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CLOSE-TO-CONVEXITY AND STARLIKENESS OF CERTAIN
ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

(COMMUNICATED BY INDRAJIT LAHIRI)

RASOUL AGHALARY AND SANTOSH JOSHI

ABSTRACT. The main object of the present paper is to derive some results for
multivalent analytic functions defined by a linear operators. As a special case
of these results, we obtain several sufficient conditions for close-to-convexity
and starlikeness of certain analytic functions.

1. INTRODUCTION

Let A(p,n) denote the class of functions f in the form

fe)=2"+ Y az* (pneN={1,2,.}) (1)

k=n+p

which are analytic and p-valent in the open unit disc A = {z € C: |z] < 1}. We
write A(p,1) = A(p), A(1,n) = A, and A; = A. A function f € A(p,n) is said to
be p-valent starlike of order o (0 < av < p) in A if

!

Re (Zf (2)) >, z€A,
f(2)

and we denote by Sy (a) the class of all such functions. A function f € A(p,n) is

said to be p-valent convex of order @ (0 < a < p) in A if

"

Re (l—i- Zf, (Z)> >a, z €A,
f'(2)

and we denote by K (a) the class of all such functions. Further a function f € A

is said to be close-to-convex if there exists a (not necessarily normalized) convex

function g such that
/
Re <f,(z)> >0, 2 € A
9'(2)
We shall denote by C the class of close-to-convex functions in A.
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For two functions f given by (1) and g given by

z) =2+ Z bz®  (p,n €N),
k=n+p

their Hadamard product (or convolution) is defined by

(f*g)(z) =2 + Z bragz".

k=n+p
Define the function ¢,(a,c; z) by

bpla, c; 2) —z”—i—z (@) P (c#0,-1,-2,..,2€ A),

C

where (a),, is the Pochhammer symbol defined by

1, (n =0)
(a)"'_{a(a—|—1)(a—|—2)...(a+n—1), (neN:={1,2,3...}).

Corresponding to the function ¢,(a,¢;z), Saitoh [7] introduced a linear operator
L, (a, c) which is defined by means of the following Hadamard product:

Ly(a,0)f(2) = ¢pla,c) x f(2)  (f € Alp,n)),

or, equivalently, by

Ly(a,c)f(z) =2+ Z %akﬂ,zkﬂ), z € A. (2)
k=n

It follows from (2) that
2(Lp(a,0)f(2)) = alp(a+1,¢)f(2) — (a = p)Lp(a, ) f(2) (3)

Note that L,(a,a)f(z) = f(2), Lp(p+ 1,p)f(2) = #, Li(3,1)f(2) = 2f'(2) +
122 f"(z) and £,(0+1,1) f(2) = D°*P f(2), where D°*? f is the Ruscheweyh deriv-
ative of order § + p.

Many properties of analytic functions defined by the linear operator £,(a, ¢)f(2)
were studied by (among others), Aghalary and Ebadian [1], Owa and Srivastava
[6], Cho et al. [3], and Carlson and Shaffer [2].

In the present paper we aim to find simple sufficient conditions for close-to-
convexity and starlikeness of multivalent analytic functions. The following lemma
will be required in our present investigations.

Lemma 1.1. (see[4]) Let the (nonconstant) function w be analytic in A with
w(z) = wpz™+---. If |w| attains its maximum value on the circle |z] =7 < 1 at a
point zg € A, then

zow'(20) = cw(20),

where c is a real number and ¢ > n.
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2. MAIN RESULTS

Theorem 2.1. Leta € C, |a| >0, 8> 0,7 >0, and 0 < o < p. If the function
f € A(p,n) satisfies

Lp(a,0)f(z) I

2P

B
1 @
(1 ZH\yrt+B,B
<|a|ﬁ(1 Y TPnf z e A,

p
(4)

1 Lyla+1,¢)f(2) — Lyla,c)f(2)

then

e (2292

Proof. Define the function w by
Ly(a,c)f(z) 1+(1- 2 )w(2)

2P 1—w(z2) ’

, 2 €A (5)

(w(z) # -1, z € A). (6)

Then, clearly, w(z) = wy2™ 4 -+ is analytic in A. By a simple computation and
by making use of the familiar identity (3), we find from (6) that

Ly(a,0)f(2) Lya+1,0)f(2) = Lyla,c)f ()]’
1 27+ﬁ(1_%)'y+ﬁ
" Jalf L= w(z) TP

Suppose now that there exists a point 2y € A such that

~

-1

|20 ()7

lw(zo)] =1 and |w(z)| <1, when |z] < |zl

Then by using Lemma 1.1, we have w(zp) = €0 < § < 27 and 2ow’(20) =
&w(z0),& > n. Therefore

Lo(,0)f(z0) || | Lalat1,0)f (z0) = Lp(a,0)f (z0) |
2 2

Y+B(1 — a\v+B
i o A
|a|5 |1 — ei9|’)’+5

1 «
> ——(1—=)"+pf,
|a|? p

which contradicts our hypothesis (4). Thus, we have
lw(z)] <1, z € A,
and the proof is complete. (Il

By letting a = ¢ =1 and p =n =1 in Theorem 2.1 we obtain Theorem 3 of [5]
that is:

Corollary 2.2. Let v >0,8>0 and 0 < «a < 1. If the function f € A satisfies
() =17z f"(2)|” < 2°(1 —a)7*7, z € A,
then
Re f'(2) > a, z € A,

i.e. f is close-to-convex function.
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Theorem 2.3. Let a € C with Rea > 0, let B > 0,y > 0 and 0 < a < p. If
f € A(p) satisfies the inequality

Lp(aazi)f(z) _1 ! W _ 1‘6 < 7(1 a |);+B (Rea—|—2) , z€ A, (7)
then
Re (Ep(a,c)f(z)) >2 e (8)
2P p’

Proof. Let define the function w by

a,c)f(z 1+ 1_27& w(z)
Lpla,0)f(z) _ ( ) L (W) £ 1, ze A).

2P 1—w(z)

Then w is analytic in A, w(z) = wpz™ + - --. By making use of the identity (3), we
obtain

Lo(@0f(z) [ Lnlat10f¢) [
zb zp
a a B
[z [ 120 - $() | 20— )
- w(2) a (1-w()? 1—w(z)
+6(1 — arta +8 B
2P ﬂp)V w(z) |7 ot 2w (2)
la 1—w(z) (1 —w(z))w(z)
Suppose that there exists a point zg € A such that max|w(z)| = | (z0)] =1 (2| <
|z0/). Then by using Lemma 1.1, we have w(zp) = €%, 0 < § < 27 and 20w’ (2) =
Ew(zp), & > n. Therefore
Lp(0,0f(z0) | |Lalat L O)f(z0) |
2 20
27+/3(1 — 2)’7+ﬂ 1 ¢ B
— P a+ -
lal? [ 1—w(z0) P*P (1—e?)
(1—g)? n
—— (R
> ap et y)
Which contradicts obviously our hypothesis (7). Thus, we have | w(z) |< 1 for all
z € A, and hence (8) holds true. O

By lettingc=a—-1=1,v=p8= % and p =n =1 in Theorem 2.1, we obtain
the following Corollary:

Corollary 2.4. If the function f € A satisfies the inequality

! (1-a)
NG

N\)—l

)7, z €A,

/ 3| 1 ., 1
|f'(z) =1 f(Z)-i—EZf () —1 (2+2
then

Re f'(2) > a, z € A,

i.e. f is close-to-convex function.

By lettingc=a=1,v =8 = % and p = 1 in Theorem 2.3, we conclude the
following result:
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Corollary 2.5. If the function f € A satisfies the inequality

F(2) = 1 [f(5) — 1] < g(l —a), zE A,

Re<f(z)> >, z €A,

z

then

Finally we prove:

Theorem 2.6. Suppose that a € C, Rea >0, 5> 0,v>0 and 0 < a < p. If the
function f € A(p,n) satisfies the inequality

Lya+1,0f(2) . ["|Lpla+2,0f(2) r
—_ e ———— —1| < N(ayp,n,7v,B), z € A, 9
Ly(a,c)f(z) Ly(a+1,¢)f(2) ( ) )
where
(1-2)"((Rea)1-2)+3)"
[a+1]P =, 0<ac<$,
N(a,p,n,7,B) = (10)
(1,%)W+B 8 »
W(Rea—l—n) , E<a<p.
Then

. Lyla+1,¢)f(2) a
e (Tt )75 e

Proof. Define the function M by
Loa+1,0)f(2)
Ly(a,c)f(2)
Then by a simple computation and by making use of the identity (3), we have

M(z) =

‘£p<a+ Lof(z) [ |Lalat2.0)f(z) 1“’
Ly(a,c)f(z2) Lyla+1,¢)f(2)
M’ (z A
=|M(z) -1 aj—l < ]]\\j(i))%—a(M(z)—l)N ) (11)

Now we distinguish two cases,
Case(i). If 0 < o < &, define a function w

— 2a) y(z
M(Z)—1+(1_wlzz)) (2)

Then w is analytic in A, w(z) = wpz™ + -+ and w(z) # 1 in A. we find from (11)
that

, 2 € A,

‘Ep(aJrLc)f(Z) 7] Lnla + 2,0 f(2) _1“’
Ly(a,c)f(z) Lyla+1,¢)f(2)
2t (1 B %)7“’ w(z) [P 2w'(2) ’
- la+1|8 ‘l—w(z) ot (12)
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Suppose now that there exists a point zp € A such that max|w(z)| = |w(z0)| =
1 (|z] < |z0]). Then by using Lemma 1.1, we have w(z) = €%, 0 < § < 27 and
zow' (z0) = mw(zg), m > n. Therefore from (12), we obtain

‘EAa+Ldﬂm)_ ”EAa+1®ﬂ%>_4ﬁ
Ly(a,c)f(z0) Ly(a+1,¢)f(z20)
(1_ g)’YJrﬁ B
P n
27|a+1|/3 Rea+72(1—%)

1 a\’ o n\"’
= (1-2) (Re(1-2)+2) |
|a+1|5< p) ( ( p) 2)
which contradicts (10) for 0 < a < £, Hence, we must have | w(z) |< 1 for all

z € A, and the first part of theorem complete.
Case(ii). When § < a < p, let a function w be defined by

<R

M(z) = , 2 €A
& - (1 — %) w(z)
Then w is analytic in A and w(z) = w, 2™ + - -+ proceeding the same as case(i). We
find from (12) that

Lpa+1,c)f(2) Lyla+2,0)f(2)
Ly(a,c)f(z) Lyla+1,¢)f(2)
NP v+B
(-3) (2 ()
B [e3 (63
Suppose that there exists a point zg € A such that max|w(z)| = |w(z

| =
|z0|). Then by using Lemma 1.1, we have obtain w(zg) = €, 0 < § < 27 and
zow' (z0) = mw(zg) , m > n. Now from (13) we have

Y

=
~—

Lpla+1,0f(0) ”ﬁAa+Zdﬂm)_45
Ly(a,c)f(z0) Ly(a+1,¢)f(20)
o\ 718 v+8
_ ( — 5) w(z0) ‘ 20w (20) |
la+1° a_ ( B %) w(z0) w(zo)

which contradicts (9) for § < a < p. Therefore, we must have | w(z) [< 1 for all
z € A, and the proof is complete. O

By letting c =a =1 and p = 1 in the theorem 2.6, we have:
Corollary 2.7. If the function f € A, satisfies the inequality

2f'(2) 2f"(2)|°
(z) F'(z)

Y

SM(Q’/B”Y7TL)’ ZeA?
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where

(1-ay(1+%-a), 0<a<i,

M(a7ﬁ777n):

(1 —a)*tB(1+n)s, ;<a<l.
Then 72)

zf'(z

Re >a, 2z € A
(77)
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