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n-TUPLED COINCIDENCE AND COMMON FIXED POINT

RESULTS FOR WEAKLY CONTRACTIVE MAPPINGS IN

COMPLETE METRIC SPACES

(COMMUNICATED BY NASEER SHAHZAD)

MOHAMMAD IMDAD, ANUPAM SHARMA AND K. P. R. RAO

Abstract. In this paper, we prove results on n-tupled coincidence as well as
n-tupled fixed point in partially ordered complete metric spaces for a pair of
weakly contractive compatible mappings whenever n is even, wherein control
functions are also employed. Our main theorem improves the corresponding

results of Choudhury et al. (Ann. Univ. Ferrara 57: 1-16, 2011). We illus-
trate our main result with an example in arbitrary even order case which also
substantiates the realized improvements.

1. Introduction

The enormous utility of Banach contraction principle is well known. This result is
one of the pivotal results of metric fixed point theory. It has fruitful applications
within as well as outside mathematics. Generalizations of this principle continues
to be an active area of research. Many authors have extended this theorem em-
ploying relatively more general contractive conditions ensuring the existence of a
fixed point. The investigation of fixed points in ordered metric spaces is a relatively
new development which appears to have its origin (in 2004) in the paper of Ran
and Reurings [21]. This paper was well complimented by the article of Nieto and
López [20]. For similar other results in ordered metric spaces, one can be referred
to [1]-[4],[14]-[16],[18],[19],[23].
In [9], Bhaskar and Lakshmikantham introduced the concept of a coupled fixed
point of a mapping F : X × X → X wherein (X,�, d) be a partial metric space
and also proved some coupled fixed point theorems in partially ordered complete
metric spaces. Afterwards Berinde and Borcut [8] introduced the concept of tripled
fixed point and proved some related theorems. Most recently, Imdad et al. [14]
introduced the concepts of n-tupled coincidence as well as n-tupled fixed point and

02010 Mathematics Subject Classification: 54H10, 54H25.

Keywords and phrases. Partially ordered set; control function; compatible mapping; mixed mono-
tone property; n-tupled coincidence point, n-tupled fixed point.
c© 2013 Universiteti i Prishtinës, Prishtinë, Kosovë.
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utilize these two definitions to obtain n-tupled coincidence as well as n-tupled com-
mon fixed point theorems for nonlinear mappings satisfying φ-contraction condition
in partially ordered complete metric spaces.
The purpose of this paper is to prove some n-tupled coincidence as well as n-tupled
fixed point theorems for a pair of weakly contractive compatible mappings enjoying
mixed g-monotone property in a complete metric space equipped with a partial
ordering.

2. Preliminaries

Definition 2.1. [9] Let (X,�) be a partially ordered set equipped with a metric
d such that (X, d) is a metric space. We endow the product space X ×X with the
following partial ordering:

for (x, y), (u, v) ∈ X ×X , define (u, v) � (x, y) ⇔ u � x, y � v.

Definition 2.2. Let (X,�) be a partially ordered set and T : X → X be a
mapping. Then T is said to be nondecreasing if for all x1, x2 ∈ X, x1 � x2
implies T (x1) � T (x2) and nonincreasing if for all x1, x2 ∈ X, x1 � x2 implies
T (x2) � T (x1).

Definition 2.3. [9] Let (X,�) be a partially ordered set and F : X × X → X

be a mapping. Then F is said to have mixed monotone property if for any x, y ∈
X, F (x, y) is monotonically nondecreasing in first argument and monotonically
nonincreasing in second argument, that is, for

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y2) � F (x, y1).

Definition 2.4. [18] Let (X,�) be a partially ordered set and F : X×X → X and
g : X → X be two mappings. Then F is said to have mixed g-monotone property
if for any x, y ∈ X, F (x, y) is monotone g-nondecreasing in its first argument and
monotone g-nonincreasing in its second argument, that is, for

x1, x2 ∈ X, g(x1) � g(x2) ⇒ F (x1, y) � F (x2, y)

y1, y2 ∈ X, g(y1) � g(y2) ⇒ F (x, y2) � F (x, y1).

Definition 2.5. [9] An element (x, y) ∈ X ×X is called a coupled fixed point of
the mapping F : X ×X → X if

F (x, y) = x and F (y, x) = y.

Definition 2.6. [18] An element (x, y) ∈ X × X is called a coupled coincidence
point of the mappings F : X ×X → X and g : X → X if

F (x, y) = gx and F (y, x) = gy.

Furthermore, (x, y) is called the common coupled fixed point of F and g if
F (x, y) = gx = x, F (y, x) = gy = y.

Remark 2.7. Definitions 2.4 and 2.6 for g = I reduce to Definitions 2.3 and
2.5 respectively. Thus Definitions 2.4 and 2.6 generalize Definitions 2.3 and 2.5
respectively.
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Definition 2.8. [10] Let F : X ×X → X and g : X → X be the two mappings.
Then F is said to be g-compatible if







lim
n→∞

d(g(F (xn, yn)), F (gxn, gyn)) = 0

lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0,

where {xn} and {yn} are sequences in X such that






lim
n→∞

F (xn, yn) = lim
n→∞

g(xn) = x

lim
n→∞

F (yn, xn) = lim
n→∞

g(yn) = y,

(for some x, y ∈ X) are satisfied.

Definition 2.9. [17] A function ψ : [0,∞) → [0,∞) is called an altering distance
function if the following properties are satisfied;
(a) ψ is monotonically increasing and continuous;
(b) ψ(t) = 0 if and only if t = 0.

Theorem 2.10. [11] Let (X,�, d) be a complete partially ordered metric space.
Let φ : [0,∞) → [0,∞) be a continuous function with φ(t) = 0 if and only if t = 0
while ψ be an altering distance function. Let F : X ×X → X and g : X → X be
two mappings such that F has the mixed g-monotone property on X and

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), d(gy, gv)})−φ(max{d(gx, gu), d(gy, gv)})

for all x, y, u, v ∈ X for which gu � gx and gy � gv. Suppose that F (X × X) ⊆
g(X), g is continuous and F is g-compatible. Also, suppose that
(a) F is continuous or
(b) X has the following properties:

(i) if a nondecreasing sequence {xn} → x, then g(xn) � g(x) for all n ≥ 0;
(ii) if a nonincreasing sequence {yn} → y, then g(y) � g(yn) for all n ≥ 0.

If there exist x0, y0 ∈ X such that g(x0) � F (x0, y0) and F (y0, x0) � g(y0), then
there exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x) i.e. F and g have
a coupled coincidence point in X.

Recently, Berinde and Borcut [8] introduced the following partial order on the
product space X ×X ×X :

(u, v, w) � (x, y, z) ⇔ u � x, y � v, w � z ∀ (x, y, z), (u, v, w) ∈ X ×X ×X.

Definition 2.11. [8] Let (X,�) be a partially ordered set and F : X×X×X → X

be a mapping. Then F is said to have mixed monotone property if F is monotone
nodecreasing in first and third argument and monotone noincreasing in second
argument, that is, for any x, y, z ∈ X

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y, z) � F (x2, y, z)

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y2, z) � F (x, y1, z)

z1, z2 ∈ X, z1 � z2 ⇒ F (x, y, z1) � F (x, y, z2).

Definition 2.12. [8] An element (x, y, z) ∈ X × X × X is called a tripled fixed
point of the mapping F : X × X × X → X if F (x, y, z) = x, F (y, x, y) = y and
F (z, y, x) = z.
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The following concept of n-fixed point was introduced by Gordji and Ramezani [12].
We suppose that the product space Xn is endowed with the following partial order,
where n is the positive integer (odd or even): (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Xn

(x1, x2, ..., xn) � (y1, y2, ..., yn) ⇔ x2i−1 � y2i−1 ∀ i ∈ {1, 2, ...,
[n+ 1

2

]

}

(x1, x2, ..., xn) � (y1, y2, ..., yn) ⇔ y2i � x2i ∀ i ∈ {1, 2, ...,
[n

2

]

}.

Definition 2.13. [12] An element (x1, x2, ..., xn) ∈ Xn is called an n fixed point
of the mapping F : Xn → X if

xi = F (xi, xi−1, ..., x2, x1, x2, ..., xn−i+1) ∀ i ∈ {1, 2, ..., n}.

In this paper, we used the new definitions of n-tupled fixed point and n-tupled
coincidence point given by Imdad et al. [14]. Throughout the paper, we consider n
to be an even integer. We begin with the following definitions:

Definition 2.14. [14] Let (X,�) be a partially ordered set and F : Xn → X be
a mapping. The mapping F is said to have the mixed monotone property if F is
nondecreasing in its odd position arguments and nonincreasing in its even position
arguments, that is, if,
(i) for all x11, x

1
2 ∈ X , x11 � x12 ⇒ F (x11, x

2, x3, ..., xn) � F (x12, x
2, x3, ..., xn)

(ii) for all x21, x
2
2 ∈ X , x21 � x22 ⇒ F (x1, x22, x

3, ..., xn) � F (x1, x21, x
3, ..., xn)

(iii) for all x31, x
3
2 ∈ X , x31 � x32 ⇒ F (x1, x2, x31, ..., x

n) � F (x1, x2, x32, ..., x
n)

...
for all xn1 , x

n
2 ∈ X , xn1 � xn2 ⇒ F (x1, x2, x3, ..., xn2 ) � F (x1, x2, x3, ..., xn1 ).

Definition 2.15. [14] Let (X,�) be a partially ordered set. Let F : Xn → X

and g : X → X be two mappings. Then the mapping F is said to have the mixed
g-monotone property if F is g-nondecreasing in its odd position arguments and
g-nonincreasing in its even position arguments, that is, if,
(i) for all x11, x

1
2 ∈ X , gx11 � gx12 ⇒ F (x11, x

2, x3, ..., xn) � F (x12, x
2, x3, ..., xn

(ii) for all x21, x
2
2 ∈ X , gx21 � gx22 ⇒ F (x1, x22, x

3, ..., xn) � F (x1, x21, x
3, ..., xn)

(iii) for all x31, x
3
2 ∈ X , gx31 � gx32 ⇒ F (x1, x2, x31, ..., x

n) � F (x1, x2, x32, ..., x
n)

...
for all xn1 , x

n
2 ∈ X , gxn1 � gxn2 ⇒ F (x1, x2, x3, ..., xn2 ) � F (x1, x2, x3, ..., xn1 ).

Definition 2.16. [14] An element (x1, x2, ..., xn) ∈ Xn is called an n-tupled fixed
point of the mapping F : Xn → X if































F (x1, x2, x3, ..., xn) = x1

F (x2, x3, ..., xn, x1) = x2

F (x3, ..., xn, x1, x2) = x3

...

F (xn, x1, x2, ..., xn−1) = xn.

Example 2.17. Let (R, d) be a partially ordered metric space under natural
setting and let F : Rn → R be a mapping defined by F (x1, x2, x3, ..., xn) =
sin (x1.x2.x3...xn), for any x1, x2, ..., xn ∈ R. Then (0, 0, ..., 0) is an n-tupled fixed
point of F.
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Definition 2.18. [14] An element (x1, x2, ..., xn) ∈ Xn is called an n-tupled coin-
cidence point of F : Xn → X and g : X → X if































F (x1, x2, x3, ..., xn) = g(x1)

F (x2, x3, ..., xn, x1) = g(x2)

F (x3, ..., xn, x1, x2) = g(x3)
...

F (xn, x1, x2, ..., xn−1) = g(xn).

Example 2.19. Let (R, d) be a partially ordered metric space under natural setting

and let F : Rn → R be a mapping defined by F (x1, x2, ..., xn) = x
1+x

2+...+x
n

n
, for

any x1, x2, ..., xn ∈ R while g : R → R is defined as g(x) = x

2 . Then (0, 0, ..., 0) is
an n-tupled coincidence point of F and g.

Definition 2.20. An element (x1, x2, ..., xn) ∈ Xn is called an n-tupled common
fixed point of F : Xn → X and g : X → X if































F (x1, x2, x3, ..., xn) = g(x1) = x1

F (x2, x3, ..., xn, x1) = g(x2) = x2

F (x3, ..., xn, x1, x2) = g(x3) = x3

...

F (xn, x1, x2, ..., xn−1) = g(xn) = xn.

Remark 2.21. Definitions 2.16, 2.18 and 2.20 with n = 2 respectively yield the
definitions of coupled fixed point, coupled coincidence point and common coupled
fixed point.

Definition 2.22. Let F : Xn → X and g : X → X be the two mappings. Then F
is said to be g-compatible if



























lim
m→∞

d(g(F (x1m, x
2
m, x

3
m, ..., x

n
m)), F (gx1m, gx

2
m, gx

3
m, ..., gx

n
m)) = 0

lim
m→∞

d(g(F (x2
m
, x3

m
, ..., xn

m
, x1

m
)), F (gx2

m
, gx3

m
, ..., gxn

m
, x1

m
)) = 0

...

lim
m→∞

d(g(F (xn
m
, x1

m
, x2

m
, ..., xn−1

m
)), F (gxn

m
, gx1

m
, gx2

m
, ..., gxn−1

m
)) = 0,

where {x1m}, {x2m}, ..., {xnm} are sequences in X such that


























lim
m→∞

F (x1m, x
2
m, x

3
m, ..., x

n
m) = lim

m→∞

g(x1m) = x1

lim
m→∞

F (x2
m
, x3

m
, ..., xn

m
, x1

m
) = lim

m→∞

g(x2
m
) = x2

...

lim
m→∞

F (xn
m
, x1

m
, x2

m
, ..., xn−1

m
) = lim

m→∞

g(xn
m
) = xn,

for some x1, x2, ..., xn ∈ X are satisfied.

3. Main Results

Now, we prove our main result as follows:
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Theorem 3.1. Let (X,�, d) be a complete partially ordered metric space. Let
φ : [0,∞) → [0,∞) be a continuous function with φ(t) = 0 if and only if t = 0
and ψ be an altering distance function. Let F : Xn → X and g : X → X be two
mappings such that F has the mixed g-monotone property on X and

ψ(d(F (x1, x2, ..., xn), F (y1, y2, ..., yn))) ≤ ψ(max{d(gx1, gy1), d(gx2, gy2), ..., d(gxn,

gyn)})−φ(max{d(gx1, gy1), d(gx2, gy2),

, ..., d(gxn, gyn)}) (3.1)

for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which gy1 � gx1, gx2 � gy2, gy3 �
gx3, ..., gxn � gyn. Suppose that F (Xn) ⊆ g(X), g is continuous and F is g-
compatible. Also, suppose that

(a) F is continuous or
(b) X has the following properties:

(i) if nondecreasing sequence {xm} → x, then g(xm) � g(x) for all m ≥ 0;
(ii) if nonincreasing sequence {xm} → x, then g(x) � g(xm) for all m ≥ 0.

If there exist x10, x
2
0, x

3
0, ..., x

n
0 ∈ X such that































g(x10) � F (x10, x
2
0, x

3
0, ..., x

n
0 )

F (x20, x
3
0, ..., x

n
0 , x

1
0) � g(x20)

g(x30) � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ) � g(xn0 )

then F and g have an n-tupled coincidence point in X.

Proof. Let x10, x
2
0, x

3
0, ..., x

n
0 ∈ X such that































g(x10) � F (x10, x
2
0, x

3
0, ..., x

n
0 )

F (x20, x
3
0, ..., x

n
0 , x

1
0) � g(x20)

g(x30) � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ) � g(xn0 ).

(3.2)

Since F (Xn) ⊆ g(X), we can choose x11, x
2
1, x

3
1, ..., x

n
1 ∈ X such that































g(x11) = F (x10, x
2
0, x

3
0, ..., x

n
0 )

g(x21) = F (x20, x
3
0, ..., x

n
0 , x

1
0)

g(x31) = F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

g(xn1 ) = F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ).

(3.3)
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As earlier, one can also choose x12, x
2
2, x

3
2, ..., x

n
2 ∈ X such that































g(x12) = F (x11, x
2
1, x

3
1..., x

n
1 )

g(x22) = F (x21, x
3
1, ..., x

n
1 , x

1
1)

g(x32) = F (x31, ..., x
n
1 , x

1
1, x

2
1)

...

g(xn2 ) = F (xn1 , x
1
1, x

2
1, ..., x

n−1
1 ).

Continuing this process, we can construct sequences {x1m}, {x2m}, ..., {xnm}, (m ≥ 0)
such that























g(x1m+1) = F (x1m, x
2
m, x

3
m, ..., x

n
m)

g(x2
m+1) = F (x2

m
, x3

m
, ..., xn

m
, x1

m
)

...

g(xnm+1) = F (xnm, x
1
m, x

2
m, ..., x

n−1
m ).

(3.4)

In what follows, we shall prove that for all m ≥ 0,

gx1
m

� gx1
m+1, gx

2
m+1 � gx2

m
, gx3

m
� gx3

m+1, ..., gx
n

m+1 � gxn
m
. (3.5)

Owing to (3.2) and (3.3), we have

gx10 � gx11, gx
2
1 � gx20, gx

3
0 � gx31, ..., gx

n

1 � gxn0 ,

that is, (3.5) holds for m = 0. Suppose that (3.5) holds for some m > 0. As F has
the mixed g-monotone property, we have from (3.4) that

gx1
m+1 = F (x1m, x

2
m, x

3
m, ..., x

n
m) � F (x1

m+1, x
2
m, x

3
m, ..., x

n
m)

� F (x1
m+1, x

2
m+1, x

3
m
, ..., xn

m
)

� F (x1m+1, x
2
m+1, x

3
m+1, ..., x

n
m)

� F (x1
m+1, x

2
m+1, x

3
m+1, ..., x

n
m+1)

= gx1m+2.
gx2

m+2 = F (x2
m+1, x

3
m+1, ..., x

n
m+1, x

1
m+1)

� F (x2
m+1, x

3
m+1, ..., x

n
m+1, x

1
m
)

� F (x2m+1, x
3
m+1, ..., x

n
m, x

1
m)

� F (x2
m+1, x

3
m
, ..., xn

m
, x1

m
)

� F (x2m, x
3
m, ..., x

n
m, x

1
m)

= gx2
m+1.

Also for the same reason,

gx3
m+1 = F (x3

m
, ..., xn

m
, x1

m
, x2

m
) � F (x3

m+1, ..., x
n

m+1, x
1
m+1, x

2
m+1) = gx3

m+2

...

gxn
m+2 = F (xn

m+1, x
1
m+1, x

2
m+1, ..., x

n−1
m+1) � F (xn

m
, x1

m
, x2

m
, ..., xn−1

m
) = gxn

m+1.

Hence by mathematical induction it follows that (3.5) holds for allm ≥ 0. Therefore






























gx10 � gx11 � gx12 � ... � gx1
m

� gx1
m+1 � ...

... � gx2
m+1 � gx2m � ... � gx22 � gx21 � gx20

gx30 � gx31 � gx32 � ... � gx3
m

� gx3
m+1 � ...

...

... � gxn
m+1 � gxnm � ... � gxn2 � gxn1 � gxn0 .

(3.6)
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Let

Rm = max{d(gx1
m+1, gx

1
m
), d(gx2

m+1, gx
2
m
), ..., d(gxn

m+1, gx
n

m
)}.

Using (3.6) we have,

ψ(d(gx1m, gx
1
m+1)) = ψ(d(F (x1m−1, x

2
m−1, ..., x

n
m−1), F (x

1
m, x

2
m, ..., x

n
m)))

≤ ψ(max{d(gx1
m−1, gx

1
m
), d(gx2

m−1, gx
2
m
), d(gx3

m−1, gx
3
m
), ..., d(gxn

m−1, gx
n
m
)})

−φ(max{d(gx1
m−1, gx

1
m
), d(gx2

m−1, gx
2
m
), d(gx3

m−1, gx
3
m
), ..., d(gxn

m−1, gx
n
m
)}).

ψ(d(gx2
m
, gx2

m+1)) = ψ(d(F (x2
m−1, ..., x

n
m−1, x

1
m−1), F (x

2
m
, ..., xn

m
, x1

m
)))

≤ ψ(max{d(gx2m−1, gx
2
m), d(gx3m−1, gx

3
m), ..., d(gxnm−1, gx

n
m), d(gx1m−1, gx

1
m)})

−φ(max{d(gx2m−1, gx
2
m), d(gx3m−1, gx

3
m), ..., d(gxnm−1, gx

n
m), d(gx1m−1, gx

1
m)}).

Similarly, we can inductively write

ψ(d(gxnm, gx
n
m+1)) = ψ(d(F (xnm−1, x

1
m−1, ..., x

n−1
m−1), F (x

n
m, x

1
m, ..., x

n−1
m )))

≤ ψ(max{d(gxn
m−1, gx

n
m), d(gx1

m−1, gx
1
m), d(gx2

m−1, gx
2
m), ..., d(gxn−1

m−1, gx
n−1
m )})

−φ(max{d(gxn
m−1, gx

n
m
), d(gx1

m−1, gx
1
m
), d(gx2

m−1, gx
2
m
), ..., d(gxn−1

m−1, gx
n−1
m

)}).

From above inequalities and the monotone property of ψ, we have

ψ(max{d(gxnm, gx
n

m+1), d(gx
1
m, gx

1
m+1), ..., d(gx

n−1
m , gxn−1

m+1)})

= max{ψ(d(gxnm, gx
n

m+1)), ψ(d(gx
1
m, gx

1
m+1)), ..., ψ(d(gx

n−1
m , gxn−1

m+1))}

≤ ψ(max{d(gxn
m−1, gx

n

m
), d(gx1

m−1, gx
1
m
), ..., d(gxn−1

m−1, gx
n−1
m

)})

−φ(max{d(gxnm−1, gx
n

m), d(gx1m−1, gx
1
m), ..., d(gxn−1

m−1, gx
n−1
m )}),

that is,

ψ(Rm) ≤ ψ(Rm−1)− φ(Rm−1). (3.7)

Using the property of ψ, we have

ψ(Rm) ≤ ψ(Rm−1)

which implies that

Rm ≤ Rm−1 (by the property of ψ).

Therefore {Rm} is a monotonically decreasing sequence of nonnegative real num-
bers. Hence there exists r ≥ 0 such that

Rm → r as m→ ∞.

Taking the limit as m→ ∞ in (3.7). Then by the continuities of ψ and φ, we have

ψ(r) ≤ ψ(r) − φ(r),

which is a contradiction unless r = 0. Therefore

Rm → 0 as m→ ∞, (3.8)
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so that

lim
m→∞

d(gx1m, gx
1
m+1) = 0, lim

m→∞

d(gx2m, gx
2
m+1) = 0, ..., lim

m→∞

d(gxnm, gx
n

m+1) = 0.

Next, we show that {gx1
m
}, {gx2

m
}, ..., {gxn

m
} are Cauchy sequences. If possible

suppose that atleast one of {gx1m}, {gx2m}, ..., {gxnm} is not a Cauchy sequence.
Then there exists an ǫ > 0 and sequences of positive integers {m(k)} and {t(k)}
such that for all positive integers k,

t(k) > m(k) > k,

Dk = max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n

m(k), gx
n

t(k))} ≥ ǫ

and

max{d(gx1
m(k), gx

1
t(k)−1), d(gx

2
m(k), gx

2
t(k)−1), ..., d(gx

n

m(k), gx
n

t(k)−1)} < ǫ.

Now,

ǫ ≤ Dk = max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n

m(k), gx
n

t(k))}

≤ max{d(gx1
m(k), gx

1
t(k)−1), d(gx

2
m(k), gx

2
t(k)−1), ..., d(gx

n

m(k), gx
n

t(k)−1)}

+max{d(gx1
t(k)−1, gx

1
t(k)), d(gx

2
t(k)−1, gx

2
t(k)), ..., d(gx

n

t(k)−1, gx
n

t(k))},

that is,

ǫ ≤ Dk = max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n

m(k), gx
n

t(k))} ≤ ǫ+Rt(k)−1.

Letting k → ∞ in above inequality and using (3.8), we have

lim
k→∞

Dk = lim
k→∞

max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n

m(k), gx
n

t(k))} = ǫ.

(3.9)
Again

Dk+1 = max{d(gx1
m(k)+1, gx

1
t(k)+1), d(gx

2
m(k)+1, gx

2
t(k)+1), ..., d(gx

n

m(k)+1, gx
n

t(k)+1)}

≤ max{d(gx1
m(k)+1, gx

1
m(k)), d(gx

2
m(k)+1, gx

2
m(k)), ..., d(gx

n

m(k)+1, gx
n

m(k))}

+max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n

m(k), gx
n

t(k))}

+max{d(gx1
t(k), gx

1
t(k)+1), d(gx

2
t(k), gx

2
t(k)+1), ..., d(gx

n

t(k), gx
n

t(k)+1})

= Rm(k) +Dk +Rt(k)

and

Dk ≤ Rm(k) +Dk+1 +Rt(k).

Letting k → ∞ in the preceding inequality, using (3.8) and (3.9) we have

lim
k→∞

Dk+1 = lim
k→∞

max{d(gx1
m(k)+1, gx

1
t(k)+1), d(gx

2
m(k)+1, gx

2
t(k)+1), ...,

d(gxn
m(k)+1, gx

n

t(k)+1)} = ǫ. (3.10)

Since t(k) > m(k) and

gx1
m(k) � gx1

t(k), gx
2
t(k) � gx2

m(k), gx
3
m(k) � gx3

t(k), ..., gx
n

t(k) � gxn
m(k),

therefore owing to (3.1) and (3.4), we have
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ψ(d(gx1
m(k)+1, gx

1
t(k)+1)) = ψ(d(F (x1

m(k) , x
2
m(k), ..., x

n

m(k)), F (x
1
t(k), x

2
t(k), ..., x

n

t(k))))

≤ ψ(max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), d(gx

3
m(k), gx

3
t(k)), ..., d(gx

n

m(k), gx
n

t(k))})

−φ(max{d(gx1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), d(gx

3
m(k), gx

3
t(k)), ..., d(gx

n

m(k), gx
n

t(k))}),

that is,

ψ(d(gx1
m(k)+1, gx

1
t(k)+1)) ≤ ψ(Dk)− φ(Dk). (3.11)

Also,

ψ(d(gx2
m(k)+1, gx

2
t(k)+1)) = ψ(d(F (x2

m(k) , ..., x
n

m(k), x
1
m(k)), F (x

2
t(k), ..., x

n

t(k), x
1
t(k))))

≤ ψ(max{d(gx2
m(k), gx

2
t(k)), d(gx

3
m(k), gx

3
t(k)), ..., d(gx

n

m(k), gx
n

t(k)), d(gx
1
m(k), gx

1
t(k))})

−φ(max{d(gx2
m(k), gx

2
t(k)), d(gx

3
m(k), gx

3
t(k)), ..., d(gx

n

m(k), gx
n

t(k)), d(gx
1
m(k), gx

1
t(k))}),

that is,

ψ(d(gx2
m(k)+1, gx

2
t(k)+1)) ≤ ψ(Dk)− φ(Dk). (3.12)

Similarly,

ψ(d(gxn
m(k)+1, gx

n

t(k)+1)) = ψ(d(F (xn
m(k) , x

1
m(k), ..., x

n−1
m(k)), F (x

n

t(k), x
1
t(k), ..., x

n−1
t(k) )))

≤ ψ(max{d(gxn
m(k), gx

n

t(k)), d(gx
1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n−1
m(k), gx

n−1
t(k) )})

−φ(max{d(gxn
m(k), gx

n

t(k)), d(gx
1
m(k), gx

1
t(k)), d(gx

2
m(k), gx

2
t(k)), ..., d(gx

n−1
m(k), gx

n−1
t(k) )}),

that is,

ψ(d(gxn
m(k)+1, gx

n

t(k)+1)) ≤ ψ(Dk)− φ(Dk). (3.13)

Using (3.11), (3.12) and (3.13) along with monotone property of ψ, we have,

ψ(Dk+1) = ψ(max{(d(gxn
m(k)+1, gx

n

t(k)+1), d(gx
1
m(k)+1, gx

1
t(k)+1), ..., d(gx

n−1
m(k)+1, gx

n−1
t(k)+1)})

= max{ψ(d(gxn
m(k)+1, gx

n

t(k)+1), d(gx
1
m(k)+1, gx

1
t(k)+1), ..., d(gx

n−1
m(k)+1, gx

n−1
t(k)+1))}

≤ ψ(Dk)− φ(Dk).

Letting k → ∞ in the above inequality, using (3.9), (3.10) and the continuities of
ψ and φ we have

ψ(ǫ) ≤ ψ(ǫ)− φ(ǫ),

which is a contradiction by virtue of a property of φ. Thus {gx1m}, {gx2m}, ..., {gxnm}
are Cauchy sequences in X. From the completeness of X, there exist x1, x2, ..., xn ∈
X such that



























lim
m→∞

F (x1
m
, x2

m
, x3

m
, ..., xn

m
) = lim

m→∞

g(x1
m
) = x1

lim
m→∞

F (x2
m
, x3

m
, ..., xn

m
, x1

m
) = lim

m→∞

g(x2
m
) = x2

...

lim
m→∞

F (xnm, x
1
m, x

2
m, ..., x

n−1
m ) = lim

m→∞

g(xnm) = xn.

(3.14)
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Since F is g-compatible, we have from (3.14),


























lim
m→∞

d(g(F (x1m, x
2
m, x

3
m, ..., x

n
m)), F (gx1m, gx

2
m, gx

3
m, ..., gx

n
m)) = 0

lim
m→∞

d(g(F (x2m, x
3
m, ..., x

n
m, x

1
m)), F (gx2m, gx

3
m, ..., gx

n
m, gx

1
m)) = 0

...

lim
m→∞

d(g(Fxn
m
, x1

m
, x2

m
, ..., xn−1

m
), F (gxn

m
, gx1

m
, gx2

m
, ..., gxn−1

m
)) = 0.

(3.15)

Let condition (a) holds. Then for all m ≥ 0, we have

d(gx1, F (gx1
m
, gx2

m
, gx3

m
, ..., gxn

m
)) ≤ d(gx1, g(F (x1

m
, x2

m
, x3

m
, ..., xn

m
)))

+d(g(F (x1
m
, x2

m
, x3

m
, ..., xn

m
), F (gx1

m
, gx2

m
, gx3

m
, ..., gxn

m
)).

Taking m → ∞ in above inequality, using (3.14), (3.15) and continuities of F and
g, we have

d(gx1, F (x1, x2, x3, ..., xn)) = 0; that is gx1 = F (x1, x2, x3, ..., xn).

Continuing this process, we obtain that

d(gx2, F (x2, x3, ..., xn, x1)) = 0; that is gx2 = F (x2, x3, ..., xn, x1).

...

d(gxn, F (xn, x1, x2, ..., xn−1)) = 0; that is gxn = F (xn, x1, x2, ..., xn−1).

Hence the element (x1, x2, ..., xn) ∈ Xn is an n-tupled coincidence point of the
mappings F : Xn → X and g : X → X. Next, we suppose that the condition (b)
holds. From (3.6) and (3.14), we have

ggx1
m

� gx1, gx2 � ggx2
m
, ggx3

m
� gx3, ..., gxn � ggxn

m
. (3.16)

Since F is g-compatible and g is continuous, by (3.14) and (3.15) we have


























lim
m→∞

ggx1m = gx1 = lim
m→∞

g(F (x1m, x
2
m, ..., x

n
m)) = lim

m→∞

F (gx1m, gx
2
m, ..., gx

n
m)

lim
m→∞

ggx2m = gx2 = lim
m→∞

g(F (x2m, ..., x
n
m, x

1
m)) = lim

m→∞

F (gx2m, ..., gx
n
m, gx

1
m)

...

lim
m→∞

ggxn
m

= gxn = lim
m→∞

g(F (xn
m
, x1

m
, ..., xn−1

m
)) = lim

m→∞

F (gxn
m
, gx1

m
, ..., gxn−1

m
)

(3.17)
Now, using triangle inequality, we have

d(F (x1, x2, ..., xn), gx1) ≤ d(F (x1, x2, ..., xn), ggx1
m+1) + d(ggx1

m+1, gx
1),

that is,

d(F (x1, x2, ..., xn), gx1) ≤ d(F (x1, x2, ..., xn), g(F (x1m, x
2
m, ..., x

n

m))+d(ggx1m+1, gx
1).

Taking m→ ∞ in the above inequality, using (3.17) we have

d(F (x1, x2, ..., xn), gx1) ≤ lim
m→∞

d(F (x1, x2, ..., xn), g(F (x1
m
, x2

m
, ..., xn

m
))

+ lim
m→∞

d(ggx1
m+1, gx

1)

= lim
m→∞

d(F (x1, x2, ..., xn), F (gx1m, gx
2
m, ..., gx

n
m)).
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Since ψ is continuous and monotonically increasing, from the above inequality we
have

ψ(d(F (x1, x2, ..., xn), gx1) ≤ ψ( lim
m→∞

d(F (x1, x2, ..., xn), F (gx1
m
, gx2

m
, ..., gxn

m
)))

= lim
m→∞

ψ(d(F (x1, x2, ..., xn), F (gx1m, gx
2
m, ..., gx

n
m))).

By (3.1) and (3.16), we have

ψ(d(F (x1, x2, ..., xn), gx1)) ≤ lim
m→∞

[ψ(max{d(gx1, ggx1
m
), d(gx2, ggx2

m
), ...,

d(gxn, ggxn
m
)})− φ(max{d(gx1, ggx1

m
),

d(gx2, ggx2m), ..., d(gxn, ggxnm)})].

Using (3.17) and the properties of ψ and φ, we have ψ(d(F (x1, x2, ..., xn), gx1)) = 0,
which implies that

d(F (x1, x2, x3, ..., xn), gx1) = 0; that is gx1 = F (x1, x2, x3, ..., xn).

Again, we have

d(gx2, F (x2, x3, ..., xn, x1)) ≤ d(gx2, ggx2m+1) + d(ggx2m+1, F (x
2, x3, ..., xn, x1)),

that is,

d(gx2, F (x2, ..., xn, x1) ≤ d(gx2, ggx2
m+1)+d(g(F (x

2
m
, ..., xn

m
, x1

m
)), F (x2, ..., xn, x1)).

Taking m→ ∞ in the above inequality and using (3.17), we have

d(gx2, F (x2, x3, ..., xn, x1)) ≤ lim
m→∞

d(gx2, ggx2
m+1)

+ lim
m→∞

d(g(F (x2
m
, ..., xn

m
, x1

m
)), F (x2, ..., xn, x1))

= lim
m→∞

d(F (gx2m, ..., gx
n
m, gx

1
m)), F (x2, ..., xn, x1)).

Since ψ is continuous and monotonically increasing, from the above inequality we
have

ψ(d(gx2, F (x2, ..., xn, x1))) ≤ ψ( lim
m→∞

d(F (gx2m, ..., gx
n
m, gx

1
m)), F (x2, ..., xn, x1)))

= lim
m→∞

ψ(d(F (gx2
m
, ..., gxn

m
, gx1

m
)), F (x2, ..., xn, x1))).

By (3.1) and (3.16), we have

ψ(d(gx2, F (x2, x3, ..., xn, x1))) ≤ lim
m→∞

[ψ(max{d(ggx2
m
, gx2), d(ggx3

m
, gx3), ...,

d(ggxnm, gx
n), d(ggx1m, gx

1)})−φ(max{d(ggx2m, gx
2),

d(ggx3m, gx
3), ..., d(ggxnm, gx

n), d(ggx1m, gx
1)})].
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Using (3.17) and the properties of ψ and φ, we have ψ(d(gx2, F (x2, x3, ..., xn, x1))) =
0, which implies that

d(gx2, F (x2, x3, ..., xn, x1)) = 0; that is F (x2, x3, ..., xn, x1) = gx2.

Continuing in this way, we get

d(gxn, F (xn, x1, x2, ..., xn−1)) = 0; that is gxn = F (xn, x1, x2, ..., xn−1).

Hence the element (x1, x2, ..., xn) ∈ Xn is n-tupled coincidence point of the map-
pings F : Xn → X and g : X → X. This completes the proof of the theorem. �

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, suppose that for
real (x1, x2, ..., xn), (y1, y2, ..., yn) ∈ Xn there exists, (z1, z2, ..., zn) ∈ Xn such that
(F (z1, z2, ..., zn), F (z2, ..., zn, z1), ..., F (zn, z1, ..., zn−1)) is comparable to (F (x1, x2,
..., xn), F (x2, ..., xn, x1), ..., F (xn, x1, ..., xn−1)) and (F (y1, y2, ..., yn), F (y2, ..., yn, y1),
..., F (yn, y1, ..., yn−1)). Then F and g have a unique n-tupled common fixed point.

Proof. The set of n-tupled coincidence points of F and g is non empty due to
Theorem 3.1. Assume now, (x1, x2, x3, ..., xn) and (y1, y2, y3, ..., yn) are two n-
tupled coincidence points, that is,

F (x1, x2, x3, ..., xn) = g(x1), F (y1, y2, y3, ..., yn) = g(y1)

F (x2, x3, ..., xn, x1) = g(x2), F (y2, y3, ..., yn, y1) = g(y2)

...

F (xn, x1, x2, ..., xn−1) = g(xn), F (yn, y1, y2, ..., yn−1) = g(yn).

Now, we show that

g(x1) = g(y1), g(x2) = g(y2), ..., g(xn) = g(yn).

By assumption, there exists (z1, z2, z3, ..., zn) ∈ Xn such that

(F (z1, z2, z3, ..., zn), F (z2, z3, ..., zn, z1), ..., F (zn, z1, z2, ..., zn−1))

is comparable to

(F (x1, x2, x3, ..., xn), F (x2, x3, ..., xn, x1), ..., F (xn, x1, x2, ..., xn−1))

and

(F (y1, y2, y3, ..., yn), F (y2, y3, ..., yn, y1), ..., F (yn, y1, y2, ..., yn−1)).

Put z10 = z1, z20 = z2, ..., zn0 = zn and choose z11 , z
2
1 , ..., z

n
1 ∈ X such that

g(z11) = F (z10 , z
2
0 , z

3
0 , ..., z

n

0 )

g(z21) = F (z20 , z
3
0 , ..., z

n

0 , z
1
0)

...

g(zn1 ) = F (zn0 , z
1
0 , z

2
0 , ..., z

n−1
0 ).

Further define sequences {g(z1
m
)}, {g(z2

m
)}, ..., {g(zn

m
)} such that

g(z1
m+1) = F (z1

m
, z2

m
, z3

m
, ..., zn

m
)

g(z2
m+1) = F (z2

m
, z3

m
, ..., zn

m
, z1

m
)

...

g(znm+1) = F (znm, z
1
m, z

2
m, ..., z

n−1
m ).
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Further set x10 = x1, x20 = x2, ..., xn0 = xn and y10 = y1, y20 = y2, ..., yn0 = yn. In the
same way, define the sequences {g(x1m)}, {g(x2m)}, ..., {g(xnm)} and {g(y1m)}, {g(y2m)},
..., {g(yn

m
)}. Then it is easy to show that

g(x1
m+1) = F (x1

m
, x2

m
, x3

m
, ..., xn

m
), g(y1

m+1) = F (y1
m
, y2

m
, y3

m
, ..., yn

m
)

g(x2
m+1) = F (x2

m
, x3

m
, ..., xn

m
, x1

m
), g(y2

m+1) = F (y2
m
, y3

m
, ..., yn

m
, y1

m
)

...

g(xn
m+1) = F (xn

m
, x1

m
, x2

m
, ..., xn−1

m
), g(yn

m+1) = F (yn
m
, y1

m
, y2

m
, ..., yn−1

m
).

Since

(F (x1, x2, x3, ..., xn), F (x2, x3, ..., xn, x1), ..., F (xn, x1, x2, ..., xn−1))

= (g(x11), g(x
2
1), ..., g(x

n

1 )) = (g(x1), g(x2), ..., g(xn))

and

(F (z1, z2, z3, ..., zn), F (z2, z3, ..., zn, z1), ..., F (zn, z1, z2, ..., zn−1))

= (g(z11), g(z
2
1), ..., g(z

n
1 ))

are comparable, we have

g(x1) � g(z11), g(z
2
1) � g(x2), g(x3) � g(z31), ..., g(z

n

1 ) � g(xn).

It is easy to show that (g(x1), g(x2), ..., g(xn)) and (g(z1m), g(z2m), ..., g(znm)) are
comparable, that is, for all m ≥ 1,

g(x1) � g(z1
m
), g(z2

m
) � g(x2), g(x3) � g(z3

m
), ..., g(zn

m
) � g(xn).

Thus from (3.1) we have

ψ(d(g(x1), g(z1
m+1))) = ψ(d(F (x1, x2, x3, ..., xn), F (z1

m
, z2

m
, z3

m
, ..., zn

m
)))

≤ ψ(max{d(gx1, gz1
m
), d(gx2, gz2

m
), d(gx3, gz3

m
), ..., d(gxn, gzn

m
)})

−φ(max{d(gx1, gz1m), d(gx2, gz2m), d(gx3, gz3m), ..., d(gxn, gznm)}),

ψ(d(g(x2), g(z2
m+1))) = ψ(d(F (x2, x3, ..., xn, x1), F (z2m, z

3
m, ..., z

n
m, z

1
m)))

≤ ψ(max{d(gx2, gz2
m
), d(gx3, gz3

m
), ..., d(gxn, gzn

m
), d(gx1, gz1

m
)})

−φ(max{d(gx2, gz2
m
), d(gx3, gz3

m
), ..., d(gxn, gzn

m
), d(gx1, gz1

m
)}),

...

ψ(d(g(xn), g(zn
m+1))) = ψ(d(F (xn, x1, x2..., xn−1), F (zn

m
, z1

m
, z2

m
, ..., zn−1

m
)))

≤ ψ(max{d(gxn, gznm), d(gx1, gz1m), d(gx2, gz2m), ..., d(gxn−1, gzn−1
m )})

−φ(max{d(gxn, gznm), d(gx1, gz1m), d(gx2, gz2m), ..., d(gxn−1, gzn−1
m )}).

From above inequalities and monotone property of ψ, we have

ψ(max{d(gxn, gzn
m+1), d(gx

1, gz1
m+1), d(gx

2, gz2
m+1), ..., d(gx

n−1, gzn−1
m+1)})
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= max{ψ(d(gxn, gzn
m+1)), ψ(d(gx

1, gz1
m+1)), ..., ψ(d(gx

n−1, gzn−1
m+1))}

≤ ψ(max{d(gxn, gzn
m
), d(gx1, gz1

m
), d(gx2, gz2

m
), ..., d(gxn−1, gzn−1

m
)})

−φ(max{d(gxn, gznm), d(gx1, gz1m), d(gx2, gz2m), ..., d(gxn−1, gzn−1
m )}). (3.18)

Let

Rm = max{d(gx1, gz1m+1), d(gx
2, gz2m+1), ..., d(gx

n, gznm+1)}.

Then

ψ(Rm) ≤ ψ(Rm−1)− φ(Rm−1). (3.19)

Using the property of ψ, we have

ψ(Rm) ≤ ψ(Rm−1) ⇒ Rm ≤ Rm−1.

Therefore {Rm} is a monotone decreasing sequence of nonnegative real numbers.
Hence there exists r ≥ 0 such that

Rm → r as m→ ∞.

Taking the limit as m→ ∞ in (3.19), we have

ψ(r) ≤ ψ(r) − φ(r),

which is a contradiction unless r = 0. Therefore

Rm → 0 as m→ ∞.

Then

lim
m→∞

d(gx1, gz1
m+1) = 0, lim

m→∞

d(gx2, gz2
m+1) = 0, ..., lim

m→∞

d(gxn, gzn
m+1) = 0.

Similarly, we can prove that

lim
m→∞

d(gy1, gz1
m+1) = 0, lim

m→∞

d(gy2, gz2
m+1) = 0, ..., lim

m→∞

d(gyn, gzn
m+1) = 0.

On using the triangle inequality, we have

d(gx1, gy1) ≤ d(gx1, gz1m+1) + d(gz1m+1, gy
1) → 0 as m→ ∞

d(gx2, gy2) ≤ d(gx2, gz2
m+1) + d(gz2

m+1, gy
2) → 0 as m→ ∞

...

d(gxn, gyn) ≤ d(gxn, gzn
m+1) + d(gzn

m+1, gy
n) → 0 as m→ ∞,

so that

g(x1) = g(y1), g(x2) = g(y2), ..., g(xn) = g(yn). (3.20)

Since

g(x1) = F (x1, x2, ..., xn), g(x2) = F (x2, ..., xn, x1), ..., g(xn) = F (xn, x1, ..., xn−1),

and F is g-compatible, we have

gg(x1) = F (gx1, gx2, gx3, ..., gxn)

gg(x2) = F (gx2, gx3, ..., gxn, gx1)

...

gg(xn) = F (gxn, gx1, gx2, ..., gxn−1).
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Write g(x1) = a1, g(x2) = a2, ..., g(xn) = an, then we have






















g(a1) = F (a1, a2, a3, ..., an)

g(a2) = F (a2, a3, ..., an, a1)
...

g(an) = F (an, a1, a2, ..., an−1).

(3.21)

Thus (a1, a2, ..., an) is an n-tupled coincidence point of F and g. Owing to (3.20)
with y1 = a1, y2 = a2, ..., yn = an, it follows that

g(x1) = g(a1), g(x2) = g(a2), ..., g(xn) = g(an),

that is,
g(a1) = a1, g(a2) = a2, ..., g(an) = an. (3.22)

Using (3.21) and (3.22), we have






















a1 = g(a1) = F (a1, a2, a3, ..., an)

a2 = g(a2) = F (a2, a3, ..., an, a1)
...

an = g(an) = F (an, a1, a2, ..., an−1).

(3.23)

Thus (a1, a2, ..., an) is an n-tupled common fixed point of F and g. To prove the
uniqueness, assume that (b1, b2, ..., bn) is another n-tupled common fixed point of
F and g. In view of (3.20), we have

b1 = g(b1) = g(a1) = a1

b2 = g(b2) = g(a2) = a2

...

bn = g(bn) = g(an) = an.

This completes the proof of the theorem. �

Considering g to be an identity mapping in Theorem 3.1, we have the following
corollary:

Corollary 3.3. Let (X,�) be a partially ordered set. Suppose that there is a metric
d on X such that (X, d) is a complete metric space. Let φ : [0,∞) → [0,∞) be a
continuous function with φ(t) = 0 if and only if t = 0 and ψ be an altering distance
function. Let F : Xn → X be a mapping having the mixed monotone property on
X and

ψ(d(F (x1, x2, ..., xn), F (y1, y2, ..., yn))) ≤ ψ(max{d(x1, y1), d(x2, y2), ..., d(xn, yn)})

− φ(max{d(x1, y1), d(x2, y2), ..., d(xn, yn)})

for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which y1 � x1, x2 � y2, y3 � x3, ..., xn �
yn. Suppose that

(a) F is continuous or
(b) X has the following properties:

(i) if nondecreasing sequence {xm} → x, then xm � x for all m ≥ 0;
(ii) if nonincreasing sequence {xm} → x, then x � xm for all m ≥ 0.
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If there exist x10, x
2
0, x

3
0, ..., x

n
0 ∈ X such that































x10 � F (x10, x
2
0, x

3
0, ..., x

n
0 )

F (x20, x
3
0, ..., x

n
0 , x

1
0) � x20

x30 � F (x30, ..., x
n
0 , x

1
0, x

2
0)

...

F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ) � xn0

(3.24)

then F has an n-tupled fixed point in X.

Considering ψ and g to be identity mappings in Theorem 3.1, we have the following
corollary:

Corollary 3.4. Let (X,�) be a partially ordered set. Suppose that there is a metric
d on X such that (X, d) is a complete metric space. Let φ : [0,∞) → [0,∞) be a
continuous function with φ(t) = 0 if and only if t = 0. Let F : Xn → X be a
mapping having the mixed monotone property on X and

d(F (x1, x2, ..., xn), F (y1, y2, ..., yn)) ≤ max{d(x1, y1), d(x2, y2), ..., d(xn, yn)}

− φ(max{d(x1, y1), d(x2, y2), ..., d(xn, yn)})

for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which y1 � x1, x2 � y2, y3 � x3, ..., xn �
yn.

Also in view of conditions (a) and (b) of Corollary 3.3, if (3.24) is satisfied, then
F has an n-tupled fixed point in X.

Considering ψ and g to be identity mappings and φ(t) = (1− k)t, where 0 ≤ k < 1
in Theorem 3.1, we have the following corollary:

Corollary 3.5. Let (X,�) be a partially ordered set. Suppose that there is a metric
d on X such that (X, d) is a complete metric space. Let F : Xn → X be a mapping
having the mixed monotone property on X. Assume that there exists k ∈ [0, 1) with

d(F (x1, x2, ..., xn), F (y1, y2, ..., yn)) ≤ k max{d(x1, y1), d(x2, y2), ..., d(xn, yn)}

for all x1, x2, ..., xn, y1, y2, ..., yn ∈ X for which y1 � x1, x2 � y2, y3 � x3, ..., xn �
yn.

Also in view of conditions (a) and (b) of Corollary 3.3, if (3.24) is satisfied, then
F has an n-tupled fixed point in X.

Remark 3.6. With n = 2, Theorem 3.1 and Corollaries 3.3-3.5 respectively yield
the results of Choudhury et al. [11]. However, from Theorem 3.2, we can deduce a
unique coupled common fixed point theorem.

Example 3.7. Let X = [0, 1]. Then (X,�) is a partially ordered set with the
natural ordering of real numbers. Let d(x, y) = |x− y| for all x, y ∈ X. Then (X, d)
is a complete metric space with the required properties of Theorem 3.1. Define
g : X → X by g(x) = x2 for all x ∈ X and F : Xn → X (wherein n is fixed) by

F (x1, x2, ..., xn) =











(x1)
2
−(x2)

2
+(x3)

2
−.....+(xn−1)

2
−(xn)2

n+1 , if xi+1 � xi, i = 1, 3, ..., n− 1

0 otherwise,
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for all x1, x2, ..., xn ∈ X. Then F obeys the mixed g-monotone property. Let
ψ : [0,∞) → [0,∞) and φ : [0,∞) → [0,∞) be defined respectively as follows:

ψ(t) = t2 and φ(t) =
2n+ 1

(n+ 1)2
t2, for t ∈ [0,∞).

Then ψ and φ have the properties mentioned in Theorem 3.1. Also F is g-
compatible in X. Now choose (x10, x

2
0, . . . , x

n
0 ) = (0, c, 0, c, ..., c) (c > 0). Then































g(x10) = g(0) = 0 = F (x10, x
2
0, x

3
0, ..., x

n
0 ) = g(x11)

g(x21) = F (x20, x
3
0, ..., x

n
0 , x

1
0) � c2 = g(c) = g(x20)

g(x30) = g(0) = 0 = F (x30, ..., x
n
0 , x

1
0, x

2
0) = g(x31)

...

g(xn1 ) = F (xn0 , x
1
0, x

2
0, ..., x

n−1
0 ) � c2 = g(c) = g(xn0 ).

We next verify inequality (3.1) (of Theorem 3.1). We take x1, x2, ..., xn, y1, y2, ..., yn ∈
X such that

gy1 � gx1, gx2 � gy2, gy3 � gx3, ..., gxn � gyn.

Let

M = max{d(gx1, gy1), d(gx2, gy2), d(gx3, gy3), ..., d(gxn, gyn)}

= max{|(x1)
2
− (y1)

2
|, |(x2)

2
− (y2)

2
|, |(x3)

2
− (y3)

2
|, ..., |(xn)

2
− (yn)

2
|}.

Then

M ≥ |(x1)
2
−(y1)

2
|, M ≥ |(x2)

2
−(y2)

2
|,M ≥ |(x3)

2
−(y3)

2
|, ...,M ≥ |(xn)

2
−(yn)

2
|.

The following four cases arise:

Case I: Let x1, x2, x3, ..., xn, y1, y2, y3, ..., yn ∈ X such that xi+1 � xi, yi+1 � yi

for i = 1, 3, ..., n− 1. Then

d(F (x1, x2, x3, ..., xn), F (y1, y2, y3, ..., yn))

= d

(

(x1)
2
− (x2)

2
+ (x3)

2
− ....− (xn)2

n+ 1
,
(y1)

2
− (y2)

2
+ (y3)

2
− ....− (yn)2

n+ 1

)

=

∣

∣

∣

∣

(x1)
2
− (x2)

2
+ (x3)

2
− ....− (xn)

2

n+ 1
−

(y1)
2
− (y2)

2
+ (y3)

2
− ....− (yn)

2

n+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

((x1)
2
− (y1)

2
)− ((x2)

2
− (y2)

2
) + ((x3)

2
− (y3)

2
)− ....− ((xn)2 − (yn)2)

n+ 1

∣

∣

∣

∣

≤
|(x1)

2
− (y1)

2
|+ |(x2)

2
− (y2)

2
|+ |(x3)

2
− (y3)

2
|+ ....+ |(xn)

2
− (yn)

2
|

n+ 1

≤
n

n+ 1
M.

Case II: Let x1, x2, x3, ..., xn, y1, y2, y3, ..., yn ∈ X such that xi+1 � xi for i =
1, 3, ..., n− 1 and yi � yi+1 for atleast one i. Then (for y1 � y2),

d(F (x1, x2, x3, ..., xn), F (y1, y2, y3, ..., yn))
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= d

(

(x1)
2
− (x2)

2
+ (x3)

2
− ....− (xn)

2

n+ 1
, 0

)

≤

∣

∣

∣

∣

(x1)
2
− (x2)

2
+ (x3)

2
− ....− (xn)

2
+ (y2)

2
− (y1)

2

n+ 1

∣

∣

∣

∣

=

∣

∣

∣

∣

((x1)
2
− (y1)

2
)− ((x2)

2
− (y2)

2
) + (x3)

2
− (x4)

2
+ ....− (xn)

2

n+ 1

∣

∣

∣

∣

...

≤
|(x1)

2
− (y1)

2
|+ |(x2)

2
− (y2)

2
|+ |(x3)

2
− (y3)

2
|+ ....+ |(xn)2 − (yn)2|

n+ 1

≤
n

n+ 1
M.

Case III: Let x1, x2, x3, ..., xn, y1, y2, y3, ..., yn ∈ X such that xi � xi+1 for atleast
one i and yi+1 � yi for i = 1, 3, ..., n − 1. Then arguing as in Case II, one verify
inequality (3.1).

Case IV: Let x1, x2, x3, ..., xn, y1, y2, y3, ..., yn ∈ X such that xi � xi+1, yi � yi+1

for atleast one i. Then

d(F (x1, x2, x3, ..., xn), F (y1, y2, y3, ..., yn)) = d(0, 0) ≤
n

n+ 1
M.

In all above cases

ψ(d(F (x1, x2, x3, ..., xn), F (y1, y2, y3, ..., yn)))

≤
n2

(n+ 1)
2M

2 =M2 −
2n+ 1

(n+ 1)
2M

2

= ψ(max{d(gx1, gy1), d(gx2, gy2), ..., d(gxn, gyn)})

−φ(max{d(gx1, gy1), d(gx2, gy2), ..., d(gxn, gyn)}).

Hence all the conditions of Theorem 3.1 are satisfied and (0, 0, 0, ..., 0) is an n-tupled
coincidence point of F and g.
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