m}$.

Put $A=\Psi(n) F(n)$ in the above inequality, we have

$$
\begin{equation*}
\frac{1}{m}|\Psi(n) F(n)| \leq\left\|\left(I_{m} \otimes \Psi(n)\right) . V e c F(n)\right\|_{\mathbb{R}^{m^{2}}} \leq|\Psi(n) F(n)| \tag{2.3}
\end{equation*}
$$

$n \in \mathbb{Z}^{+}$, for all matrix functions $F(n)$.
Suppose that $F(n)$ is Ψ-bounded on \mathbb{Z}^{+}. From (2.3)

$$
\left\|\left(I_{m} \otimes \Psi(n)\right) . V e c F(n)\right\|_{\mathbb{R}^{m^{2}}} \leq|\Psi(n) F(n)|
$$

From Definitions 2.4 and 2.5, $\hat{F}(n)$ is $I_{m} \otimes \Psi$-bounded on \mathbb{Z}^{+}.
Conversely, suppose that $\hat{F}(n)$ is $I_{m} \otimes \Psi$-bounded on \mathbb{Z}^{+}. Again from (2.3), we have

$$
|\Psi(n) F(n)| \leq m\left\|\left(I_{m} \otimes \Psi(n)\right) \cdot V e c F(n)\right\|_{\mathbb{R}^{m^{2}}}
$$

From, Definitions 2.4 and 2.5, $F(n)$ is Ψ-bounded on \mathbb{Z}^{+}. Now the proof is complete.

Lemma 2.3. Let $Y(n)$ and $Z(n)$ be the fundamental matrices for the matrix difference equations

$$
\begin{equation*}
X(n+1)=A(n) X(n), \quad n \in \mathbb{Z}^{+} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
X(n+1)=B^{T}(n) X(n), \quad n \in \mathbb{Z}^{+} \tag{2.5}
\end{equation*}
$$

respectively. Then the matrix $Z(n) \otimes Y(n)$ is a fundamental matrix of (2.2).
Proof. Consider

$$
\begin{aligned}
Z(n+1) \otimes Y(n+1) & =B^{T}(n) Z(n) \otimes A(n) Y(n) \\
& =\left(B^{T}(n) \otimes A(n)\right)(Z(n) \otimes Y(n)) \\
& =G(n)(Z(n) \otimes Y(n))
\end{aligned}
$$

for all $n \in \mathbb{Z}^{+}$.
On the other hand, the matrix $Z(n) \otimes Y(n)$ is an invertible matrix for all $n \in \mathbb{Z}^{+}$ (because $Z(n)$ and $Y(n)$ are invertible matrices for all $n \in \mathbb{Z}^{+}$).

Let \mathbf{X}_{1} denote the subspace of $\mathbb{R}^{n \times n}$ consisting of all matrices which are values of Ψ-bounded solution of $X(n+1)=A(n) X(n) B(n)$ on \mathbb{Z}^{+}at $n=1$ and let \mathbf{X}_{2} an arbitrary fixed subspace of $\mathbb{R}^{n \times n}$, supplementary to \mathbf{X}_{1}. Let P_{1}, P_{2} denote the corresponding projections of $\mathbb{R}^{n \times n}$ onto $\mathbf{X}_{1}, \mathbf{X}_{2}$ respectively.

Then $\overline{\mathbf{X}}_{1}$ denote the subspace of $\mathbb{R}^{n^{2}}$ consisting of all vectors which are values of $I_{n} \otimes \Psi$-bounded solution of (2.2) on \mathbb{Z}^{+}at $n=1$ and $\overline{\mathbf{X}}_{2}$ a fixed subspace of $\mathbb{R}^{n^{2}}$, supplementary to $\overline{\mathbf{X}}_{1}$. Let Q_{1}, Q_{2} denote the corresponding projections of $\mathbb{R}^{n^{2}}$ onto $\overline{\mathbf{X}}_{1}, \overline{\mathbf{X}}_{2}$ respectively.

Theorem 2.1. Let $Y(n)$ and $Z(n)$ be the fundamental matrices for the systems (2.4) and (2.5). If

$$
\begin{align*}
\hat{X}(n)= & \sum_{k=1}^{n-1}(Z(n) \otimes Y(n)) Q_{1}\left(Z^{-1}(k+1) \otimes Y^{-1}(k+1)\right) \hat{F}(k) \\
& -\sum_{k=1}^{\infty}(Z(n) \otimes Y(n)) Q_{2}\left(Z^{-1}(k+1) \otimes Y^{-1}(k+1)\right) \hat{F}(k) \tag{2.6}
\end{align*}
$$

is convergent, then it is a solution of (2.1) on \mathbb{Z}^{+}.

Proof. It is easily seen that $\hat{X}(n)$ is the solution of (2.1) on \mathbb{Z}^{+}.

The following theorems are useful in the proofs of our main results.
Theorem 2.2. [5] The equation

$$
\begin{equation*}
x(n+1)=A(n) x(n)+f(n) \tag{2.7}
\end{equation*}
$$

has at least one Ψ-bounded solution on $N=\{1,2, \ldots\}$ for every Ψ-bounded sequence f on N if and only if there is a positive constant K such that, for all $n \in N$,

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left|\Psi(n) Y(n) P_{1} Y^{-1}(k+1) \Psi^{-1}(k)\right|+\sum_{k=n}^{\infty}\left|\Psi(n) Y(n) P_{2} Y^{-1}(k+1) \Psi^{-1}(k)\right| \leq K \tag{2.8}
\end{equation*}
$$

Theorem 2.3. [5] Suppose that:
(1) The fundamental matrix $Y(n)$ of $x(n+1)=A(n) x(n)$ satisfies the inequality (2.8), for all $n \geq 1$, where K is positive constant.
(2) The matrix Ψ satisfies the condition $\left|\Psi(n) \Psi^{-1}(n+1)\right| \leq T$, for all $n \in N$, where T is positive constant.
(3) The Ψ-bounded function $f: N \rightarrow \mathbb{R}^{m}$ is such that $\lim _{n \rightarrow \infty}\|\Psi(n) f(n)\|=0$.

Then, every Ψ-bounded solution $x(n)$ of (2.7) satisfies

$$
\lim _{n \rightarrow \infty}\|\Psi(n) x(n)\|=0
$$

3. Main ReSUlts

Our first theorem is as follows.
Theorem 3.1. Let $A(n)$ and $B(n)$ be bounded matrices on \mathbb{Z}^{+}, then (1.1) has at least one Ψ-bounded solution on \mathbb{Z}^{+}for every Ψ-bounded matrix function $F: \mathbb{Z}^{+} \rightarrow$ $\mathbb{R}^{m \times m}$ on \mathbb{Z}^{+}if and only if there exists a positive constant K such that

$$
\begin{align*}
& \sum_{k=1}^{n-1}\left|(Z(n) \otimes \Psi(n) Y(n)) Q_{1}\left(Z^{-1}(k+1) \otimes Y^{-1}(k+1) \Psi^{-1}(k)\right)\right| \tag{3.1}\\
& +\sum_{k=n}^{\infty}\left|(Z(n) \otimes \Psi(n) Y(n)) Q_{2}\left(Z^{-1}(k+1) \otimes Y^{-1}(k+1) \Psi^{-1}(k)\right)\right| \leq K
\end{align*}
$$

Proof. Suppose that the equation (1.1) has at least one Ψ-bounded solution on \mathbb{Z}^{+}for every Ψ-bounded matrix function $F: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m \times m}$. Let $\hat{F}: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m^{2}}$ be $I_{m} \otimes \Psi$-bounded function on \mathbb{Z}^{+}. From Lemma 2.2, it follows that the matrix function $F(n)=V e c^{-1} \hat{F}(n)$ is Ψ - bounded matrix function on \mathbb{Z}^{+}. From the hypothesis, the system (1.1) has at least one Ψ - bounded solution $X(n)$ on \mathbb{Z}^{+}. From Lemma 2.2, it follows that the vector valued function $\hat{X}(n)=\operatorname{Vec} X(n)$ is a $I_{m} \otimes \Psi$-bounded solution of (2.1) on \mathbb{Z}^{+}.

Thus, equation (2.1) has at least one $I_{m} \otimes \Psi$-bounded solution on \mathbb{Z}^{+}for every $I_{m} \otimes \Psi$-bounded function \hat{F} on \mathbb{Z}^{+}. From Theorem 2.2 , there exists a positive
number K, the fundamental matrix $U(n)$ of (2.2) satisfies

$$
\begin{aligned}
& \sum_{k=1}^{n-1}\left|\left(I_{m} \otimes \Psi(n)\right) U(n) Q_{1} T^{-1}(k+1)\left(I_{m} \otimes \Psi(k)\right)\right| \\
& \quad+\sum_{k=n}^{\infty}\left|\left(I_{m} \otimes \Psi(n)\right) U(n) Q_{2} T^{-1}(k+1)\left(I_{m} \otimes \Psi(k)\right)\right| \leq K
\end{aligned}
$$

From Lemma 2.3, $U(n)=Z(n) \otimes Y(n)$ and using Kronecker product properties, (3.1) holds. Conversely suppose that (3.1) holds for some $K>0$.

Let $F: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{n \times n}$ be a Ψ-bounded matrix function on \mathbb{Z}^{+}. From Lemma 2.2, it follows that the vector valued function $\hat{F}(n)=\operatorname{VecF}(n)$ is a $I_{m} \otimes \Psi$-bounded function on \mathbb{Z}^{+}.

Since $A(n), B(n)$ are invertible, then $G(n)=B^{T}(n) \otimes A(n)$ is also invertible. Now from Theorem 2.2, the difference equation (2.1) has at least one $I_{m} \otimes \Psi-$ bounded solution on \mathbb{Z}^{+}. Let $x(n)$ be this solution.

From Lemma 2.2, it follows that the matrix function $X(n)=V e c^{-1} x(n)$ is a Ψ-bounded solution of the equation (1.1) on \mathbb{Z}^{+}(because $\left.F(n)=V e c^{-1} \hat{F}(n)\right)$.

Thus, the matrix difference equation (1.1) has at least one Ψ-bounded solution on \mathbb{Z}^{+}for every Ψ-bounded matrix function F on \mathbb{Z}^{+}.

Finally, we give a result in which we will see that the asymptotic behavior of solution of (1.1) is completely determined by the asymptotic behavior of F.

Theorem 3.2. Suppose that:
(1) The fundamental matrices $Y(n)$ and $Z(n)$ of (2.4) and (2.5) satisfies:
(a) $\left|\Psi(n) \Psi^{-1}(n+1)\right| \leq M$, where M is a positive constant
(b) condition (3.1), for some $K>0$.
(2) The matrix function $F: \mathbb{Z}^{+} \rightarrow \mathbb{R}^{m \times m}$ is Ψ-bounded on \mathbb{Z}^{+}such that $\lim _{n \rightarrow \infty}|\Psi(n) F(n)|=0$.

Then, every Ψ-bounded solution X of (1.1) is such that

$$
\lim _{n \rightarrow \infty}|\Psi(n) X(n)|=0
$$

Proof. Let $X(n)$ be a Ψ-bounded solution of (1.1). From Lemma 2.2, the function $\hat{X}(n)=\operatorname{Vec} X(n)$ is a $I_{m} \otimes \Psi$ - bounded solution of the difference equation (2.1) on \mathbb{Z}^{+}. Also from hypothis (2), Lemma 2.2, the function $\hat{F}(n)$ is $I_{m} \otimes \Psi$-bounded on \mathbb{Z}^{+}and $\lim _{n \rightarrow \infty} \|\left(I_{m} \otimes \Psi(n)\right) \hat{F}(n) \mid=0$. From the Theorem 2.3, it follows that

$$
\lim _{n \rightarrow \infty}\left\|\left(I_{m} \otimes \Psi(n)\right) \hat{X}(n)\right\|=0
$$

Now, from the inequality (2.3) we have

$$
|\Psi(n) X(n)| \leq m\left\|\left(I_{m} \otimes \Psi(n)\right) \hat{X}(n)\right\|, n \in \mathbb{Z}^{+}
$$

and, then

$$
\lim _{n \rightarrow \infty}|\Psi(n) X(n)|=0
$$

The following examples illustrate the above theorems.

Example 3.1. Consider the matrix difference equation (1.1) with

$$
A(n)=\left[\begin{array}{cc}
\frac{n+1}{n} & 0 \\
0 & \frac{1}{3}
\end{array}\right], \quad B(n)=\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right] \text { and } F(n)=\left[\begin{array}{cc}
\frac{n(n+1)}{6^{n}} & 0 \\
0 & \frac{n^{2}}{2^{n}}
\end{array}\right] .
$$

Then,

$$
Y(n)=\left[\begin{array}{cc}
n & 0 \\
0 & 3^{1-n}
\end{array}\right] \text { and } Z(n)=\left[\begin{array}{cc}
2^{1-n} & 0 \\
0 & 1
\end{array}\right]
$$

are the fundamental matrices for (2.4) and (2.5) respectively. Consider

$$
\Psi(n)=\left[\begin{array}{cc}
\frac{3^{n}}{n+1} & 0 \\
0 & 1
\end{array}\right], \text { for all } n \in \mathbb{Z}^{+}
$$

If we take projections

$$
Q_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } Q_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

then condition (1) is satisfied with $M=1$ and $K=7.5$.
In addition, the hypothesis (2) of Theorem 3.2 is satisfied. Because

$$
|\Psi(n) F(n)|=\frac{n}{2^{n}} \leq \frac{1}{2}
$$

and

$$
\lim _{n \rightarrow \infty}|\Psi(n) F(n)|=\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0
$$

From Theorems 3.1 and 3.2 , the difference equation has at least one Ψ-bounded solution and every Ψ-bounded solution X of (1.1) is such that $\lim _{n \rightarrow \infty}|\Psi(n) X(n)|=0$.

Remark 3.1. In Theorem 3.2, if we do not have $\lim _{n \rightarrow \infty}|\Psi(n) F(n)|=0$, then the solution $X(n)$ of (1.1) may be such that $\lim _{n \rightarrow \infty}|\Psi(n) X(n)| \neq 0$.

The following example illustrates Remark 3.1, that the Theorem 3.2 fail if the matrix function F is Ψ-bounded and $\lim _{n \rightarrow \infty}|\Psi(n) F(n)| \neq 0$.

Example 3.2. Consider the matrix difference equation (1.1) with

$$
A(n)=\left[\begin{array}{cc}
\frac{n^{3}}{(n+1)^{3}} & 0 \\
0 & \frac{n}{n+1}
\end{array}\right], \quad B(n)=\left[\begin{array}{cc}
\frac{(n+1)^{2}}{n^{2}} & 0 \\
0 & \frac{n+1}{n}
\end{array}\right]
$$

and

$$
F(n)=\left[\begin{array}{cc}
\frac{2^{n}}{n+1} & \frac{3^{-n}}{(n+1)^{2}} \\
3^{-n}(n+1) & 3^{-n}
\end{array}\right] .
$$

Then,

$$
Y(n)=\left[\begin{array}{cc}
\frac{1}{n^{3}} & 0 \\
0 & \frac{1}{n}
\end{array}\right] \text { and } Z(n)=\left[\begin{array}{cc}
n^{2} & 0 \\
0 & n
\end{array}\right]
$$

are the fundamental matrices for (2.4) and (2.5) respectively. Consider

$$
\Psi(n)=\left[\begin{array}{cc}
(n+1) 2^{-n} & 0 \\
0 & \frac{3^{n}}{n+1}
\end{array}\right], \text { for all } n \in \mathbb{Z}^{+} .
$$

If we take projections

$$
Q_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } Q_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

then condition (1) is satisfied with $M=2$ and $K=2.5$. Also $|\Psi(n) F(n)|=1$, for $n \in \mathbb{Z}^{+}$. Therefore, F is Ψ-bounded on \mathbb{Z}^{+}and $\lim _{n \rightarrow \infty}|\Psi(n) F(n)|=1 \neq 0$.

The solutions of the equation (1.1) are

$$
X(n)=\left[\begin{array}{cc}
\frac{1}{n}\left(2^{n}-2+c_{1}\right) & \frac{1}{2 n^{2}}\left(1-3^{1-n}+2 c_{2}\right) \\
\frac{n}{5}\left(1-6^{1-n}+5 c_{3}\right) & \frac{1}{2}\left(1-3^{1-n}+2 c_{4}\right)
\end{array}\right]
$$

where c_{1}, c_{2}, c_{3} and c_{4} are arbitrary constants and

$$
\Psi(n) X(n)=\left[\begin{array}{cc}
\frac{n+1}{n}\left[1+2^{-n}\left(c_{1}-2\right)\right] & \frac{n+1}{2 n^{2}}\left[\left(2^{-n}\left(1+2 c_{2}\right)-3\left(6^{-n}\right)\right]\right. \\
\frac{n}{5(n+1)}\left[3^{n}\left(1+5 c_{3}\right)-6\left(2^{-n}\right)\right] & \frac{1}{2(n+1)}\left[3^{n}\left(1+2 c_{4}\right)-3\right]
\end{array}\right]
$$

It is easily seen that, there exist Ψ-bounded solutions of (1.1) for $c_{3}=-\frac{1}{5}$ and $c_{4}=-\frac{1}{2}$. But $\lim _{n \rightarrow \infty}|\Psi(n) X(n)| \neq 0$.

References

[1] Agarwal, R.P. : Difference Equations and Inequalities Theory Methods and Applications, Second edition, Marcel Dekker, New York, 2000.
[2] Agarwal, R.P. and Wong, P.J.Y. : Advanced Topics in Difference Equations, Kluwer, Dordrecht, 1997.
[3] Diamandescu, A. : Existence of Ψ - bounded solutions for linear difference equations on \mathbb{Z}, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2008(2008), No.26, 1-13.
[4] Diamandescu, A. : On Ψ - bounded solutions of a Lyapunov matrix differential equation, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2009(2009), No.17, 1-11.
[5] Diamandescu, A. : Existence of Ψ - bounded solutions for nonhomogeneous linear difference equations, Applied Mathematics E-Notes, Vol. 10 (2010), 94-102.
[6] Elaydi Saber, N. : An introduction to difference equations, Springer-Verlag, New York Inc., 2005.
[7] Graham, A. : Kronecker Products and Matrix Calculus ; With Applications, Ellis Horwood Ltd. England (1981).
[8] Hong, J. and Núñez, C. : The almost periodic type difference equations, Math. Comput.Modeling, Vol.28, (1998) 21-31.
[9] Han, Y. and Hong, J. : Existence of Ψ - bounded solutions for linear difference equations, Applied Mathematics Letters, Vol.20, (2007) 301-305.
[10] Kolla, S.R., Farison, J.B. : Techniques in reduced order dynamic compensator design for stability robustness of linear discrete time systems, Control and Dynamic systems, Vol.63, (1994), 77-128.
[11] Murty, K.N., Anand, P.V.S. and Lakshmi Prasannam, V. : First order difference systems existence and uniqueness, Proceedings of the American Mathematical Society, Vol.125, No. 12 (1997), 3533-3539.
[12] Murty, M.S.N. and Suresh Kumar, G. : On Ψ-Boundedness and Ψ-stability of matrix Lyapunov Systems, Journal of Applied Mathematics and Computing, Vol.26, (2008) 67-84.
[13] Murty, M.S.N. and Suresh Kumar, G. : On Ψ-Bounded solutions for non-homogeneous matrix Lyapunov systems on \mathbb{R}, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2009(2009), No.62, 1-12.
[14] Ogata, K. : Discrete time control systems, Printice Hall, Englewood Cliffs, NJ, 1987.
[15] Suresh Kumar, G., Appa Rao, B.V. and Murty, M.S.N. : Ψ-bounded solutions for nonhomogeneous matrix difference equations on \mathbb{Z}, Journal of Advanced Research in Applied Mathematics, Vol.3, No. 3 (2011), 21-31.
[16] Szafranski, Z. and Szmanda, B. : Oscilatory behavior of difference equations of second order, Journal of Mathematical Analysis and Applications, Vol.150, (1990), 414-424.

1 Department of Mathematics,
Koneru Lakshmaiah University,
Vaddeswaram, Guntur dt., A.P., India.
E-mail address: drgsk006@kluniversity.in, tsrao011@gmail.com
2 Department of Mathematics,
Acharya Nagarjuna University,
Nagarjuna Nagar-522510, Guntur dt., A.P., India.
E-mail address: drmsn2002@gmail.com

[^0]: ${ }^{0} 2000$ Mathematics Subject Classification: 39A10, 39A11.
 Keywords and phrases. difference equations, fundamental matrix, Ψ-bounded, Ψ-summable, Kronecker product.
 (C) 2012 Universiteti i Prishtinës, Prishtinë, Kosovë.

 Submitted September 7, 2011. Published December 23, 2012.

