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CLOSE-TO-CONVEXITY AND STARLIKENESS OF CERTAIN

ANALYTIC FUNCTIONS DEFINED BY A LINEAR OPERATOR

(COMMUNICATED BY INDRAJIT LAHIRI)

RASOUL AGHALARY AND SANTOSH JOSHI

Abstract. The main object of the present paper is to derive some results for

multivalent analytic functions defined by a linear operators. As a special case

of these results, we obtain several sufficient conditions for close-to-convexity

and starlikeness of certain analytic functions.

1. Introduction

Let A(p, n) denote the class of functions f in the form

f(z) = zp +

∞
∑

k=n+p

akz
k (p, n ∈ N = {1, 2, ...}) (1)

which are analytic and p-valent in the open unit disc ∆ = {z ∈ C : |z| < 1}. We
write A(p, 1) = A(p),A(1, n) = An and A1 = A. A function f ∈ A(p, n) is said to
be p-valent starlike of order α (0 ≤ α < p) in ∆ if

Re

(

zf ′(z)

f(z)

)

> α, z ∈ ∆,

and we denote by S∗
p(α) the class of all such functions. A function f ∈ A(p, n) is

said to be p-valent convex of order α (0 ≤ α < p) in ∆ if

Re

(

1 +
zf ′′(z)

f ′(z)

)

> α, z ∈ ∆,

and we denote by K∗
p (α) the class of all such functions. Further a function f ∈ A

is said to be close-to-convex if there exists a (not necessarily normalized) convex
function g such that

Re

(

f ′(z)

g′(z)

)

> 0, z ∈ ∆.

We shall denote by C the class of close-to-convex functions in ∆.
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For two functions f given by (1) and g given by

g(z) = zp +
∞
∑

k=n+p

bkz
k (p, n ∈ N),

their Hadamard product (or convolution) is defined by

(f ∗ g)(z) = zp +

∞
∑

k=n+p

bkakz
k.

Define the function φp(a, c; z) by

φp(a, c; z) := zp +

∞
∑

k=n

(a)k
(c)k

zk+p (c 6= 0,−1,−2, ..., z ∈ ∆),

where (a)n is the Pochhammer symbol defined by

(a)n :=

{

1, (n = 0);
a(a+ 1)(a+ 2) . . . (a+ n− 1), (n ∈ N := {1, 2, 3 . . .}).

Corresponding to the function φp(a, c; z), Saitoh [7] introduced a linear operator
Lp(a, c) which is defined by means of the following Hadamard product:

Lp(a, c)f(z) = φp(a, c) ∗ f(z) (f ∈ A(p, n)),

or, equivalently, by

Lp(a, c)f(z) = zp +
∞
∑

k=n

(a)k
(c)k

ak+pz
k+p, z ∈ ∆. (2)

It follows from (2) that

z(Lp(a, c)f(z))
′ = aLp(a+ 1, c)f(z)− (a− p)Lp(a, c)f(z) (3)

Note that Lp(a, a)f(z) = f(z), Lp(p + 1, p)f(z) = zf ′(z)
p

, L1(3, 1)f(z) = zf ′(z) +
1
2z

2f ′′(z) and Lp(δ+1, 1)f(z) = Dδ+pf(z), where Dδ+pf is the Ruscheweyh deriv-
ative of order δ + p.

Many properties of analytic functions defined by the linear operator Lp(a, c)f(z)
were studied by (among others), Aghalary and Ebadian [1], Owa and Srivastava
[6], Cho et al. [3], and Carlson and Shaffer [2].

In the present paper we aim to find simple sufficient conditions for close-to-
convexity and starlikeness of multivalent analytic functions. The following lemma
will be required in our present investigations.

Lemma 1.1. (see[4]) Let the (nonconstant) function ω be analytic in ∆ with
ω(z) = ωnz

n + · · · . If |ω| attains its maximum value on the circle |z| = r < 1 at a
point z0 ∈ ∆, then

z0ω
′(z0) = cω(z0),

where c is a real number and c ≥ n.
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2. Main Results

Theorem 2.1. Let a ∈ C, |a| > 0, β ≥ 0, γ ≥ 0, and 0 ≤ α < p. If the function

f ∈ A(p, n) satisfies
∣

∣

∣

∣

Lp(a, c)f(z)

zp
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z)− Lp(a, c)f(z)

zp

∣

∣

∣

∣

β

<
1

|a|β (1−
α

p
)γ+βnβ, z ∈ ∆,

(4)
then

Re

(Lp(a, c)f(z)

zp

)

>
α

p
, z ∈ ∆. (5)

Proof. Define the function ω by

Lp(a, c)f(z)

zp
=

1+ (1− 2α
p
)ω(z)

1− ω(z)
, (ω(z) 6= −1, z ∈ ∆). (6)

Then, clearly, ω(z) = ωnz
n + · · · is analytic in ∆. By a simple computation and

by making use of the familiar identity (3), we find from (6) that
∣

∣

∣

∣

Lp(a, c)f(z)

zp
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z)− Lp(a, c)f(z)

zp

∣

∣

∣

∣

β

=
1

|a|β
2γ+β(1− α

p
)γ+β

|1− ω(z)|γ+β
|zω′(z)|β.

Suppose now that there exists a point z0 ∈ ∆ such that

|ω(z0)| = 1 and |ω(z)| < 1, when |z| < |z0|.
Then by using Lemma 1.1, we have ω(z0) = eiθ, 0 < θ ≤ 2π and z0ω

′(z0) =
ξω(z0), ξ ≥ n. Therefore

∣

∣

∣

∣

Lp(a, c)f(z0)

z
p
0

− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z0)− Lp(a, c)f(z0)

z
p
0

∣

∣

∣

∣

β

=
1

|a|β
2γ+β(1− α

p
)γ+β

|1− eiθ|γ+β
|ξ|β

>
1

|a|β (1 −
α

p
)γ+βnβ,

which contradicts our hypothesis (4). Thus, we have

|w(z)| < 1, z ∈ ∆,

and the proof is complete. �

By letting a = c = 1 and p = n = 1 in Theorem 2.1 we obtain Theorem 3 of [5]
that is:

Corollary 2.2. Let γ ≥ 0, β ≥ 0 and 0 ≤ α < 1. If the function f ∈ A satisfies

|f ′(z)− 1|γ |zf ′′(z)|β < 2β(1− α)γ+β , z ∈ ∆,

then

Re f ′(z) > α, z ∈ ∆,

i.e. f is close-to-convex function.
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Theorem 2.3. Let a ∈ C with Re a > 0, let β ≥ 0, γ > 0 and 0 ≤ α < p. If

f ∈ A(p) satisfies the inequality
∣

∣

∣

∣

Lp(a, c)f(z)

zp
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z)

zp
− 1

∣

∣

∣

∣

β

≤
(1− α

p
)γ+β

| a |β (Re a+
n

2
)β , z ∈ ∆, (7)

then

Re

(Lp(a, c)f(z)

zp

)

>
α

p
, z ∈ ∆. (8)

Proof. Let define the function ω by

Lp(a, c)f(z)

zp
=

1 +
(

1− 2α
p

)

ω(z)

1− ω(z)
, (ω(z) 6= −1, z ∈ ∆).

Then ω is analytic in ∆, ω(z) = ωnz
n + · · · . By making use of the identity (3), we

obtain
∣

∣

∣

∣

Lp(a, c)f(z)

zp
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z)

zp
− 1

∣

∣

∣

∣

β

=

∣

∣

∣

∣

∣

2(1− α
p
)ω(z)

1− ω(z)

∣

∣

∣

∣

∣

γ ∣
∣

∣

∣

∣

1

a

2(1− α
p
)zω′(z)

(1− ω(z))2
+

2(1− α
p
)ω(z)

1− ω(z)

∣

∣

∣

∣

∣

β

=
2γ+β(1 − α

p
)γ+α

| a |β
∣

∣

∣

∣

ω(z)

1− ω(z)

∣

∣

∣

∣

γ+β ∣
∣

∣

∣

a+
zω′(z)

(1− ω(z))ω(z)

∣

∣

∣

∣

β

.

Suppose that there exists a point z0 ∈ ∆ such that max |ω(z)| = |ω(z0)| = 1 (|z| ≤
|z0|). Then by using Lemma 1.1, we have ω(z0) = eiθ, 0 < θ ≤ 2π and z0ω

′(z0) =
ξω(z0), ξ ≥ n. Therefore

∣

∣

∣

∣

Lp(a, c)f(z0)

z
p
0

− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 1, c)f(z0)

z
p
0

− 1

∣

∣

∣

∣

β

=
2γ+β(1 − α

p
)γ+β

| a |β
1

| 1− ω(z0) |γ+β

∣

∣

∣

∣

a+
ξ

(1 − eiθ)

∣

∣

∣

∣

β

≥
(1− α

p
)γ+β

| a |β (Re a+
n

2
)β .

Which contradicts obviously our hypothesis (7). Thus, we have | ω(z) |< 1 for all
z ∈ ∆, and hence (8) holds true. �

By letting c = a− 1 = 1, γ = β = 1
2 and p = n = 1 in Theorem 2.1, we obtain

the following Corollary:

Corollary 2.4. If the function f ∈ A satisfies the inequality

|f ′(z)− 1|
1
2

∣

∣

∣

∣

f ′(z) +
1

2
zf ′′(z)− 1

∣

∣

∣

∣

1
2

<
(1− α)√

2
(2 +

1

2
)

1
2 , z ∈ ∆,

then

Re f ′(z) > α, z ∈ ∆,

i.e. f is close-to-convex function.

By letting c = a = 1, γ = β = 1
2 and p = 1 in Theorem 2.3, we conclude the

following result:
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Corollary 2.5. If the function f ∈ A satisfies the inequality

|f(z)− 1|
1
2 |f ′(z)− 1|

1
2 <

3

2
(1− α), z ∈ ∆,

then

Re

(

f(z)

z

)

> α, z ∈ ∆.

Finally we prove:

Theorem 2.6. Suppose that a ∈ C, Re a ≥ 0, β ≥ 0, γ ≥ 0 and 0 ≤ α < p. If the

function f ∈ A(p, n) satisfies the inequality

∣

∣

∣

∣

Lp(a+ 1, c)f(z)

Lp(a, c)f(z)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z)

Lp(a+ 1, c)f(z)
− 1

∣

∣

∣

∣

β

< N(α, p, n, γ, β), z ∈ ∆, (9)

where

N(α, p, n, γ, β) =















(1−α
p
)γ((Rea)(1−α

p
)+n

2 )
β

|a+1|β
, 0 ≤ α ≤ p

2 ,

(1−α
p
)γ+β

|a+1|β (Rea+ n)β , p
2 ≤ α < p.

(10)

Then

Re

(Lp(a+ 1, c)f(z)

Lp(a, c)f(z)

)

>
α

p
, z ∈ ∆.

Proof. Define the function M by

M(z) =
Lp(a+ 1, c)f(z)

Lp(a, c)f(z)
.

Then by a simple computation and by making use of the identity (3), we have
∣

∣

∣

∣

Lp(a+ 1, c)f(z)

Lp(a, c)f(z)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z)

Lp(a+ 1, c)f(z)
− 1

∣

∣

∣

∣

β

=| M(z)− 1 |γ
∣

∣

∣

∣

1

a+ 1

(

zM ′(z)

M(z)
+ a(M(z)− 1)

)∣

∣

∣

∣

β

. (11)

Now we distinguish two cases,
Case(i). If 0 ≤ α ≤ p

2 , define a function ω

M(z) =
1 +

(

1− 2α
p

)

ω(z)

1− ω(z)
, z ∈ ∆.

Then ω is analytic in ∆, ω(z) = ωnz
n + · · · and ω(z) 6= 1 in ∆. we find from (11)

that
∣

∣

∣

∣

Lp(a+ 1, c)f(z)

Lp(a, c)f(z)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z)

Lp(a+ 1, c)f(z)
− 1

∣

∣

∣

∣

β

=
2γ+β

(

1− α
p

)γ+β

| a+ 1 |β
∣

∣

∣

∣

ω(z)

1− ω(z)

∣

∣

∣

∣

γ+β

∣

∣

∣

∣

∣

∣

a+
zω′(z)

[

1 +
(

1− 2α
p

)

ω(z)
]

ω(z)

∣

∣

∣

∣

∣

∣

β

. (12)
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Suppose now that there exists a point z0 ∈ ∆ such that max |ω(z)| = |ω(z0)| =
1 (|z| ≤ |z0|). Then by using Lemma 1.1, we have ω(z0) = eiθ, 0 < θ ≤ 2π and
z0ω

′(z0) = mω(z0), m ≥ n. Therefore from (12), we obtain
∣

∣

∣

∣

Lp(a+ 1, c)f(z0)

Lp(a, c)f(z0)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z0)

Lp(a+ 1, c)f(z0)
− 1

∣

∣

∣

∣

β

≥

(

1− α
p

)γ+β

| a+ 1 |β



Re a+
n

2
(

1− α
p

)





β

=
1

| a+ 1 |β
(

1− α

p

)γ (

Re

(

1− α

p

)

+
n

2

)β

,

which contradicts (10) for 0 ≤ α ≤ p
2 , Hence, we must have | ω(z) |< 1 for all

z ∈ ∆, and the first part of theorem complete.
Case(ii). When p

2 ≤ α < p, let a function ω be defined by

M(z) =

α
p

α
p
−
(

1− α
p

)

ω(z)
, z ∈ ∆.

Then ω is analytic in ∆ and ω(z) = ωnz
n+ · · · proceeding the same as case(i). We

find from (12) that
∣

∣

∣

∣

Lp(a+ 1, c)f(z)

Lp(a, c)f(z)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z)

Lp(a+ 1, c)f(z)
− 1

∣

∣

∣

∣

β

=

(

1− α
p

)γ+β

| a+ 1 |β

∣

∣

∣

∣

∣

∣

ω(z)

α
p
−
(

1− α
p

)

ω(z)

∣

∣

∣

∣

∣

∣

γ+β
∣

∣

∣

∣

a+
zω′(z)

ω(z)

∣

∣

∣

∣

β

. (13)

Suppose that there exists a point z0 ∈ ∆ such that max |ω(z)| = |ω(z0)| = 1(|z| ≤
|z0|). Then by using Lemma 1.1, we have obtain ω(z0) = eiθ, 0 ≤ θ ≤ 2π and
z0ω

′(z0) = mω(z0) , m ≥ n. Now from (13) we have
∣

∣

∣

∣

Lp(a+ 1, c)f(z0)

Lp(a, c)f(z0)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

Lp(a+ 2, c)f(z0)

Lp(a+ 1, c)f(z0)
− 1

∣

∣

∣

∣

β

=

(

1− α
p

)γ+β

| a+ 1 |β

∣

∣

∣

∣

∣

∣

ω(z0)

α
p
−
(

1− α
p

)

ω(z0)

∣

∣

∣

∣

∣

∣

γ+β
∣

∣

∣

∣

a+
z0ω

′(z0)

ω(z0)

∣

∣

∣

∣

β

≥

(

1− α
p

)γ+β

| a+ 1 |γ+β
(Re a+ n)

β
,

which contradicts (9) for p
2 ≤ α < p. Therefore, we must have | ω(z) |< 1 for all

z ∈ ∆, and the proof is complete. �

By letting c = a = 1 and p = 1 in the theorem 2.6, we have:

Corollary 2.7. If the function f ∈ An satisfies the inequality
∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

γ ∣
∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

β

≤ M(α, β, γ, n), z ∈ ∆,
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where

M(α, β, γ, n) =







(1− α)γ
(

1 + n
2 − α

)β
, 0 ≤ α ≤ 1

2 ,

(1− α)γ+β(1 + n)β , 1
2 ≤ α < 1.

Then

Re

(

zf ′(z)

f(z)

)

> α, z ∈ ∆.
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