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A FRACTIONAL POWER FOR DUNKL TRANSFORMS

(COMMUNICATED BY H. M. SRIVASTAVA)

SAMI GHAZOUANI, FETHI BOUZAFFOUR

Abstract. A new fractional version of the Dunkl transform for real order α

is obtained. An integral representation, a Bochner type identity and a Master

formula for this transform are derived.

1. Introduction

Recently, various works have been published that develop the theory of fractional
powers of operators. We mention particularly the fractional versions of classical
integral transform such that Fourier transform and Hankel transform (see[15, 13, 14,
24]). Dunkl theory generalizes classical Fourier analysis on RN . It started twenty
years ago with Dunkl’s seminal work [4] and was further developed by several
mathematicians (see[2, 6, 8, 17]). In this paper, we consider the Dunkl operators
Ti, i, . . . , N , associated with an arbitrary finite reflection group G and a nonnegative
multiplicity function k. These operators are very important and they provide a
useful tool in the study of special functions with root systems. The Dunkl kernel
Ek has been introduced by C.F. Dunkl in [5]. It generalizes the usual exponential
function in many respects, and can be characterized as the solution of a joint
eigenvalue problem for the associated Dunkl operators. For a family of weight
functions ωk invariant under a reflection group G, Dunkl [6] introduced an integral
transform associated with the kernel Ek and proved the Plancherel theorem. In
[2], de Jeu studied the Dunkl transform by completely different method and proved
the inversion formula and the Plancherel theorem. The Dunkl transform, initially
defined on L1(RN , ωk(x)dx) by

Dkf(x) =
ck

2γ+N/2

∫
RN

f(y)Ek(−ix, y)ωk(y)dy,

extends to an isometry of L2(RN , ωk(x)dx) and commutes with the reflection group
G. In the setting of general Dunkl’s theory Rösler [17] constructed systems of natu-
rally associated multivariable generalized Hermite polynomials

{
Hν ; ν = (ν1, . . . , νN ) ∈ ZN+

}
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and Hermite functions
{
hν ; ν = (ν1, . . . , νN ) ∈ ZN+

}
. He proved that the general-

ized Hermite functions {hν}ν∈ZN+ form an orthonormal basis of eigenfunctions for

the Dunkl operator on L2(RN , ωk(x)dx) with Dk(hν) = (−i)|ν|hν .
This paper deals with the constraction of a fractional power of the Dunkl trans-

form called the fractional Dunkl transform (FDT), using the multivariable general-
ized Hermite function introduced by Rösler [17]. The resulting family of operators
{Dα

k }α∈R was proved to be a C0-group of unitary operators on L2
(
RN , ωk(x) dx

)
,

with infinitesimal generator T. The spectral properties of T is studied using the
semigroup techniques. The FDT given in this paper has an integral representation
which used with the analogue of the Funk-Hecke formula for k-spherical harmonics
[23] to derive a Bochner type identity for the FDT. The Master formula of the FDT
is proved and founded to be generalizing the one given by Rösler [17] in Proposition
3.10. This Master formula is used to develop a new proof of the statement (2) of
the 3.4 Rösler’s theorem [17].

The contents of the present paper are as follows. In section 2, some basic def-
initions and results about harmonic analysis associated with Dunkl operators are
collected. In section 3, the fractional Dunkl transform definition is given and then
some elementary properties of this transformation are listed. In section 4, the
spectral properties of T is studied. In section 5, the integral representation of the
fractional Dunkl transform as well as the Bochner type identity and Master formula
are given. In section 6, we find a subspace of L2(RN , ωk(x)dx) in which we define
T explicitly.

2. Background: Dunkl theory

In this section, we recall some notations and results on Dunkl operators, Dunkl
transform, and generalized Hermite functions (see, [4, 5, 2, 16, 19]).
Notation: We denote by Z+ the set of non-negative integers. For a multi-index
ν = (ν1, . . . , νN ) ∈ ZN+ , we write |ν| = ν1 + · · ·+ νN . The C-algebra of polynomial

functions on RN is denoted by P = C[RN ]. It has a natural grading

P =
⊕
n≥0

Pn,

where Pn is the subspace of homogenous polynomials of (total) degree n. S(RN ) is
the Schwartz space of rapidly decreasing functions on RN and C0(RN ) is the space
of continuous functions on RN vanishing at infinity.

2.1. Dunkl operators and Dunkl Kernel. In RN , we consider the standard
inner product

〈x, y〉 =

N∑
k=1

xkyk.

We shall use the same notation for its bilinear extension to CN ×CN . For x ∈ RN ,
denote |x| =

√
〈x, x〉.

For u ∈ RN\{0}, let σu be the reflection in the hyperplane (Ru)⊥ orthogonal to u

σu(x) = x− 2
〈u, x〉
|u|2

u, x ∈ RN . (2.1)
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A root system is a finite spanning set R ⊂ RN of nonzero vectors such that, for
every u ∈ R, σu preserves R. We shall always assume that R is reduced, i.e.
R ∩ Ru = ±u, for all u ∈ R. Each root system can be written as a disjoint union
R = R+∪(−R+), whereR+ and (−R+) are separated by a hyperplane through the
origin. The subgroup G ⊂ O(N) generated by the reflections {σu; u ∈ R} is called
the finite reflection group associated with R. Henceforth, we shall normalize R so
that 〈u, u〉 = 2 for all u ∈ R. This simplifies formulas, without loss of generality for
our purposes. We refer to [12] for more details on the theory of root systems and
reflection groups.

A multiplicity function on R is a G-invariant function k : R → C, i.e. k(σu) =
k(u), for fall u ∈ R and σ ∈ G. The C-vector space of multiplicity functions on R
is denoted by K. The dimension of K is equal to the number of G-orbits in R. We
set K+ to be the set of multiplicity functions k such that k(u) ≥ 0 for all u ∈ R.

For ξ ∈ CN and k ∈ K, C. Dunkl [4] defined a family of first order differential-
difference operators Tξ(k) that play the role of the usual partial differentiation.
Dunkl’s operators are defined by

Tξ(k)f(x) := ∂ξf(x) +
∑
η∈R+

k(η) < η, ξ >
f(x)− f(σηx)

〈η, x〉
, f ∈ C1(RN ). (2.2)

Here ∂ξ denotes the derivative in the direction of ξ. Thanks to the G-invariance of
the function k, this definition is independent of the choice of the positive subsystem
R+. The operators Tξ(k) are homogeneous of degree (−1). Moreover, by the G-
invariance of the multiplicity function k, the Dunkl operators satisfy

h ◦ Tξ(k) ◦ h−1 = Thξ(k), ∀ h ∈ G,
where h.f(x) = f(h−1x). The most striking property of Dunkl operators Tξ(k),
which is the foundation for rich analytic structures with them, is the following

Theorem 2.1. For fixed k, Tξ(k) ◦ Tη(k) = Tη(k) ◦ Tξ(k), ∀ξ, η ∈ RN .

This result was obtained in [4] by a clever direct argumentation. An alternative
proof, relying on Koszul complex ideas, is given in [7].

For k ∈ K+, there exists a generalization of the usual exponential kernel e〈.,.〉 by
means of the Dunkl system of differential equations.

Theorem 2.2. Assume that k ∈ K+.
(i) (Cf. [5, 16].) There exists a unique holomorphic function Ek on CN × CN
characterized by{

Tξ(k)Ek(z, w) = 〈ξ, w〉Ek(z, w), ∀ ξ ∈ CN ,
Ek(0, w) = 1,

(2.3)

Further, the Dunkl kernel Ek is symmetric in its arguments and satisfies

Ek(λz,w) = Ek(z, λw), Ek(z, w) = Ek(z, w) and Ek(gz, gw) = Ek(z, w) (2.4)

for all z, w ∈ CN , λ ∈ C and g ∈ G.
(ii) (Cf. [20].) For all x ∈ RN , y ∈ CN and all multi-indices ν ∈ ZN+ ,

|∂νyEk(x, y)| ≤ |x||ν|max
g∈G

eRe〈gx,y〉.

In particular,

|∂νyEk(x, y)| ≤ |x||ν|e|x||Rey|, (2.5)
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and for all x, y ∈ RN :

|Ek(ix, y)| ≤ 1. (2.6)

Remark 2.1.
• When k = 0, we have E0(z, w) = e〈z,w〉 for z, w ∈ CN .
• For complex-valued k, there is a detailed investigation of (2.3) by Opdam [16].
Theorem 2.2 (i) is a weak version of Opdam’s result.
• M. de Jeu had already an estimate on Ek with slightly weaker bounds in [2],

differing by an additional factor
√
|G|.

The counterpart of the usual Laplacian is the Dunkl-Laplacian operator de-

fined by ∆k :=

N∑
i=0

Tξi(k)2, where {ξ1, . . . , ξN} is an arbitrary orthonormal basis of

(RN , 〈., , 〉). It is homogeneous of degree −2. By the normalization 〈u, u〉 = 2, we
can rewrite ∆k as

∆kf(x) = ∆f(x) + 2
∑
η∈R+

k(η)

[
〈∇f(x), η〉
〈η, x〉

− f(x)− f(σηx)

〈η, x〉2

]
, (2.7)

where ∆ and ∇ denote the usual Laplacian and gradient operators, respectively
(cf.[4]).

2.2. Dunkl transform. For fixed k ∈ K+, let ωk be the weight function on RN
defined by

ωk(x) =
∏
η∈R+

|〈η, x〉|2k(η).

It is G-invariant and homogeneous of degree 2γ, with the index

γ = γ(k) =
∑
η∈R+

k(η).

Let dx be the Lebesgue measure corresponding to 〈., .〉 and set Lpk(RN ) the space
of measurable functions on RN such that

‖f‖p =

(∫
RN
|f(x)|pωk(x) dx

) 1
p

< +∞, if 1 ≤ p < +∞.

Following Dunkl [6], we define the Dunkl transform on the space L1
k(RN ) by

Dkf(x) =
ck

2γ+N/2

∫
RN

f(y)Ek(−ix, y)ωk(y)dy,

where ck denotes the Mehta-type constant ck =

(∫
RN

e−|x|
2

wk(x)dx

)−1

. Many

properties of the Euclidean Fourier transform carry over to the Dunkl transform.
In particular:

Theorem 2.3. (Cf. [6, 2].)
a) (Riemann-Lebesgue lemma) For all f ∈ L1

k(RN ), the Dunkl transform Dkf
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belongs to C0(RN ).
b) (L1-inversion) For all f ∈ L1

k(RN ) with Dkf ∈ L1
k(RN ),

D2
kf = f̌ , a.e, where f̌(x) = f(−x). (2.8)

c) The Dunkl transform f → Dkf is an automorphism of S(RN ).
d) (Plancherel Theorem)
i) If f ∈ L1

k(RN ) ∩ L2
k(RN ), then Dkf ∈ L2

k(RN ) and ‖Dkf‖2 = ‖f‖2.
ii) The Dunkl transform has a unique extension to an isometric isomorphism of
L2
k(RN ). The extension is also denoted by f → Dkf.

We conclude this subsection with two important reproducing properties for the
Dunkl kernel due to [6].

Theorem 2.4. (Cf. [6].) For all p ∈ P and y, z ∈ CN ,

(1) ck
2γ+N/2

∫
RN

e−∆k/2p(x) Ek(x, y) ωk(x) e−|x|
2/2dx = el(y)/2p(y).

(2) ck
2γ+N/2

∫
RN

Ek(x, y)Ek(x, z) ωk(x) e−|x|
2/2dx = e(l(y)+l(z))/2p(y).

2.3. Generalized Hermite functions. For an arbitrary finite reflection group G
and for any non-negative multiplicity function k, Rösler [17] introduced a complete

systems of orthogonal polynomials with respect to the weight function ωk(x) e−|x|
2

dx,
called generalised Hermite polynomials. The key to their definition is the following
bilinear form on P, which was introduced in [5]:

[p, q]k := (p(T )q)(0) for p, q ∈ P.

The homogeneity of the Dunkl operators implies that Pn ⊥ Pm for n 6= m. More-
over, if p, q ∈ Pn, then

[p, q]k = 2nck

∫
RN

e−∆k/4p(x) e−∆k/4q(x) ωk(x) e−|x|
2

dx.

This is obtained from Theorem 3.10 of [5] by rescaling, see lemma (2.1) in [17]. So
in particular, [., .]k is a scalar product on the vector space PR = R[x1, . . . , xN ].

Now let {ϕν , ν ∈ ZN+} be an (arbitrary) orthonormal basis of PR with respect
to [., .]k such that ϕν ∈ P|ν| (For details concerning the construction and canonical
choices of such a basis, we refer to [17]). Then the generalised Hermite polynomials
{Hν , ν ∈ ZN+} and the (normalised) generalised Hermite functions {hν , ν ∈ ZN+}
associated with G, k and {ϕν} are defined by

Hν(x) := 2|ν|e−∆k/4ϕν(x) and hν(x) :=

√
ck

2|ν|/2
e−|x|

2/2Hν(x) (x ∈ RN ). (2.9)

We list some standard properties of generalised Hermite functions that we shall use
in this article.

Theorem 2.5. (Cf. [17].) Let {Hν} and {hν} be the Hermite polynomials and
Hermite functions associated with the basis {ϕν} on RN and let x, y ∈ RN . Then
(1) The hν satisfy hν(−x) = (−1)|ν|hν(x).
(2) {hν , ν ∈ ZN+} is an orthonormal basis of L2

k(RN ).

(3) The hν are eigenfunctions of the Dunkl transform on L2
k(RN ), with Dkhν =

(−i)|ν|hν .
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(4) (Mehler formula) For r ∈ C with |r| < 1,

∑
ν∈ZN+

Hν(x)Hν(y)

2|ν|
r|ν| =

e
− r

2(|x|2+|y|2)

1−r2

(1− r2)γ+(N/2)
Ek

(
2zx

1− z2
, y

)
.

Throughout this paper, R denotes a root system in RN , R+ a fixed positive
subsystem of R and k a nonnegative multiplicity function defined on R.

3. The fractional Dunkl transforms

If A ∈ Rn×n is a square diagonalizable matrix A then we may write its eigenvalue
decomposition A = PDP−1. Clearly for any integer a it holds that

Aa = PDaP−1.

So it is a natural generalization to use the same formula as a definition if a is not
integer. Exactly the same idea can be used for a linear operator A on a linear space
if it has a sequence of eigenvectors that is complete in the whole space [14, 24]. Let
{λk, ek}∞k=0 be the sequence of eigenvalues and corresponding eigenvectors. Since
the set of eigenvectors is complete, we can associate with each element f in the
Hilbert space a unique set of coordinates and conversely. These mappings are called
the analysis and the synthesis operators respectively. They are adjoint operators.
If E is the synthesis operator and E∗ the analysis operator, which for a given set of
basis vectors {ek} are defined by

E : {ck}∞k=0 7−→ f =

∞∑
k=0

ckek and E∗ : f 7−→ {ck}∞k=0,

then we can write

A = EΛE∗

where Λ is the simple diagonal scaling operator

Λ : {ck}∞k=0 7−→ {λkck}∞k=0.

Its fractional power is then clearly Aa = EΛaE∗.

3.1. Definition and properties. In order to construct a fractional power of the
Dunkl transform, we use the idea developed in the above by restricting ourselves
to the Hilbert space L2

k(RN ) with the inner product given by:

〈f, g〉k =

∫
RN

f(x)g(x)ωk(x)dx.

Let l2(ZN+ ) be the space of complex sequences u = (uν)ν∈ZN+ such that
∑
ν∈ZN+

|uν |2 <

∞. This is a Hilbert space for the inner product

〈u, v〉 =
∑
ν∈ZN+

uνvν , u = (uν)ν∈ZN+ , v = (vν)ν∈ZN+ ∈ l
2(ZN+ ).



A FRACTIONAL POWER FOR DUNKL TRANSFORMS 7

Define the analysis and the synthesis operators associated to the generalized Her-
mite functions {hν , ν ∈ ZN+} respectively by

E : l2(ZN+ ) −→ L2
k(RN )

(uν)ν∈ZN+ 7−→ f =
∑
ν∈ZN+

uνhν

and
E∗ : L2

k(RN ) −→ l2(ZN+ )
f 7−→ (〈f, hν〉k)ν∈ZN+

.

As the generalized Hermite functions {hν , ν ∈ ZN+} are a basis of eigenfunctions of

the Dunkl transform Dk on L2
k(RN ), satisfying Dk(hν) = e−iπ|ν|/2hν , then we can

write

Dk = EΛE∗, (3.1)

where Λ is the diagonal scaling operator

Λ : l2(ZN+ ) −→ l2(ZN+ )
(uν)ν∈ZN+ 7−→

(
e−iπ|ν|/2 uν

)
ν∈ZN+

.

Definition 3.1. Let α ∈ R, we define the fractional Dunkl transform Dα
k on

L2
k(RN ) by

Dα
k = EΛαE∗,

where Λα is a fractional power of the diagonal scaling operator given by

Λα : l2(ZN+ ) −→ l2(ZN+ )
(uν)ν∈ZN+ 7−→

(
eiα|ν| uν

)
ν∈ZN+

.

More explicitly, if f ∈ L2
k(RN ), then

Dα
k f =

∑
ν∈ZN+

ei|ν|α 〈f, hν〉 hν . (3.2)

We summarize the elementary properties of Dα
k in the next Proposition.

Proposition 3.1. Let α, β ∈ R. The fractional Dunkl transform Dα
k satisfies the

following properties:
1) D0

k = I, which is the identity operator,

2) D
−π/2
k = Dk,

3) Dα
k ◦D

β
k = Dα+β

k ,

4) Dα+2π
k = Dα

k ,

5) Dπ
k = Ǐ, where Ǐf(x) = f(−x),

6) For all f and g ∈ L2(RN , ωk(x)dx), 〈Dα
k f, g〉 = 〈f,D−αk g〉.

Proof 1), 2) and 4) follow immediately from (3.2).
3) From (3.2), we have

Dα
k (Dβ

kf) =
∑
ν∈ZN+

ei|ν|α 〈Dβ
kf, hν〉 hν

=
∑
ν∈ZN+

ei|ν|(α+β)〈f, hν〉 hν = Dα+β
k f.
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5) By (3.2) and Theorem 2.5, 1) , we have

D−πk f =
∑
ν∈ZN+

e−i|ν|π 〈f, hν〉 hν

=
∑
ν∈ZN+

(−1)|ν| 〈f, hν〉 hν .

= Îf.

6) Let f and g ∈ L2(RN , ωk(x)dx). It is easy to check that

〈Dα
k f, g〉 =

∑
ν∈ZN+

ei|ν|α 〈f, hν〉 〈g, hν〉 =
∑
ν∈ZN+

〈f, hν〉 e−i|ν|α〈g, hν〉

= 〈f,D−αk g〉.

Theorem 3.1. The family of operators {Dα
k }α∈R is a C0-group of unitary operators

on L2
k(RN ).

Proof From Proposition 3.1, we deduce that the family {Dα
k }α∈R satisfies the

algebraic properties of a group:

D0
k = I, Dα

k ◦D
β
k = Dα+β

k = Dβ
k ◦D

α
k ; α, β ∈ R.

For the strong continuity, assume that f ∈ L2
k(RN ). Then

‖Dα
k f − f‖

2
2 =

∑
ν∈ZN+

|ei|ν|α − 1|2 |〈f, hν〉|2 .

For each ν ∈ ZN+ , we have

lim
α→0
|ei|ν|α − 1|2 |〈f, hν〉|2 = 0,

|ei|ν|α − 1|2 |〈f, hν〉|2 ≤ 4 |〈f, hν〉|2 .

Since ∑
ν∈ZN+

|〈f, hν〉|2 = ‖f‖22 <∞,

then we can interchange limits and sum to get:

lim
α→0
‖Dα

k f − f‖
2
2 = 0.

Hence {Dα
k }α∈R is a strongly continuous group of operators on L2

k(RN ). In addition,
by Proposition 3.1, we have for all f, g ∈ L2

k(RN ),

〈Dα
k f, g〉 = 〈f, D−αk g〉,

and therefore (Dα
k )∗ = D−αk = (Dα

k )−1, establishing that each Dα
k is unitary.

4. The infinitesimal generator of the C0-group {Dα
k }α∈R.

The infinitesimal generator T of the C0-group {Dα
k }α∈R is defined by

T : L2
k(RN ) ⊇ D(T ) −→ L2

k(RN ),
f 7−→ Tf
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where

D(T ) =
{
f ∈ L2

k(RN ) : lim
α→0

(1/α)[Dα
k f − f ] ∈ L2

k(RN )
}
,

T f = lim
α→0

(1/α)[Dα
k f − f ], f ∈ D(T ).

Our goal here is to study spectral properties of T. We indicate some necessary
notation and definitions, needed in the sequel. We denote by B(L2

k(RN )), the set
of all linear bounded operator in L2

k(RN ). The resolvent set of T is the set ρ(T )
consisting of all scalars λ for which the linear operator λI−T is a 1-1 mapping from
its domain D(λI − T ) = D(T ) on to the Hilbert space L2

k(RN ) with (λI − T )−1 ∈
B(L2

k(RN )). The spectrum of T is the set σ(T ) that is the complement of ρ(T ) in
C. The function R(λ, T ) = (λI − T )−1 from ρ(T ) into B(L2

k(RN )) is the resolvent
of T.

As T is the generator of the C0-group {Dα
k }α∈R, some elementary properties of

T and Dα
k are listed in the following proposition (see [9], [10]).

Proposition 4.1. Let α ∈ R. The following properties hold.
i) If f ∈ D(T ), then Dα

k f ∈ D(T ) and

d

dα
Dα
k f = Dα

kTf = TDα
k f. (4.1)

ii) For every t ∈ R and f ∈ L2
k(RN ), one has∫ t

0

Dα
k f dα ∈ D(T ).

iii) For every α ∈ R, one has

Dα
k f − f = T

∫ α

0

Ds
kf ds, if f ∈ L2

k(RN ) (4.2)

=

∫ α

0

Ds
kTf ds, if f ∈ D(T ). (4.3)

Remark 4.1. If we apply the Proposition 4.1, iii) to the rescaled semigroup

S(α) := e−λαDα
k , α ∈ R

whose generator is B := T −λI with domain D(B) = D(T ), we obtain for every
λ ∈ C and α ∈ R,

−e−λαDα
k f + f = (λI − T )

∫ α

0

e−λsDs
kf ds; f ∈ L2

k(RN ), (4.4)

=

∫ α

0

e−λsDs
k(λI − T )f ds; f ∈ D(T ). (4.5)

Now we are interesting with the eigenvalues of T by giving an important formula
relating the semigroup {Dα

k }α∈R, to the resolvent of its generator T.

Proposition 4.2. For the operator T, the following properties hold:
1) T is closed and densely defined.
2) The operator iT is self-adjoint.
3) σ(T ) = σp(T ) ⊂ iZ, and for each λ ∈ C\iZ and for all f ∈ L2

k(RN ),

R(λ, T )f = (1− e−2πλ)−1

∫ 2π

0

e−λsDs
kf ds. (4.6)
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Here σp(T ) = {λ ∈ C : λI − T is not injective} .

Proof 1) The fact that T is closed and densely defined follows from the Hille-
Yosida Theorem (see[[10], p. 15]).
2) Since {Dα

k }α∈R is unitary, it follows from Stone’s Theorem [[10], p. 32] that T
is skew-adjoint (T ∗ = −T ) and therefore iT is self-adjoint.
3) If we replace α by 2π in (4.4) and (4.5) and we use the fact that {Dα

k }α∈R is a
periodic C0-group with period 2π, we get

(1− e−2πλ)f = (λI − T )

∫ 2π

0

e−λsDs
kf ds; f ∈ L2

k(RN ), (4.7)

=

∫ 2π

0

e−λsDs
k(λI − T )f ds; f ∈ D(T ). (4.8)

Let λ 6∈ iZ. Then 1− e−2πλ 6= 0. By the use of (4.7) and (4.8), λI − T is invertible
(λ ∈ ρ(T )) and

(λI − T )−1f = R(λ, T )f = (1− e−2πλ)−1

∫ 2π

0

e−λsDs
kf ds.

The previous Proposition indicates that every point in the spectrum of T is an
isolated point of the set iZ. Let in be an element of the spectrum of T and

Pn =
1

2iπ

∫
Γ

R(λ, T ) dλ,

the associated spectral projection, where Γ is a Jordan path in the complement
of iZ\{in} and enclosing in. The function λ 7−→ R(λ, T ) can be expanded as a
Laurent series

R(λ, T ) =

+∞∑
k=−∞

(λ− in)kBk

for 0 < |λ − in| < δ and some sufficiently small δ > 0. The coefficients Bk of this
series are bounded operators given by the formulas

Bk =
1

2iπ

∫
Γ

R(λ, T )

(λ− in)k+1
dλ, k ∈ Z.

The coefficient B−1 is exactly the spectral projection Pn corresponding to the de-
composition σ(T ) = {in}∪{iZ\{in}} of the spectrum of T. From (4.6), one deduces
the identitie

Pn = B−1 = lim
λ→in

(λ− in)R(λ, T )

=
1

2π

∫ 2π

0

e−insDs
k ds, (4.9)

which allows as to interpret Pn as the nth Fourier coefficient of the 2π-periodic
function s 7−→ Ds

k.
In the following Proposition we gather some properties of the operator Pn.

Proposition 4.3. Let n,m ∈ Z such that n 6= m and f, g ∈ L2
k(RN ). Then

i) TPn = inPn,
ii) Ds

kPn = einsPn,
iii) PnPm = 0,
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iv) 〈Pnf, g〉 = 〈f, Png〉 . In particular 〈Pnf, Pmg〉 = 0.
v) The linear span

lin
⋃
n∈Z

PnL
2
k(RN )

is dense in L2
k(RN ).

Proof i) It follows directly from (4.7) applied to λ = in.
ii) Applying Ds

k to each member of (4.9) then according to Proposition 3.1, 3), we
obtain

Ds
kPnf =

1

2π

∫ 2π

0

e−intDs
kD

t
kf dt

=
1

2π

∫ 2π

0

e−intDs+t
k f dt.

The change of variables u = s+ t gives the desired result.
iii) From (4.9) and ii), we have

PnPmf =
1

2π

∫ 2π

0

e−insDs
k(Pmf) ds

=

(
1

2π

∫ 2π

0

ei(m−n)s ds

)
Pmf

= 0.

iii) Obvious.
iv) Assume that the linear span

lin
⋃
n∈Z

PnL
2
k(RN )

is not dense in L2
k(RN ). By the Hahn-Banach theorem there exists a nonzero linear

functional
ϕ : L2

k(RN ) −→ C
vanishing on each PnL

2
k(RN ), n ∈ Z. By the Riesz representation theorem, there

exists a unique vector g ∈ L2
k(RN )\{0} such that

ϕ(f) = 〈f, g〉 for all f ∈ L2
k(RN ).

Hence for all n ∈ Z and f ∈ L2
k(RN ),

0 = 〈Pnf, g〉 =

〈
1

2π

∫ 2π

0

e−insDs
kf ds, g

〉
=

1

2π

∫ 2π

0

e−ins 〈Ds
kf, g〉 ds.

For each f ∈ L2
k(RN ), the function s 7−→ 〈Ds

kf, g〉 has all its Fourier coefficients
equal to zero, then it vanishes. This cannot be true, since if we take f = g and
s = 0, 〈

D0
kg, g

〉
= ‖g‖22 > 0.

Proposition 4.4. Let f ∈ D(T ). Then

f =

+∞∑
n=−∞

Pnf, (4.10)
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and therefore, if f ∈ D(T 2)

Tf =

+∞∑
n=−∞

inPnf. (4.11)

Proof We are going to show that the series
∑
n∈Z

Pnf is summable for all f ∈

D(T ). For this, let f ∈ D(T ) and put g = Tf. The commutativity of T and Pn
together with Proposition 4.3 gives:

Png = PnTf = TPnf = inPnf.

By the Cauchy-Schwartz inequality, it follows that∣∣∣∣∣∑
n∈H
〈Pnf, h〉

∣∣∣∣∣ =

∣∣∣∣∣∑
n∈H

(in)−1 〈Png, h〉

∣∣∣∣∣
≤

(∑
n∈H

n−2

)1/2(∑
n∈H
|〈Png, h〉|2

)1/2

,

where h ∈ L2
k(RN ) and H be a finite subset of Z\{0}. The function s 7−→ 〈Ds

kg, h〉
belongs to L2([0, 2π]), then we obtain from Bessel’s inequality∑

n∈H
|〈Png, h〉|2 ≤ 1

2π

∫ 2π

0

|〈Ds
kg, h〉|2 ds

≤ ‖h‖22
2π

∫ 2π

0

‖Ds
kg‖22 ds = ‖h‖22 ‖g‖22.

Therefore, for any h ∈ L2
k(RN ),∣∣∣∣∣

〈∑
n∈H

Pnf, h

〉∣∣∣∣∣ =

∣∣∣∣∣∑
n∈H
〈Pnf, h〉

∣∣∣∣∣ ≤ ‖h‖2 ‖g‖2

(∑
n∈H

n−2

)1/2

.

Taking supremum over h ∈ L2
k(RN ) with ‖h‖2 ≤ 1, we get∥∥∥∥∥∑

n∈H
Pnf

∥∥∥∥∥
2

≤ ‖g‖2

(∑
n∈H

n−2

)1/2

,

which means that the series
∑
n∈Z

Pnf converges converges in L2
k(RN ).

Set

f1 =

+∞∑
n=−∞

Pnf

and let g ∈ L2
k(RN ). As the Fourier coefficients of the continuous, 2π-periodic

functions
s 7−→ 〈Ds

kf1, g〉 and s 7−→ 〈Ds
kf, g〉

coincide. Then, for all s ∈ R,
〈Ds

kf1, g〉 = 〈Ds
kf, g〉 .

In particular, for s = 0, 〈f1, g〉 = 〈f, g〉 and therefore f1 = f.
Replacing f in (4.10) by Tf, then we get (4.11).
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At the end of the section 4, we will show that Pn = 0, for any negative integer
n 6= 0.

5. Integral representation.

In this section, we shall derive an integral representation for the fractional Dunkl
transform Dα

k defined by (3.2), for suitable function f.
We define the operator Dα

k,r on L2
k(RN ) by

Dα
k,rf :=

∑
ν∈ZN+

r|ν|ei|ν|α〈f, hν〉hν , (5.1)

where 0 < r ≤ 1 and so Dα
k = Dα

k,1.
In the next proposition, we collect some properties of Dα

k,r.

Proposition 5.1. Let α ∈ R and r ∈]0, 1]. Then
1) Dα

k,r is a bounded operator on L2
k(RN ) satisfying ‖Dα

k,rf‖2 ≤ ‖f‖2.
2) For all f ∈ L2

k(RN ), Dα
k,rf → Dα

k f in  L2
k(RN ) as r → 1−.

Proof Let f ∈ L2
k(RN ). 1) According to Parseval’s formula, we have

‖Dα
k,rf‖22 =

∑
ν∈ZN+

r2|ν| |〈f, hν〉|2

≤
∑
ν∈ZN+

|〈f, hν〉|2 = ‖f‖22.

2) It is easy to see that

Dα
k,rf −Dα

k f =
∑
ν∈ZN+

(r|ν| − 1)ei|ν|α〈f, hν〉hν .

Then ∥∥Dα
k,rf −Dα

k f
∥∥2

2
=
∑
ν∈ZN+

|r|ν| − 1|2 |〈f, hν〉|2 .

By the dominated convergence theorem it follows that lim
r→1−

∥∥Dα
k,rf −Dα

k f
∥∥2

2
= 0.

Corollary 5.1. For each fixed f ∈ L2
k(RN ), there exists {rj}∞j=1, with rj → 1− as

j →∞, such that

Dα
k f(x) = lim

j→∞
Dα
k,rjf(x)

for almost all x ∈ RN .

Proof This is a consequence of a standard result that if a sequence {fn} con-
verges in L2

k(RN ) to f, then there exists a subsequence {fnk} that converges point-
wise almost everywhere to f.
The operator Dα

k,r defined above have the integral representation given in the next
lemma.

Lemma 5.1. For f ∈ L2
k(RN ) and 0 < r < 1, we have

Dα
k,rf(x) =

∫
RN

Kα(r, x, y)f(y)ωk(y) dy, (5.2)
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where

Kα(r, x, y) =
∑
ν∈ZN+

r|ν|ei|ν|αhν(x)hν(y). (5.3)

Proof Let x ∈ RN and H be a finite subset of ZN+ . Then∥∥∥∥∥∑
ν∈H

hν(x)hν(y)(reiα)|ν|

∥∥∥∥∥
2

2

=
∑
ν∈H
|hν(x)|2|r|2|ν|. (5.4)

Since the series (see Theorem 3.12 in [17])∑
ν∈ZN+

hν(x)hν(y)(reiα)|ν|

converges absolutely for all x, y ∈ RN , then according to (5.4), the series∑
ν∈H

hν(x)hν(y)(reiα)|ν|

converges in L2
k(RN ) to a function denoted by Kα(r, x, .).

By the use of Cauchy-Schwartz inequalities, we obtain

Dα
k,rf(x) =

∑
ν∈ZN+

(reiα)|ν|hν(x)

∫
RN

f(y)hν(y)ωk(y) dy

=

∫
RN

f(y)
∑
ν∈ZN+

hν(x)hν(y)(reiα)|ν|ωk(y) dy

=

∫
RN

Kα(r, x, y)f(y)ωk(y) dy.

Now, we summarize some properties of the kernel Kα(r, x, y).

Proposition 5.2. Let x, y ∈ RN , α, r ∈ R such that 0 < |α| < π and 0 < r < 1,
then we have
1)

Kα(r, x, y) = ck
e
− 1+r2e2iα

2(1−r2e2iα)
(|x|2+|y|2)

(1− r2e2iα)γ+N/2
Ek

(
2reiαx

1− r2e2iα
, y

)
, (5.5)

2)

lim
r→1−

Kα(r, x, y) = AαKα(x, y), (5.6)

where

Kα(x, y) = e−
i
2 cot(α)(|x|2+|y|2) Ek

(
ix

sinα
, y

)
, (5.7)

Aα =
cke

i(γ+N/2)(α̂π/2−α)

(2| sinα|)γ+N/2
and α̂ = sgn(sinα). (5.8)

3) ∣∣∣∣e− (1+r2e2iα)|y|2

2(1−r2e2iα) Ek

(
2reiαx

1− r2e2iα
, y

)∣∣∣∣ ≤ e 2r2(1−r2) cos2(α)|x|2

(r4−2r2 cos 2α+1)(r2+1) . (5.9)
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Proof 1) According to (2.9), we have

Kα(r, x, y) = cke
−(|x|2+|y|2)/2

∑
ν∈ZN+

(reiα)|ν|
Hν(x)Hν(y)

2|ν|
.

Using Mehler’s formula for the generalized Hermite polynomials (see Theorem 2.5,
4)) and setting z = reiα with |z| = r < 1, we obtain the desired result.
2) Clearly

lim
r→1−

1 + r2e2iα

1− r2e2iα
= i cotα,

lim
r→1−

reiα

1− r2e2iα
=

i

2 sinα

lim
r→1−

(1− r2e2iα)−(γ+N
2 ) = (1− e2iα)−(γ+N

2 )

=
ei(γ+N/2)(α̂π/2−α)

(2| sinα|)γ+N/2
, where α̂ = sgn(sinα).

Then, for 0 < |α| < π,

lim
r→1−

Kα(r, x, y) = AαKα(x, y),

where Kα(x, y) and Aα are defined respectively in (5.7) and (5.8).
3) It is straightforward to show that

ar = <
(

1 + r2e2iα

1− r2e2iα

)
=

(1− r4)

(1 + r4)− 2r2 cos 2α
> 0,

br = <
(

2reiα

1− r2e2iα

)
=

2(r − r3) cosα

1 + r4 − 2r2 cos 2α
. (5.10)

From (2.5) and (5.10), we deduce the following majorization:∣∣∣∣Ek ( 2reiαx

1− r2e2iα
, y

)∣∣∣∣ ≤ e|br| |x||y|.
Hence, ∣∣∣∣e− (1+r2e2iα)|y|2

2(1−r2e2iα) Ek

(
2reiαx

1− r2e2iα
, y

)∣∣∣∣ ≤ e−ar|y|2+|br| |x||y|. (5.11)

As ar > 0, we deduce that

sup
s≥0

(−ars2 + |br| |x|s) = −b
2
r|x|2

4ar
. (5.12)

Combining (5.11) and (5.12), we see that∣∣∣∣e− (1+r2e2iα)|y|2

2(1−r2e2iα) Ek

(
2reiαx

1− r2e2iα
, y

)∣∣∣∣ ≤ e 2r2(1−r2) cos2(α)|x|2

(r4−2r2 cos 2α+1)(r2+1) .

Proposition 5.3. Let α ∈ R \πZ and f ∈ L1
k(RN ) ∩ L2

k(RN ). Then the fractional
Dunkl transform Dα

k have the following integral representation

Dα
k f(x) = Aα

∫
RN

f(y)Kα(x, y)ωk(y)dy, a.e, (5.13)
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where

Kα(x, y) = e−
i
2 cot(α)(|x|2+|y|2)Ek

(
ix

sinα
, y

)
and

Aα =
cke

i(γ+N/2)(α̂π/2−α)

(2| sinα|)γ+N/2
.

Proof Dα
k is periodic in α with period 2π, we can assume that 0 < |α| < π. Let

f ∈ L1
k(RN ) ∩ L2

k(RN ). From Corollary 5.1,

Dα
k f(x) = lim

j→∞

∫
RN

Kα(rj , x, y)f(y)ωk(y) dy, a.e.

From Proposition 5.2, 2) we see that

lim
j→∞

Kα(rj , x, y)f(y) = AαKα(x, y)f(y).

Using again Proposition 5.2, 3), we obtain∣∣∣∣∣∣e−
(1+r2j e

2iα)|y|2

2(1−r2
j
e2iα) Ek

(
2rje

iαx

1− r2
j e

2iα
, y

)
f(y)

∣∣∣∣∣∣ ≤Mx |f(y)|,

where Mx = sup
0≤r<1

e
2r2(1−r2) cos2(α)|x|2

(r4−2r2 cos 2α+1)(r2+1) .

Hence, the dominated convergence theorem gives

Dα
k f(x) = Aα

∫
RN

f(y)Kα(x, y)ωk(y)dy, a.e.

Definition 5.1. We define the fractional Dunkl transform Dα
k for f ∈ L1

k(RN ) by

Dα
k f(x) = Aα

∫
RN

f(y)Kα(x, y)ωk(y)dy.

Remark 5.1.
• For α = −π2 , the fractional Dunkl transform Dα

k is reduces to the Dunkl transform
Dk and when the multiplicity function k ≡ 0, Dα

k coincides with the fractional
Fourier transform Fα [1]

Fαf(x) =
e(iN/2)(α̂π/2−α)

(2π| sinα|)N/2

∫
RN

e−
i
2 (|x|2+|y|2) cotα+ i

sinα 〈x,y〉f(y) dy.

• In the one-dimensional case (N = 1), the corresponding reflection group W is Z2

and the multiplicity function k is equal to ν+ 1/2 > 0. The kernel Kα(x, y) defined
by (5.7) becomes

Kα(x, y) = e−
i
2 cotα(x2+y2)Eν

(
ix

sinα
, y

)
, (5.14)

where Eν(x, y) is the Dunkl kernel of type A2 given by (see [19])

K(ix, y) = jν(xy) +
ixy

2(ν + 1)
jν+1(xy),
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and jν denotes the normalized spherical Bessel function

jν(x) := 2νΓ(ν + 1)
Jν(x)

xν
= Γ(ν + 1)

+∞∑
n=0

(−1)n(x/2)2n

n!Γ(n+ ν + 1)
.

Here Jν is the classical Bessel function (see, Watson [21]). The related fractional
Dunkl transform Dα

k in rank-one case takes the form

Dα
ν f(x) = Bν

∫ +∞

−∞
Kα(x, y)f(y)|y|2ν+1 dy, (5.15)

where

Bν =
ei(ν+1)(α̂π/2−α)

Γ(ν + 1)(2| sin(α)|)ν+1
. (5.16)

Note that if f is an even function then, the fractional Dunkl transform (5.15)
coincides with the fractional Hankel transform [13]

Hα
ν f(x) = 2Bν

∫ +∞

0

e−
i
2 (x2+y2) cotα jν

( xy

sinα

)
f(y)y2ν+1 dy.

• More generally, for W = Z2 × · · · × Z2 and the multiplicity function k =
(ν1, . . . , νN ), the kernel Kα(x, y) defined by (5.7) is given explicitly by

Kα(x, y) = e−
i
2 cotα(|x|2+|y|2)

N∏
j=1

Eνj

(
ixj

sinα
, yj

)
,

where x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ RN and Eνj (xj , yj) is the function
defined by (5.14). In this case the fractional Dunkl transform will be

Dα
k f(x) = Aα

∫
RN

f(y)Kα(x, y)ωk(y) dy,

where

Aα =
ei(γ+N/2)(α̂π/2−α)

Γ(ν1 + 1) . . .Γ(νN + 1)(2| sinα|)γ+N/2

and

ωk(y) =

N∏
j=1

|xj |2νj .

5.1. Bochner type identity for the fractional Dunkl transform. In this
section, we start with a brief summary on the theory of k-spherical harmonics.
An introduction to this subject can be found in the monograph [8]. The space of
k-spherical harmonics of degree n ≥ 0 is defined by

Hkn = Ker∆k ∩ Pn.

Let SN−1 =
{
x ∈ RN ; |x| = 1

}
be the unit sphere in RN with normalized Lebesgue

surface mesure dσ and L2(SN−1, ωk(x) dσ(x)) be the Hilbert space with the fol-
lowing inner product given by

〈f, g〉k =

∫
SN−1

f(ω)g(ω)ωk(ω) dσ(ω).



18 S. GHAZOUANI, F. BOUZAFFOUR

As in the theory of ordinary spherical harmonics, the space L2(SN−1, ωk(x) dσ(x))
decomposes as an orthogonal Hilbert space sum

L2(SN−1, ωk(x) dσ(x)) =

∞⊕
n=0

Hkn.

In [23], Y. Xu gives an analogue of the Funk-Hecke formula for k-spherical har-
monics. The well-known special case of the Dunkl-type Funk-Hecke formula is the
following (see [20]):

Proposition 5.4. Let N ≥ 2 and put λ = γ+ (N/2)−1. Then for all Y ∈ Hkn and
x ∈ RN ,

1

dk

∫
SN−1

K(ix, y)Y (y)ωk(y) dσ(y) =
Γ(λ+ 1)

2nΓ(n+ λ+ 1)
jn+λ(|x|)Y (ix), (5.17)

where

dk =

∫
SN−1

ωk(y) dσ(y).

In particular

1

dk

∫
SN−1

K(ix, y)ωk(y) dσ(y) = jλ(|x|). (5.18)

An application of the Dunkl-type Funk-Hecke formula is the following:

Theorem 5.1. (Bochner type identity) If f ∈ L1
k(RN ) ∩ L2

k(RN ) is of the form
f(x) = p(x)ψ(|x|) for some p ∈ Hkn and a one-variable ψ on R+, then

Dα
k f(x) = einαp(x)Hα

n+γ+(N/2)−1ψ(|x|). (5.19)

In particular, if f is radial, then

Dα
k f(x) = Hα

n+γ+(N/2)−1ψ(|x|).

Proof Since Dα
k is periodic in α with period 2π, we can assume that −π < α ≤ π.

We see immediately that

D0
kf(x) = f(x),

Dπ
kf(x) = f(−x)

= p(−x)ψ(−x)

= (−1)np(x)ψ(x).

Now, let 0 < |α| < π. By spherical polar coordinates, we have

Dα
k f(x) = Aα

∫
RN

f(y)Kα(x, y)ωk(y)dy

= Aα

∫ +∞

0

rN−1F (r, x) dr, (5.20)

where

F (r, x) =
2πN/2

Γ(N/2)

∫
SN−1

Kα(x, ry)p(ry)ψ(r|y|)ωk(ry) dσ(y).
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From (5.7) and the homogeneity of ωk and p, we obtain

F (r, x) =
2πN/2

Γ(N/2)
e−

i
2 (|x|2+r2) cot(α)ψ(r)r2γ+n

∫
SN−1

p(y)Ek

(
irx

sin(α)
, y

)
ωk(y) dσ(y).

Using (5.17), we get

F (r, x) =
2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

× e−
i
2 (|x|2+r2) cot(α)ψ(r)r2γ+np

(
irx

sin(α)

)
jλ+n

(
r|x|

sin(α)

)
,

where

λ = γ + (N/2)− 1.

Using again the homogeneity of p, we get

F (r, x) =
2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

(
i

2 sinα

)n
× e−

i
2 (|x|2+r2) cot(α)ψ(r)r2γ+2np(x)jλ+n

(
r|x|

sin(α)

)
.

Now we can express a relationship between dk and ck. In fact

c−1
k =

∫
RN

e−|y|
2

ωk(y) dy

=
2πN/2

Γ(N/2)

∫ +∞

0

rN−1e−r
2

∫
SN−1

ωk(ry) dσ(y) dr

=
2πN/2

Γ(N/2)

∫ +∞

0

r2γ+N−1e−r
2

∫
SN−1

ωk(y) dσ(y) dr

=
πN/2Γ(λ+ 1)dk

Γ(N/2)
. (5.21)

Recall that

Aα = ck

(
ie−iα

2 sinα

)γ+(N/2)

,

then by the use of (5.21), we obtain

Aα
2πN/2dk
Γ(N/2)

Γ(λ+ 1)

2nΓ(λ+ n+ 1)

(
i

2 sinα

)n
=

2
(
ie−iα

2 sinα

)λ+n+1

Γ(λ+ n+ 1)
einα

= 2Bνeinα.

Hence

F (r, x) = 2Bνeinαe−
i
2 (|x|2+r2) cot(α)ψ(r)r2γ+2np(x)jλ+n

(
r|x|

sin(α)

)
. (5.22)
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Substituting (5.22) in (5.20) to get

Dα
k f(x) = 2Bνeinαp(x)

×
∫ +∞

0

e−
i
2 (|x|2+r2) cot(α)ψ(r)r2(λ+n)+1jλ+n

(
r|x|

sin(α)

)
dr

= einαp(x)Hα
n+λψ(|x|)

= einαp(x)Hα
n+γ+(N/2)−1ψ(|x|).

Application
Now, we give the material needed for an application of Bochner type identity. Let
{pn,j}j∈Jn be an orthonormal basis of Hkn. Let m, n be non-negative integers and
j ∈ Jn. Define

cm,n =

(
m! Γ(N/2)

πN/2Γ((N/2) + γ + n+m)

)1/2

and

ψm,n,j(x) = cm,n pn,j(x) L(n+γ+N/2−1)
m (|x|2) e−|x|

2/2, (5.23)

where L
(a)
m denote the Laguerre polynomial defined by

L(a)
m (x) =

x−aex

n!

dn

dxn
(
e−xxn+a

)
.

It follows from Proposition 2.4 and Theorem 2.5 of Dunkl [6] that

{ψm,n,j : m, n = 0, 1, 2, . . . , j ∈ Jn}
forms an orthonormal basis of L2

k(RN ).

Theorem 5.2. The family {ψm,n,j : m, n = 0, 1, 2, . . . , j ∈ Jn} are a basis of
eigenfunctions of the fractional Dunkl transform Dα

k on L2
(
RN , ωk(x) dx

)
, satis-

fying

Dα
kψm,n,j = eiα(n+2m)ψm,n,j . (5.24)

Proof We need only to prove (5.24). Applying Theorem 5.3 with p replaced by

pn,j and with ψ(r) = L
(n+γ+N/2−1)
m (r2) e−r

2/2, we obtain

Dα
kψm,n,j(x) = cm,ne

inαpn,j(x)Hα
ν ψ(|x|),

where

ν = n+ γ + (N/2)− 1,

and

Hανψ(|x|) = 2Bν
∫ +∞

0

e−
i
2 cot(α)(|x|2+r2)jν

(
r|x|
sinα

)
L(ν)
m (r2)e−

r2

2 r2ν+1 dr.

Observe that

Hα
ν ψ(|x|) = 2Bνe−

i
2 cot(α)|x|2Iν ,

where

Iν =

∫ +∞

0

r2ν+1L(ν)
m (r2)e−( 1

2 + i
2 cot(α))r2

jν

(
r|x|
sinα

)
dr

= 2νΓ(ν + 1)

(
sinα

|x|

)ν ∫ +∞

0

rν+1L(ν)
m (r2)e−( 1

2 + i
2 cot(α))r2

Jν

(
r|x|
sinα

)
dr.
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To compute Iν , we need the following formulas (see 7.4.21 (4) in [11])∫ +∞

0

yν+1e−βy
2

Lνm(ay2)Jν(zy) dy = dmz
νe−z

2/(4β)Lνm

[
az2

4β(a− β)

]
where dm = ((β − a)m/(2ν+1βν+m+1)), a, <β > 0, <ν > −1.

Let us take β = 1
2 + i

2 cot(α) = ie−iα

2 sinα , a = 1 and z = |x|
sinα , then

dm =
e2iαm

2ν+1AαΓ(ν + 1)
,

az2

4β(a− β)
= |x|2,

− z
2

4β
= −|x|

2

2
+
i

2
cot(α)|x|2.

Hence∫ +∞

0

rν+1L(ν)
m (r2)e−( 1

2 + i
2 cot(α))r2

Jν

(
r|x|
sinα

)
dr =

e2iαme−
|x|2

2 + i
2 cot(α)|x|2

2ν+1AαΓ(ν + 1)

(
|x|

sinα

)ν
L(ν)
m (|x|2),

and therefore

Hα
ν ψ(|x|) = e2iαmL(ν)

m (|x|2) e−|x|
2/2,

which finishes the proof.

5.2. Master Formula for the fractional Dunkl transform. In this section, we
are interesting with a master formula for the fractional Dunkl transform. For this
we need the following lemma

Lemma 5.2. Let p ∈ Pn and x = (x1, . . . , xN ) ∈ CN . Then for ω ∈ C and
<(ω) > 0,

ck

∫
RN

p(y)Ek(x, 2y)e−ω|y|
2

ωk(y) dy =
e
l(x)
ω

ωγ+n+(N/2)
e
ω
4 ∆kp(x), (5.25)

where l(x) =

N∑
j=1

xj .

Proof First compute the above integral when ω > 0.

ck

∫
RN

p(y)Ek(x, 2y)e−ω|y|
2

ωk(y) dy = ck

∫
RN

p(y)Ek(x, 2y)e−|
√
ωy|2ωk(y) dy.

By the change of variables u =
√
ωy and the homogeneity of ωk and p, we obtain

ck

∫
RN

p(y)Ek(x, 2y)e−ω|y|
2

ωk(y) dy

=
ck

ωγ+(n+N)/2

∫
RN

p(y)Ek

(
x√
ω
, 2y

)
e−|y|

2

ωk(y) dy. (5.26)

Using Theorem 2.4,1), we deduce the following identity:

ck

∫
RN

p(y)Ek(x, 2y)e−|y|
2

ωk(y) dy = el(x)e
∆k
4 p(x). (5.27)
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Combining (5.26) and (5.27) to get

ck

∫
RN

p(y)Ek(x, 2y)e−ω|y|
2

ωk(y) dy =
e
l(x)
ω

ωγ+(n+N)/2
e

∆k
4 p

(
x√
ω

)
.

Now use Lemma 2.1 from [17] to obtain

e
∆k
4 p

(
x√
ω

)
=

1

ωn/2
e
ω
4 ∆kp(x).

Hence, we find the equality (5.25) for ω > 0. By analytic continuation, this holds
for {ω ∈ C : <(ω) > 0}.

We are now in a position to give the master formula.

Theorem 5.3. Let p ∈ Pn and x ∈ RN . Then

Dα
k

[
e−
|y|2

2 e−
∆k
4 p(y)

]
(x) = einαe−

|x|2
2 e−

∆k
4 p(x). (5.28)

Proof It follows easily from (5.13) that

Dα
k

[
e−
|y|2

2 e−
∆k
4 p(y)

]
(x) = Aαe

− i
2 cot(α)|x|2

∫
RN

e−
∆k
4 p(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy,

where

ω =
1

2
+
i

2
cot(α) =

ie−iα

2 sinα
. (5.29)

Since

e−
∆k
4 p(y) =

[n2 ]∑
s=0

(−1)s

s!4s
∆s
kp(y),

we conclude that∫
RN

e−
∆k
4 p(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy =

[n2 ]∑
s=0

(−1)s

s!4s

∫
RN

∆s
kp(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy.

(5.30)

For s ∈ Z+ with 2s ≤ n, the polynomial ∆s
kp is homogeneous of degree n − 2s.

Hence by the previous Lemma, we obtain

ck

∫
RN

∆s
kp(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy =
e
l(Xα)
ω

ωγ+n+(N/2)
e
ω
4 ∆k

[
ω2s∆s

kp
]

(Xα),(5.31)

where

Xα =
ix

2 sinα
. (5.32)

Substituting (5.31) in (5.30) to get

ck

∫
RN

e−
∆k
4 p(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy =
e
l(Xα)
ω

ωγ+n+(N/2)
e
ω
4 ∆k

[n2 ]∑
s=0

(−1)sω2s

s!4s
∆s
kp(Xα)

=
e
l(Xα)
ω

ωγ+n+(N/2)
e
ω
4 ∆ke−

ω2

4 ∆kp(Xα)

=
e
l(Xα)
ω

ωγ+n+(N/2)
e
ω−ω2

4 ∆kp(Xα).
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Replacing ω and Xα by their values given in (5.29) and (5.32) and use Lemma 2.1
in [17], we obtain

e
ω−ω2

4 ∆kp(Xα) =
in

2n sinn α
e− sin2(α)(ω−ω2)∆kp(x)

=
in

2n sinn α
e−

∆k
4 p(x).

Also,

ωn+γ+(N/2) =

(
ie−iα

2 sinα

)n+γ+(N/2)

=
ine−inα

2n sinn α

ei(γ+N/2)(α̂π/2−α)

(2| sinα|)γ+(N/2)

e
l(Xα)
ω = e

ieiα

2 sinα |x|
2

.

Then∫
RN

e−
∆k
4 p(y)Ek

(
ix

sinα
, y

)
e−ω|y|

2

ωk(y) dy = A−1
α einαe

ieiα

2 sinα |x|
2

e−
∆k
4 p(x). (5.33)

Finally, if we multiply equation (5.33) by Aαe
− i

2 cot(α)|x|2 , we obtain the desired
result.

A consequence of the Master formula (5.28) is

Corollary 5.2. (Hecke type identity) If in addition to the assumption in Theorem
5.3, the polynomial p ∈ Hkn, then (5.28) becomes

Dα
k

[
e−
|.|2
2 p

]
(x) = einαe−

|x|2
2 p(x). (5.34)

Now, we are interesting to complete the spectral study of T started in proposition
4.4 by means of the Master formula. In fact we have the following

Corollary 5.3.
L2
(
RN , ωk(x) dx

)
decomposes as an orthogonal Hilbert space sum according to

L2
(
RN , ωk(x) dx

)
=
⊕
n∈Z+

Vn,

where

Vn =

{
e−
|x|2

2 e−
∆k
4 p(x); p ∈ Pn

}
is the eigenspace of T corresponding to the eigenvalue in. In particular, T is essen-
tially self-adjoint. The spectrum of its closure is purely discrete and given by

σ(T ) = iZ+.

Proof Let f be an element of the subspace Vn defined by

f(x) = e−
|x|2

2 e−
∆k
4 p(x),

where p ∈ Pn. From (5.28), the limits

lim
α→0

Dα
k f − f
α

= lim
α→0

einα − 1

α
f

exists in L2
k(RN ) and equals inf. Then

f ∈ D(T ) and T (f) = inf. (5.35)

Hence, Vn is the eigenspace of T corresponding to the eigenvalue in.
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6. Realization of the operator T.

The aim of the following is to find a subspace W ⊂ D(T ) of L2
k(RN ) in which

we define T explicitly.

Lemma 6.1. For z ∈ CN set l(z) =

N∑
i=1

z2
i . Then for all z, ω ∈ CN ,

ck

∫
RN

Ek(2z, x)Ek(2ω, x)e−A|x|
2

ωk(x) dx =
e
l(z)+l(ω)

A

Aγ+N/2
Ek(2z/A, ω), (6.1)

where A is a complex number such that <(A) > 0.

Proof The result is obtained by means of a similar technic used in the proof of
Lemma 5.2 and the following formula (see [6])

ck

∫
RN

Ek(2z, x)Ek(2ω, x)e−|x|
2

ωk(x) dx = el(z)+l(ω)Ek(2z, ω).

Theorem 6.1. Let f ∈ L1
k(RN ) ∩ L2

k(RN ) such that Dkf ∈ L1
k(RN ) and α 6∈{

π
2 + kπ, k ∈ Z

}
. Then

Dα
k f(x) = ck

(
e−iα

2 cosα

)γ+N
2
∫
RN

e
i
2 tan(α)(|x|2+|y|2)Ek(

ix

cosα
, y)Dkf(y)ωk(y)dy.(6.2)

Proof Let f ∈ L1
k(RN )∩L2

k(RN ) such that Dkf ∈ L1
k(RN ). Let ε be an arbitrary

positive number and put

Fε(x) =

∫
RN

f(y)gε(y)ωk(y) dy,

where gε(y) = e−(ε+ i
2 cotα)|y|2Ek

(
ix

sinα , y
)
.

From (2.6), we deduce that

|f(y)gε(y)| ≤ |f(y)|,

so the dominated convergence theorem can be invoked again to give

lim
ε→0

Fε(x) =
e
i
2 |x|

2 cotα

Aα
Dα
k f(x). (6.3)

Using Lemma 6.1, we can show

Dkgε(ξ) =
e
− |x|2

4ε sin2 α+i sin 2α

(2ε+ i cotα)γ+N/2
e−

|ξ|2
4ε+2i cotα Ek

(
x

2ε sinα+ i cosα
, ξ

)
.(6.4)

Now applying the Parseval formula for the Dunkl transform (see Lemma 4.25, [2])
and using (6.4), we obtain

Fε(x) =
e
− |x|2

4ε sin2 α+i sin 2α

(2ε+ i cotα)γ+N/2

∫
RN

e−
|ξ|2

4ε+2i cotα Ek

(
x

2ε sinα+ i cosα
, ξ

)
Dkf(−ξ)ωk(ξ) dξ.

(2.5) gives again the following majorization:∣∣∣∣Ek ( x

2ε sinα+ i cosα
, ξ

)∣∣∣∣ ≤ e 2ε sinα
4ε2 sin2(α)+cos2(α)

|x||ξ|
.



A FRACTIONAL POWER FOR DUNKL TRANSFORMS 25

Hence, ∣∣∣∣e− |ξ|2
4ε+2i cotα Ek

(
x

2ε sinα+ i cosα
, ξ

)∣∣∣∣ ≤ e−pε|ξ|2+qξ|ξ|, (6.5)

where

pε =
ε

4ε2 + cot2 α

and

qε =
2ε sin(α)|x|

4ε2 sin2(α) + cos2(α)
.

As pε > 0, we deduce that

sup
s≥0

(−pεs2 + qεs) = − q2
ε

4pε
. (6.6)

Applying formula (6.5) and (6.6), we obtain∣∣∣∣e− |ξ|2
4ε+2i cotα Ek

(
x

2ε sinα+ i cosα
, ξ

)
Dkf(−ξ)

∣∣∣∣ ≤ e
− 4ε|x|2

4ε2 sin2(α)+cos2(α) |Dkf(−ξ)|

≤ Bx|Dkf(−ξ)|,

where Bx = sup
ε∈]0,1]

e
− 4ε|x|2

4ε2 sin2(α)+cos2(α) . The function ξ 7→ Dkf(−ξ) is in L1
k(RN ),

then the dominated convergence theorem implies

lim
ε→0

Fε(x) =
e
i|x|2
sin 2α

(i cotα)γ+N/2

∫
RN

e
i|ξ|2 tanα

2 Ek

(
− ix

cosα
, ξ

)
Dkf(−ξ)ωk(ξ) dξ.(6.7)

Hence, (6.3) and (6.7) gives after simplification

Dα
k f(x) = ck

(
e−iα

2 cosα

)γ+N
2

e
i
2 |x|

2 tanα

∫
RN

e
i
2 |ξ|

2 tanα Ek

(
− ix

cosα
, ξ

)
Dkf(−ξ)ωk(ξ) dξ.(6.8)

Finally, if we make the change of variables u = −y in (6.8), then we find (6.2).

Remark 6.1. Using (6.2) together with the dominated convergence theorem, we
get

lim
α→0+

Dα
k f(x) = lim

α→0−
Dα
k f(x) = D2

kf(−x) = f(x), a.e,

lim
α→π−

Dα
k f(x) = lim

α→−π+
Dα
k f(x) = D2

kf(x) = f(−x) a.e.

Corollary 6.1. Under the assumptions of Theorem 6.1, we have

Dα
k f(x)− f(x)

α
= r1(α)

ck
2γ+(N/2)

∫
RN

e
i
2 tan(α)(|x|2+|y|2)Ek

(
ix

cosα
, y

)
Dkf(y)ωk(y)dy

+
ck

2γ+N
2

∫
RN

r2(α, x, y)Dkf(y)ωk(y)dy, a.e, (6.9)

where

r1(α) =

(
e−iα

cosα

)γ+N
2 − 1

α
and r2(α, x, y) =

e
i
2 tan(α)(|x|2+|y|2)Ek( ix

cosα , y)− Ek(ix, y)

α
.

Proof The result is consequence of (6.2) and (2.8).
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Lemma 6.2. Let α0 ∈]0, π2 [ and x, y ∈ RN . Then

|r2(α, x, y)| ≤ 1

2
(1 + tan2 α0)(|x|2 + |y|2) +

| sin(α0)|
cos2(α0)

√
N |x||y|, (6.10)

where α ∈]0, α0].

Proof By the mean value theorem, we have

|r2(α, x, y)| ≤ sup
α∈[0,α0]

∣∣∣∣ ∂∂αr3(α, x, y)

∣∣∣∣ ,
where

r3(α, x, y) = e
i
2 tan(α)(|x|2+|y|2)Ek

(
ix

cosα
, y

)
.

From (2.4), we get

Ek

(
ix

cosα
, y

)
= Ek

(
x,

iy

cosα

)
.

Therefore,

r3(α, x, y) = e
i
2 tan(α)(|x|2+|y|2)Ek

(
x,

iy

cosα

)
.

A simple calculations shows that

∂

∂α
r3(α, x, y) =

i

2
(1 + tan2 α)(|x|2 + |y|2)r3(α, x, y)

+
i sin(α)

cos2(α)
e
i
2 tan(α)(|x|2+|y|2)

N∑
j=1

yj
∂

∂yj
Ek

(
x,

iy

cosα

)
.(6.11)

From (2.5), the inequality ∣∣∣∣ ∂∂yjEk
(
x,

iy

cosα

)∣∣∣∣ ≤ |x|
holds and hence∣∣∣∣ ∂∂αr3(α, x, y)

∣∣∣∣ ≤ 1

2
(1 + tan2 α)(|x|2 + |y|2) +

| sin(α)|
cos2(α)

|x|
N∑
j=1

|yj |

≤ 1

2
(1 + tan2 α)(|x|2 + |y|2) +

| sin(α)|
cos2(α)

√
N |x||y|

≤ 1

2
(1 + tan2 α0)(|x|2 + |y|2) +

| sin(α0)|
cos2(α0)

√
N |x||y|.

Which finishes the proof.

Theorem 6.2. Let

W =
{
f ∈ L1

k(RN ) ∩ L2
k(RN ) ; |y|2f ∈ L2

k(RN ) and |y|2Dkf ∈ L1
k(RN ) ∩ L2

k(RN )
}
.

Then for all f ∈ W,

T f(x) = −i(γ + (N/2))f(x) +
i

2
|x|2f(x) +

i

2
Dk

[
|y|2Dk(y)

]
(−x) a.e. (6.12)
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Proof It is clear that

lim
α→0

r1(α) = −i(γ + (N/2)).

In view of (2.6), we deduce

∣∣∣∣Ek ( ix

cosα
, y

)∣∣∣∣ ≤ 1.

Then ∣∣∣∣e i2 tan(α)(|x|2+|y|2)Ek

(
ix

cosα
, y

)
Dkf(y)

∣∣∣∣ ≤ |Dkf(y)|.

Let y ∈ RN such that |y| > 1. Then

|Dkf(y)| ≤ |y|2|Dkf(y)|.

Since y 7−→ |y|2Dkf ∈ L1
k(RN ), it follows that Dkf ∈ L1

k(RN ) and the dominated
convergence theorem implies

lim
α→0

r1(α)
ck

2γ+(N/2)

∫
RN

e
i
2 tan(α)(|x|2+|y|2)Ek

(
ix

cosα
, y

)
Dkf(y)ωk(y)dy

= −i(γ + (N/2))
ck

2γ+(N/2)

∫
RN

Ek(ix, y)Dkf(y)ωk(y)dy

= −i(γ + (N/2))D2
kf(−x)

= −i(γ + (N/2))f(x), a.e.

From (6.11), we deduce

lim
α→0

r2(α, x, y) =
i

2
(|x|2 + |y|2)K(ix, y).

By the previous Lemma, we have the following majorization:

|r2(α, x, y)Dkf(y)| ≤ f1(y) + f2(y) + f3(y),

where

f1(y) =
1

2
(1 + tan2 α0)|x|2|Dkf(y)|,

f2(y) =
1

2
(1 + tan2 α0)|y|2|Dkf(y)|,

f3(y) =
| sin(α0)|
cos2(α0)

√
N |x||y||Dkf(y)|.
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Since y 7−→ |y|2Dkf ∈ L1
k(RN ), it follows that f1, f2, f3 ∈ L1

k(RN ) and therefore
f1 + f2 + f3 ∈ L1

k(RN ). By virtue of the dominated convergence theorem, we have

lim
α→0

ck

2γ+N
2

∫
RN

r2(α, x, y)Dkf(y)ωk(y)dy

=
i

2

ck

2γ+N
2

∫
RN

(|x|2 + |y|2)Ek(ix, y)Dkf(y)ωk(y)dy

=
i|x|2

2

ck

2γ+N
2

∫
RN

Ek(ix, y)Dkf(y)ωk(y)dy

+
i

2

ck

2γ+N
2

∫
RN
|y|2Ek(ix, y)Dkf(y)ωk(y)dy

=
i

2
|x|2f(x) +

i

2

ck

2γ+N
2

∫
RN
|y|2Ek(ix, y)Dkf(y)ωk(y)dy, a.e,

=
i

2
|x|2f(x) +

i

2
Dk

[
|y|2Dk(y)

]
(−x) a.e.

Corollary 6.2.
1) S(RN ) ⊂ W ⊂ D(T ).
2) For all f ∈ S(RN ),

−iTf = −(γ + (N/2))f +
1

2
(|x|2 −∆k)f

Proof 1) Obvious.
2) Let f ∈ S(RN ). From Corollary 2.11 in [6], we deduce

−y2
jDkf(y) = Dk[T 2

j f ](y),

where j ∈ {1, 2, . . . , N} . Then

−|y|2Dkf(y) = Dk[∆kf ](y).

Therefore

−Dk

[
|y|2Dk(y)

]
(−x) = D2

k[∆kf(y)](−x)

= ∆kf(x). (6.13)

Finally, from (6.12) and (6.13) we obtain the desired result.

Remark 6.2. It is clear that the operator 2iT − (2γ+N) is an extension on W of
the Hermite operator Hk = ∆k − |x|2 studied by Rösler [17] where it used another
approach based on the notion of Lie algebra.
In the same context, we give a new proof of the following result established in [17]

Corollary 6.3. For n ∈ N and p ∈ Pn, the function f = e−
|x|2

2 e−
∆k
4 p(x) satisfies

(∆k − |x|2)f = −(2n+ 2γ +N)f. (6.14)

In particular

(∆k − |x|2)hν = −(2|ν|+ 2γ +N)hν . (6.15)

Proof Since f ∈ S(RN ), (6.14) is obtained by the use of the previous Corollary
and (5.35)
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