BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 5 Issue 1 (2013), Pages 1-9

A NOTE ON Ψ -BOUNDED SOLUTIONS FOR NON-HOMOGENEOUS MATRIX DIFFERENCE EQUATIONS

(COMMUNICATED BY AGACIK ZAFER)

G.SURESH KUMAR¹, T.SRINIVASA RAO¹ AND M.S.N.MURTY^{2,*}

ABSTRACT. This paper deals with obtaing necessary and sufficient conditions for the existence of at least one Ψ -bounded solution for the non-homogeneous matrix difference equation X(n+1) = A(n)X(n)B(n) + F(n), where F(n) is a Ψ -bounded matrix valued function on \mathbb{Z}^+ . Finally, we prove a result relating to the asymptotic behavior of the Ψ -bounded solutions of this equation on \mathbb{Z}^+ .

1. INTRODUCTION

The theory of difference equations is a lot richer than the corresponding theory of differential equations. Many authors have studied several problems related to difference equations, such as existence and uniqueness theorem [11], transmission of information [6], signal processing, oscillation [16], control and dynamic systems [10, 14]. The application of theory of difference equations is already extended to various fields such as numerical analysis, finite element techniques, control theory and computer science [1, 2, 8]. This paper deals with the linear matrix difference equation

$$X(n+1) = A(n)X(n)B(n) + F(n),$$
(1.1)

where A(n), B(n), and F(n) are $m \times m$ matrix-valued functions on $\mathbb{Z}^+ = \{1, 2, \ldots\}.$

The Ψ -bounded solutions for system of difference equations were developed by Han and Hong [9], Diamandescu [3, 5]. The existence and uniqueness of solutions of matrix difference equation (1.1) was studied by Murty, Anand and Lakshmi [11]. Murty and Suresh Kumar [12, 13] and Dimandescu [4] obtained results on Ψ -bounded solutions for matrix Lyapunov systems. Recently in [15], we obtained a necessary and sufficient condition for the existence of Ψ -bounded solution of the matrix difference equation (1.1), provided F(n) is Ψ -summable in \mathbb{Z} .

The aim of this paper is to provide a necessary and sufficient condition for the existence of Ψ -bounded solution of the non homogeneous matrix difference equation (1.1) via Ψ -bounded sequences. The introduction of the matrix function Ψ permits

⁰2000 Mathematics Subject Classification: 39A10, 39A11.

Keywords and phrases. difference equations, fundamental matrix, Ψ -bounded, Ψ -summable, Kronecker product.

^{© 2012} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 7, 2011. Published December 23, 2012.

to obtain a mixed asymptotic behavior of the components of the solutions. Here, Ψ is a matrix-valued function. This paper include the results of Diamandescu[5] as a particular case when B = I, X and F are column vectors.

2. Preliminaries

In this section we present some basic definitions, notations and results which are useful for later discussion.

Let \mathbb{R}^m be the Euclidean *m*-space. For $u = (u_1, u_2, u_3, \ldots, u_m)^T \in \mathbb{R}^m$, let $||u|| = \max\{|u_1|, |u_2|, |u_3|, \ldots, |u_m|\}$ be the norm of u. Let $\mathbb{R}^{m \times m}$ be the linear space of all $m \times m$ real valued matrices. For an $m \times m$ real matrix $A = [a_{ij}]$, we use the matrix norm $|A| = \sup_{||u|| \leq 1} ||Au||$.

Let $\Psi_k : \mathbb{Z}^+ \to \mathbb{R} - \{0\}$ $(\mathbb{R}^- - \{0\}$ is the set of all nonzero real numbers), $k = 1, 2, \dots, m$, and let

$$\Psi = \operatorname{diag}[\Psi_1, \Psi_2, \dots, \Psi_m].$$

Then the matrix $\Psi(n)$ is an invertible square matrix of order m, for all $n \in \mathbb{Z}^+$.

Definition 2.1. A matrix function X(n) is said to be Ψ -bounded solution of (1.1) if X(n) satisfies the equation (1.1) and also $\Psi(n)X(n)$ is bounded for all $n \in \mathbb{Z}^+$.

Definition 2.2. [7] Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$, then the Kronecker product of A and B is written as $A \otimes B$ and is defined to be the partitioned matrix

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}B & a_{m2}B & \dots & \vdots & a_{mn}B \end{bmatrix}$$

which is an $mp \times nq$ matrix and in $\mathbb{R}^{mp \times nq}$.

Definition 2.3. [7] Let $A = [a_{ij}] \in \mathbb{R}^{m \times n}$, then the vectorization operator $Vec : \mathbb{R}^{m \times n} \to \mathbb{R}^{mn}$ is defined as

$$\hat{A} = VecA = \begin{bmatrix} A_{.1} \\ A_{.2} \\ . \\ . \\ A_{.n} \end{bmatrix}, \text{ where } A_{.j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ . \\ . \\ a_{mj} \end{bmatrix}, (1 \le j \le n).$$

Lemma 2.1. The vectorization operator $Vec : \mathbb{R}^{m \times m} \to \mathbb{R}^{m^2}$, is a linear and oneto-one operator. In addition, Vec and Vec^{-1} are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is immediate. Now, for $A = [a_{ij}] \in \mathbb{R}^{m \times m}$, we have

$$\|Vec(A)\| = \max_{1 \le i,j \le m} \{|a_{ij}|\} \le \max_{1 \le i \le m} \left\{ \sum_{j=1}^m |a_{ij}| \right\} = |A|.$$

Thus, the vectorization operator is continuous and $||Vec|| \leq 1$.

In addition, for $A = I_m$ (identity $m \times m$ matrix) we have $||Vec(I_m)|| = 1 = |I_m|$ and then ||Vec|| = 1. Obviously, the inverse of the vectorization operator, $Vec^{-1}: \mathbb{R}^{m^2} \to \mathbb{R}^{m \times m}$, is defined by

$$Vec^{-1}(u) = \begin{bmatrix} u_1 & u_{m+1} & \cdots & u_{m^2-m+1} \\ u_2 & u_{m+2} & \cdots & \cdots & u_{m^2-m+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ u_m & u_{2m} & \vdots & \cdots & u_{m^2} \end{bmatrix}$$

where $u = (u_1, u_2, u_3,, u_{m^2})^T \in \mathbb{R}^{m^2}$. We have

$$|Vec^{-1}(u)| = \max_{1 \le i \le m} \left\{ \sum_{j=0}^{m-1} |u_{mj+i}| \right\} \le m \max_{1 \le i \le m} \{|u_i|\} = m ||u||.$$

Thus, Vec^{-1} is a continuous operator. Also, if we take u = VecA in the above inequality, then the following inequality holds

$$|A| \le m \|VecA\|,$$

for every $A \in \mathbb{R}^{m \times m}$.

Regarding properties and rules for Kronecker product of matrices we refer to [7].

Now by applying the Vec operator to the linear nonhomogeneous matrix difference equation (1.1) and using Kronecker product properties, we have

$$\hat{X}(n+1) = G(n)\hat{X}(n) + \hat{F}(n),$$
(2.1)

where $G(n) = B^T(n) \otimes A(n)$ is a $m^2 \times m^2$ matrix and $\hat{F}(n) = VecF(n)$ is a column matrix of order m^2 . The equation (2.1) is called the Kronecker product difference equation associated with (1.1).

The corresponding homogeneous difference equation of (2.1) is

$$\ddot{X}(n+1) = G(n)\ddot{X}(n).$$
 (2.2)

Definition 2.4. [3] A function $\phi : \mathbb{Z}^+ \to \mathbb{R}^m$ is said to be Ψ - bounded on \mathbb{Z}^+ if $\Psi(n)\phi(n)$ is bounded on \mathbb{Z}^+ (i.e., there exists L > 0 such that $\|\Psi(n)\phi(n)\| \leq L$, for all $n \in \mathbb{Z}^+$).

Extend this definition for matrix functions.

Definition 2.5. A matrix function $F : \mathbb{Z}^+ \to \mathbb{R}^{m \times m}$ is said to be Ψ -bounded on \mathbb{Z}^+ if the matrix function ΨF is bounded on \mathbb{Z}^+ (i.e., there exists L > 0 such that $|\Psi(n)F(n)| \leq L$, for all $n \in \mathbb{Z}^+$).

Now we shall assume that A(n) and B(n) are invertable $m \times m$ matrices on \mathbb{Z}^+ and F(n) is a Ψ -bounded matrix function on \mathbb{Z}^+ .

The following lemmas play a vital role in the proof of main result.

Lemma 2.2. The matrix function $F : \mathbb{Z}^+ \to \mathbb{R}^{m \times m}$ is Ψ -bounded on \mathbb{Z}^+ if and only if the vector function VecF(n) is $I_m \otimes \Psi$ -bounded on \mathbb{Z}^+ .

Proof. From the proof of Lemma 2.1, it follows that

$$\frac{1}{m}|A| \le \|VecA\|_{\mathbb{R}^{m^2}} \le |A|$$

for every $A \in \mathbb{R}^{m \times m}$.

Put $A = \Psi(n)F(n)$ in the above inequality, we have

$$\frac{1}{m} \left| \Psi(n)F(n) \right| \le \left\| (I_m \otimes \Psi(n)). VecF(n) \right\|_{\mathbb{R}^{m^2}} \le \left| \Psi(n)F(n) \right|, \tag{2.3}$$

 $n \in \mathbb{Z}^+$, for all matrix functions F(n).

Suppose that F(n) is Ψ -bounded on \mathbb{Z}^+ . From (2.3)

$$\left\| (I_m \otimes \Psi(n)). VecF(n) \right\|_{\mathbb{R}^{m^2}} \le \left| \Psi(n)F(n) \right|,$$

From Definitions 2.4 and 2.5, $\hat{F}(n)$ is $I_m \otimes \Psi$ -bounded on \mathbb{Z}^+ .

Conversely, suppose that $\hat{F}(n)$ is $I_m \otimes \Psi$ -bounded on \mathbb{Z}^+ . Again from (2.3), we have

$$|\Psi(n)F(n)| \le m \, \|(I_m \otimes \Psi(n)). VecF(n)\|_{\mathbb{R}^{m^2}}.$$

From, Definitions 2.4 and 2.5, F(n) is Ψ -bounded on \mathbb{Z}^+ . Now the proof is complete.

Lemma 2.3. Let Y(n) and Z(n) be the fundamental matrices for the matrix difference equations

$$X(n+1) = A(n)X(n), \ n \in \mathbb{Z}^+$$
 (2.4)

and

$$X(n+1) = B^T(n)X(n), \ n \in \mathbb{Z}^+$$
 (2.5)

respectively. Then the matrix $Z(n) \otimes Y(n)$ is a fundamental matrix of (2.2).

Proof. Consider

$$Z(n+1) \otimes Y(n+1) = B^T(n)Z(n) \otimes A(n)Y(n)$$

= $(B^T(n) \otimes A(n))(Z(n) \otimes Y(n))$
= $G(n)(Z(n) \otimes Y(n)),$

for all $n \in \mathbb{Z}^+$.

On the other hand, the matrix $Z(n) \otimes Y(n)$ is an invertible matrix for all $n \in \mathbb{Z}^+$ (because Z(n) and Y(n) are invertible matrices for all $n \in \mathbb{Z}^+$).

Let \mathbf{X}_1 denote the subspace of $\mathbb{R}^{n \times n}$ consisting of all matrices which are values of Ψ -bounded solution of X(n+1) = A(n)X(n)B(n) on \mathbb{Z}^+ at n = 1 and let \mathbf{X}_2 an arbitrary fixed subspace of $\mathbb{R}^{n \times n}$, supplementary to \mathbf{X}_1 . Let P_1 , P_2 denote the corresponding projections of $\mathbb{R}^{n \times n}$ onto \mathbf{X}_1 , \mathbf{X}_2 respectively.

Then $\overline{\mathbf{X}}_1$ denote the subspace of \mathbb{R}^{n^2} consisting of all vectors which are values of $I_n \otimes \Psi$ -bounded solution of (2.2) on \mathbb{Z}^+ at n = 1 and $\overline{\mathbf{X}}_2$ a fixed subspace of \mathbb{R}^{n^2} , supplementary to $\overline{\mathbf{X}}_1$. Let Q_1 , Q_2 denote the corresponding projections of \mathbb{R}^{n^2} onto $\overline{\mathbf{X}}_1$, $\overline{\mathbf{X}}_2$ respectively.

Theorem 2.1. Let Y(n) and Z(n) be the fundamental matrices for the systems (2.4) and (2.5). If

$$\hat{X}(n) = \sum_{k=1}^{n-1} (Z(n) \otimes Y(n)) Q_1(Z^{-1}(k+1) \otimes Y^{-1}(k+1)) \hat{F}(k) - \sum_{k=1}^{\infty} (Z(n) \otimes Y(n)) Q_2(Z^{-1}(k+1) \otimes Y^{-1}(k+1)) \hat{F}(k)$$
(2.6)

is convergent, then it is a solution of (2.1) on \mathbb{Z}^+ .

Proof. It is easily seen that $\hat{X}(n)$ is the solution of (2.1) on \mathbb{Z}^+ .

The following theorems are useful in the proofs of our main results.

Theorem 2.2. [5] The equation

$$x(n+1) = A(n)x(n) + f(n)$$
(2.7)

has at least one Ψ -bounded solution on $N = \{1, 2, ...\}$ for every Ψ -bounded sequence f on N if and only if there is a positive constant K such that, for all $n \in N$,

$$\sum_{k=1}^{n-1} |\Psi(n)Y(n)P_1Y^{-1}(k+1)\Psi^{-1}(k)| + \sum_{k=n}^{\infty} |\Psi(n)Y(n)P_2Y^{-1}(k+1)\Psi^{-1}(k)| \le K.$$
(2.8)

Theorem 2.3. [5] Suppose that:

- (1) The fundamental matrix Y(n) of x(n+1) = A(n)x(n) satisfies the inequality (2.8), for all $n \ge 1$, where K is positive constant.
- (2) The matrix Ψ satisfies the condition $|\Psi(n)\Psi^{-1}(n+1)| \leq T$, for all $n \in N$, where T is positive constant.
- (3) The Ψ -bounded function $f: N \to \mathbb{R}^m$ is such that $\lim_{n \to \infty} \|\Psi(n)f(n)\| = 0$.

Then, every Ψ -bounded solution x(n) of (2.7) satisfies

$$\lim_{n \to \infty} \|\Psi(n)x(n)\| = 0.$$

3. Main results

Our first theorem is as follows.

Theorem 3.1. Let A(n) and B(n) be bounded matrices on \mathbb{Z}^+ , then (1.1) has at least one Ψ -bounded solution on \mathbb{Z}^+ for every Ψ -bounded matrix function $F : \mathbb{Z}^+ \to \mathbb{R}^{m \times m}$ on \mathbb{Z}^+ if and only if there exists a positive constant K such that

$$\sum_{k=1}^{n-1} |(Z(n) \otimes \Psi(n)Y(n))Q_1(Z^{-1}(k+1) \otimes Y^{-1}(k+1)\Psi^{-1}(k))| + \sum_{k=n}^{\infty} |(Z(n) \otimes \Psi(n)Y(n))Q_2(Z^{-1}(k+1) \otimes Y^{-1}(k+1)\Psi^{-1}(k))| \le K.$$
(3.1)

Proof. Suppose that the equation (1.1) has at least one Ψ -bounded solution on \mathbb{Z}^+ for every Ψ -bounded matrix function $F : \mathbb{Z}^+ \to \mathbb{R}^{m \times m}$. Let $\hat{F} : \mathbb{Z}^+ \to \mathbb{R}^{m^2}$ be $I_m \otimes \Psi$ -bounded function on \mathbb{Z}^+ . From Lemma 2.2, it follows that the matrix function $F(n) = Vec^{-1}\hat{F}(n)$ is Ψ - bounded matrix function on \mathbb{Z}^+ . From the hypothesis, the system (1.1) has at least one Ψ - bounded solution X(n) on \mathbb{Z}^+ . From Lemma 2.2, it follows that the vector valued function $\hat{X}(n) = VecX(n)$ is a $I_m \otimes \Psi$ -bounded solution of (2.1) on \mathbb{Z}^+ .

Thus, equation (2.1) has at least one $I_m \otimes \Psi$ -bounded solution on \mathbb{Z}^+ for every $I_m \otimes \Psi$ -bounded function \hat{F} on \mathbb{Z}^+ . From Theorem 2.2, there exists a positive

number K, the fundamental matrix U(n) of (2.2) satisfies

$$\sum_{k=1}^{n-1} |(I_m \otimes \Psi(n))U(n)Q_1T^{-1}(k+1)(I_m \otimes \Psi(k))| + \sum_{k=n}^{\infty} |(I_m \otimes \Psi(n))U(n)Q_2T^{-1}(k+1)(I_m \otimes \Psi(k))| \le K$$

From Lemma 2.3, $U(n) = Z(n) \otimes Y(n)$ and using Kronecker product properties, (3.1) holds. Conversely suppose that (3.1) holds for some K > 0.

Let $F : \mathbb{Z}^+ \to \mathbb{R}^{n \times n}$ be a Ψ -bounded matrix function on \mathbb{Z}^+ . From Lemma 2.2, it follows that the vector valued function $\hat{F}(n) = VecF(n)$ is a $I_m \otimes \Psi$ -bounded function on \mathbb{Z}^+ .

Since A(n), B(n) are invertible, then $G(n) = B^T(n) \otimes A(n)$ is also invertible. Now from Theorem 2.2, the difference equation (2.1) has at least one $I_m \otimes \Psi$ bounded solution on \mathbb{Z}^+ . Let x(n) be this solution.

From Lemma 2.2, it follows that the matrix function $X(n) = Vec^{-1}x(n)$ is a Ψ -bounded solution of the equation (1.1) on \mathbb{Z}^+ (because $F(n) = Vec^{-1}\hat{F}(n)$).

Thus, the matrix difference equation (1.1) has at least one Ψ -bounded solution on \mathbb{Z}^+ for every Ψ -bounded matrix function F on \mathbb{Z}^+ .

Finally, we give a result in which we will see that the asymptotic behavior of solution of (1.1) is completely determined by the asymptotic behavior of F.

Theorem 3.2. Suppose that:

(1) The fundamental matrices Y(n) and Z(n) of (2.4) and (2.5) satisfies:

(a) $|\Psi(n)\Psi^{-1}(n+1)| \leq M$, where M is a positive constant

(b) condition (3.1), for some K > 0.

(2) The matrix function $F : \mathbb{Z}^+ \to \mathbb{R}^{m \times m}$ is Ψ -bounded on \mathbb{Z}^+ such that $\lim_{n \to \infty} |\Psi(n)F(n)| = 0.$

Then, every Ψ -bounded solution X of (1.1) is such that

$$\lim_{n \to \infty} |\Psi(n)X(n)| = 0.$$

Proof. Let X(n) be a Ψ -bounded solution of (1.1). From Lemma 2.2, the function $\hat{X}(n) = VecX(n)$ is a $I_m \otimes \Psi$ - bounded solution of the difference equation (2.1) on \mathbb{Z}^+ . Also from hypothis (2), Lemma 2.2, the function $\hat{F}(n)$ is $I_m \otimes \Psi$ -bounded on \mathbb{Z}^+ and $\lim_{n \to \infty} ||(I_m \otimes \Psi(n))\hat{F}(n)| = 0$. From the Theorem 2.3, it follows that

$$\lim_{n \to \infty} \left\| \left(I_m \otimes \Psi(n) \right) \hat{X}(n) \right\| = 0.$$

Now, from the inequality (2.3) we have

$$|\Psi(n)X(n)| \le m \left\| (I_m \otimes \Psi(n)) \, \hat{X}(n) \right\|, n \in \mathbb{Z}^+$$

and, then

$$\lim_{n \to \infty} |\Psi(n)X(n)| = 0.$$

The following examples illustrate the above theorems.

Example 3.1. Consider the matrix difference equation (1.1) with

$$A(n) = \begin{bmatrix} \frac{n+1}{n} & 0\\ 0 & \frac{1}{3} \end{bmatrix}, \quad B(n) = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & 1 \end{bmatrix} \text{ and } F(n) = \begin{bmatrix} \frac{n(n+1)}{6^n} & 0\\ 0 & \frac{n^2}{2^n} \end{bmatrix}.$$

Then,

$$Y(n) = \begin{bmatrix} n & 0\\ 0 & 3^{1-n} \end{bmatrix}$$
 and $Z(n) = \begin{bmatrix} 2^{1-n} & 0\\ 0 & 1 \end{bmatrix}$

are the fundamental matrices for (2.4) and (2.5) respectively. Consider

$$\Psi(n) = \begin{bmatrix} \frac{3^n}{n+1} & 0\\ 0 & 1 \end{bmatrix}, \text{ for all } n \in \mathbb{Z}^+.$$

If we take projections

$$Q_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } Q_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

then condition (1) is satisfied with M = 1 and K = 7.5.

In addition, the hypothesis (2) of Theorem 3.2 is satisfied. Because

$$|\Psi(n)F(n)| = \frac{n}{2^n} \le \frac{1}{2}$$

and

$$\lim_{n \to \infty} |\Psi(n)F(n)| = \lim_{n \to \infty} \frac{n}{2^n} = 0.$$

From Theorems 3.1 and 3.2, the difference equation has at least one Ψ -bounded solution and every Ψ -bounded solution X of (1.1) is such that $\lim_{n \to \infty} |\Psi(n)X(n)| = 0$.

Remark 3.1. In Theorem 3.2, if we do not have $\lim_{n\to\infty} |\Psi(n)F(n)| = 0$, then the solution X(n) of (1.1) may be such that $\lim_{n\to\infty} |\Psi(n)X(n)| \neq 0$. The following example illustrates Remark 3.1, that the Theorem 3.2 fail if the

The following example illustrates Remark 3.1, that the Theorem 3.2 fail if the matrix function F is Ψ -bounded and $\lim_{n \to \infty} |\Psi(n)F(n)| \neq 0$.

Example 3.2. Consider the matrix difference equation (1.1) with

$$A(n) = \begin{bmatrix} \frac{n^3}{(n+1)^3} & 0\\ 0 & \frac{n}{n+1} \end{bmatrix}, \quad B(n) = \begin{bmatrix} \frac{(n+1)^2}{n^2} & 0\\ 0 & \frac{n+1}{n} \end{bmatrix}$$

and

$$F(n) = \begin{bmatrix} \frac{2^n}{n+1} & \frac{3^{-n}}{(n+1)^2} \\ 6^{-n}(n+1) & 3^{-n} \end{bmatrix}.$$

Then,

$$Y(n) = \begin{bmatrix} \frac{1}{n^3} & 0\\ 0 & \frac{1}{n} \end{bmatrix} \text{ and } Z(n) = \begin{bmatrix} n^2 & 0\\ 0 & n \end{bmatrix}$$

are the fundamental matrices for (2.4) and (2.5) respectively. Consider

$$\Psi(n) = \begin{bmatrix} (n+1)2^{-n} & 0\\ 0 & \frac{3^n}{n+1} \end{bmatrix}, \text{ for all } n \in \mathbb{Z}^+.$$

If we take projections

$$Q_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } Q_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

then condition (1) is satisfied with M = 2 and K = 2.5. Also $|\Psi(n)F(n)| = 1$, for $n \in \mathbb{Z}^+$. Therefore, F is Ψ -bounded on \mathbb{Z}^+ and $\lim_{n \to \infty} |\Psi(n)F(n)| = 1 \neq 0$.

The solutions of the equation (1.1) are

$$X(n) = \begin{bmatrix} \frac{1}{n}(2^n - 2 + c_1) & \frac{1}{2n^2}(1 - 3^{1-n} + 2c_2) \\ \frac{n}{5}(1 - 6^{1-n} + 5c_3) & \frac{1}{2}(1 - 3^{1-n} + 2c_4) \end{bmatrix},$$

where c_1, c_2, c_3 and c_4 are arbitrary constants and

$$\Psi(n)X(n) = \begin{bmatrix} \frac{n+1}{n} [1+2^{-n}(c_1-2)] & \frac{n+1}{2n^2} [(2^{-n}(1+2c_2)-3(6^{-n})]] \\ \frac{n}{5(n+1)} [3^n(1+5c_3)-6(2^{-n})] & \frac{1}{2(n+1)} [3^n(1+2c_4)-3] \end{bmatrix}.$$

It is easily seen that, there exist Ψ -bounded solutions of (1.1) for $c_3 = -\frac{1}{5}$ and $c_4 = -\frac{1}{2}$. But $\lim_{n \to \infty} |\Psi(n)X(n)| \neq 0$.

References

- Agarwal, R.P. : Difference Equations and Inequalities Theory Methods and Applications, Second edition, Marcel Dekker, New York, 2000.
- [2] Agarwal, R.P. and Wong, P.J.Y. : Advanced Topics in Difference Equations, Kluwer, Dordrecht, 1997.
- [3] Diamandescu, A. : Existence of Ψ bounded solutions for linear difference equations on Z, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2008(2008), No.26, 1-13.
- [4] Diamandescu, A. : On Ψ bounded solutions of a Lyapunov matrix differential equation, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2009(2009), No.17, 1-11.
- [5] Diamandescu, A.: Existence of Ψ bounded solutions for nonhomogeneous linear difference equations, Applied Mathematics E-Notes, Vol.10 (2010), 94-102.
- [6] Elaydi Saber, N.: An introduction to difference equations, Springer-Verlag, New York Inc., 2005.
- [7] Graham, A. : Kronecker Products and Matrix Calculus ; With Applications, Ellis Horwood Ltd. England (1981).
- [8] Hong, J. and Núñez, C. : The almost periodic type difference equations, Math. Comput.Modeling, Vol.28, (1998) 21-31.
- [9] Han, Y. and Hong, J. : Existence of Ψ bounded solutions for linear difference equations, Applied Mathematics Letters, Vol.20, (2007) 301-305.
- [10] Kolla, S.R., Farison, J.B. : Techniques in reduced order dynamic compensator design for stability robustness of linear discrete time systems, Control and Dynamic systems, Vol.63, (1994), 77-128.
- [11] Murty, K.N., Anand, P.V.S. and Lakshmi Prasannam, V. : First order difference systems existence and uniqueness, Proceedings of the American Mathematical Society, Vol.125, No.12 (1997), 3533-3539.
- [12] Murty, M.S.N. and Suresh Kumar, G. : On Ψ-Boundedness and Ψ-stability of matrix Lyapunov Systems, Journal of Applied Mathematics and Computing, Vol.26, (2008) 67-84.
- [13] Murty, M.S.N. and Suresh Kumar, G.: On Ψ-Bounded solutions for non-homogeneous matrix Lyapunov systems on R, Electronic Journal of Qualitative Theory of Differential Equations, Vol.2009(2009), No.62, 1-12.
- [14] Ogata, K.: Discrete time control systems, Printice Hall, Englewood Cliffs, NJ, 1987.

- [15] Suresh Kumar, G., Appa Rao, B.V. and Murty, M.S.N. : Ψ-bounded solutions for nonhomogeneous matrix difference equations on Z, Journal of Advanced Research in Applied Mathematics, Vol.3, No.3 (2011), 21-31.
- [16] Szafranski, Z. and Szmanda, B. : Oscilatory behavior of difference equations of second order, Journal of Mathematical Analysis and Applications, Vol.150, (1990), 414-424.

¹ DEPARTMENT OF MATHEMATICS, KONERU LAKSHMAIAH UNIVERSITY, VADDESWARAM, GUNTUR DT., A.P., INDIA. *E-mail address:* drgsk006@kluniversity.in, tsrao011@gmail.com

 ² Department of Mathematics, Acharya Nagarjuna University,
 Nagarjuna Nagar-522510, Guntur dt., A.P., India. *E-mail address:* drmsn20020gmail.com