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COMPLEX VALUED RECTANGULAR METRIC SPACES AND

COMMON FIXED POINT THEOREMS

(COMMUNICATED BY VLADIMIR MULLER)

DEEPAK SINGH, OM PRAKASH CHAUHAN, NAVAL SINGH, VISHAL JOSHI

Abstract. Acknowledging the concept of complex valued metric spaces in-
troduced by Azam et al.[3] many authors proved several fixed point results for

mappings satisfying certain contraction conditions. In this note, some common
fixed point theorems for two pairs of weakly compatible mapping satisfying a

contractive condition having rational type terms in complex valued rectangular

(generalized) metric spaces are proved. Further application of property (E.A.)
and common limit range (CLR) property are employed. Moreover same results

are also obtained in complex valued metric spaces. We suggest some examples

distinguishing these two spaces. On the other hand illustrative example is also
furnished to support our results. Our results generalize the results of Azam et

al.[3] and Rouzkard et al.[9].

1. Introduction and Preliminaries

Fixed point theory is very interesting in study of nonlinear analysis and has a
broad set of applications in Mathematics and Engineering. In this theory Banach
contraction is one of the main tools to prove the existence and uniqueness of a fixed
point. Large number of generalizations has been made on this principle. In 2000,
Branciari[6] introduced the concept of a rectangular (generalized) metric spaces
where the triangle inequality of a metric space was replaced by another inequality
which involves four (or more) points instead of three and improved Banach con-
traction principle. In 2011, Azam et al.[3] introduced the notion of complex valued
metric spaces. After the establishment of complex valued metric spaces many re-
searchers have contributed with their works in this space. Rouzkard et al.[9], Bhatt
et al.[4], Nashine et al.[8] proved common fixed point theorems under rational con-
tractions in complex valued metric spaces. For more detailed development one can
see in ([5],[7],[10],[12]).
Recently, M. Abbas et al.[2] introduced a notion of complex valued generalized
metric spaces and obtained common fixed point result for mappings in such spaces.
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Consistent with Azam et al.[3], the following definitions and results will be
needed in the sequel.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order -
on C as follows :

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions are satisfied :
(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);
(C2) Re(z1) < Re(z2) and Im(z1) = Im(z2);
(C3) Re(z1) = Re(z2) and Im(z1) < Im(z2);
(C4) Re(z1) < Re(z2) and Im(z1) < Im(z2).
In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is
satisfied and we write z1 ≺ z2 if only (C4) is satisfied. Note that

0 - z1 � z2 ⇒ |z1| < |z2|,
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.

Definition 1.1. [3] Let X be a nonempty set such that the mapping d : X×X → C
satisfies the following conditions:
(CM1) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0⇔ x = y;
(CM2) d(x, y) = d(y, x), for all x, y ∈ X;
(CM3) d(x, y) - d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a complex valued metric on X and (X, d) is called a complex valued
metric space.

Example 1.1. Let X = C be a set of complex number. Define d : C × C → C by

d(z1, z2) = |x1 − x2|+ i|y1 − y2|.
Where z1 = x1 + iy1 and z2 = x2 + iy2. Then (C, d) is a complex valued metric
space.

very recently, M.Abbas et al.[2] defined the notion of complex valued rectangu-
lar(generalized) metric spaces as follows:

Definition 1.2. [2] Let X be a non empty set. If a mapping d : X × X → C
satisfies:
(a) 0 - d(x, y) for all x, y ∈ X and d(x, y) = 0⇔ x = y;
(b) d(x, y) = d(y, x), for all x, y ∈ X;
(c) d(x, y) - d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and all distinct u, v ∈ X,
each one is different from x and y.
Then d is called a complex valued rectangular (generalized) metric on X and (X, d)
is called a complex valued rectangular (generalized) metric space.

To illustrate this we suggested two examples as follows:

Example 1.2. Let X = {1 + i,−1 + i,−1 − i, 1 − i}. Define d : X ×X → C as
follows:
d(1 + i,−1 + i) = d(−1 + i, 1 + i) = 3eiθ;
d(−1 + i,−1− i) = d(−1− i,−1 + i) = d(1 + i,−1− i) = d(−1− i, 1 + i) = eiθ;
d(1 + i, 1− i) = d(1− i, 1 + i) = d(−1 + i, 1− i) = d(1− i, 1 + i) = d(−1− i, 1− i) =
d(1− i,−1− i) = 4eiθ;
d(1 + i, 1 + i) = d(−1 + i,−1 + i) = d(−1− i,−1− i) = d(1− i, 1− i) = 0.
Obviously (X, d) is a complex valued rectangular(generalized) metric space, when
θ ∈ [0, π2 ]. On the other hand (X, d) is not a complex valued metric space.
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Example 1.3. Let X = A ∪ B, where A = { 12 ,
2
3 ,

3
4 ,

4
5} and B = [1, 3]. Define the

generalized complex valued metric d on X as follows :
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and d(x, y) = i|x− y|, if x, y ∈ B or x ∈ A, y ∈ B or x ∈ B, y ∈ A.
It is easy to show that d is a complex valued rectangular(generalized) metric but d
is not a complex valued metric. Indeed,

0.6i = d
(1

2
,

3

4

)
% d
(1

2
,

3

4

)
+ d
(2

3
,

4

4

)
= 0.2i+ 0.3i = 0.5i.

Shows d is not a complex valued metric.

Definition 1.3. [2] Let (X, d) be a complex valued rectangular (generalized) metric
space and {xn} be a sequence in X.

(1) If for every c ∈ C with 0 ≺ c, there exist n0 ∈ N such that d(xn, x) ≺ c for
all n > n0, then {xn} is said to be convergent to x ∈ X, and we denote this
by xn → x as n→∞ or limn→∞xn = x.

(2) If for every c ∈ C with 0 ≺ c, there exist n0 ∈ N such that for all n,m > n0,
d(xn, xm) ≺ c, then {xn} is called Cauchy sequence in X.

(3) If every Cauchy sequence in X, then (X, d) is called a complete complex
valued rectangular(generalized) metric space.

Lemma 1.1. [2] Let (X, d) be a complex valued rectangular (generalized) metric
space and let {xn} be a sequence in X. Then {xn} converges to x if and only if
|d(xn, x)| → 0 as n→∞.

Lemma 1.2. [2] Let (X, d) be a complex valued rectangular (generalized) metric
spaces and let {xn} be a sequence in X. Then {xn} is a Cauchy sequence if and
only if |d(xn, xm)| → 0 as n,m→∞.

Definition 1.4. Let A and S be self mappings on a set X, if w = Ax = Sx for
some x in X, then x is called coincidence point of A and S and w is called a point
of coincidence of A and S.

Definition 1.5. A pair of self mappings A,S : X → X, is called weakly compatible
if they commute at their coincidence points.

Example 1.4. Let X = C and d : X×X → C be any complex valued metric on X.
Define A,S : X → X by A(z) = z and S(z) = 2z − i, ∀z ∈ X. We see that z = i
is the only coincidence point and (A,S) are weakly compatible mappings, since they
commute at their coincidence point z = i. i.e. AS(z) = SA(z) for z = i ∈ X.

Definition 1.6. Let A,S : X → X, be two self mappings of a complex valued
rectangular metric s pace (X, d). The pair (A,S) is said to satisfy property (E.A.),
if there exist a sequence {xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = t, for some t ∈ X.
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Example 1.5. Let X = C and d : X ×X → C be any complex valued metric on
X. Define A,S : X → X by A(z) = 4z and S(z) = 4i|z| for all z ∈ X. Consider a
sequence {zn} = {i+ 1

n+1}n≥1 in X, then

lim
n→∞

A(zn) = lim
n→∞

A
{
i+

1

n+ 1

}
= lim
n→∞

4
{
i+

1

n+ 1

}
= 4i

and

lim
n→∞

S(zn) = lim
n→∞

S
{
i+

1

n+ 1

}
= lim
n→∞

4i

√
12 +

1

(n+ 1)2
= 4i

hence the pair (A,S) satisfy property (E.A.) for the sequence {zn} in X with t =
4i ∈ X.

Definition 1.7. [11] Two self mappings A and S from X to X are said to satisfy
the common limit in the range of S property (CLRs property) if

lim
n→∞

Axn = lim
n→∞

Sxn = St, for some t ∈ X.

Example 1.6. Let X = C and d : X ×X → C be any complex valued metric on
X. Define A,S : X → X by A(z) = z + 3i and S(z) = 4z for all z ∈ X. Consider
a sequence {zn} = {i+ 1

n}n≥1 in X, then

lim
n→∞

A(zn) = lim
n→∞

A{zn + 3i} = lim
n→∞

4
{
i+

1

n
+ 3i

}
= 4i

and

lim
n→∞

S(zn) = lim
n→∞

S
{
i+

1

n

}
= lim
n→∞

4
{
i+

1

n

}
= 4i

hence the pair (A,S) satisfy property (CLRS) in X with z = 0 + i ∈ X.

2. Main result

In this section, we prove some common fixed point results with rational type
contraction conditions. Our main result is the following.

Theorem 2.1. Let A,B, S and T be four mappings of a complete complex valued
rectangular (generalized) metric space (X, d) satisfying:

(1) A(X) ⊆ T (X) and B(X) ⊆ S(X);
(2)

d(Ax,By) -αd(Sx, Ty) + β
d(Sx,Ax)d(By, Ty)

1 + d(Sx, Ty)
+ γ

d(Sx,By)d(Ax, Ty)

1 + d(Sx, Ty)
+

η
d(Sx,Ax)d(Sx, Ty)

1 + d(Sx, Ty)
+ ξ

d(Bx, Sy)d(By, Ty)

1 + d(Bx, Sy)
, ∀x, y ∈ X;

(2.1)

Where α, β, γ, η and ξ are non negative reals such that α+β+γ+η+ξ < 1,
(3) Pairs (A,S), (B, T ) are weakly compatible.

If B(X) is a closed subset of X. Then A,B, S and T have a unique common fixed
point.

Proof. Consider a sequence {yn} in X, such that

y2n = Ax2n = Tx2n+1, y2n+1 = Bx2n+1 = Sx2n+2.
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Where {xn} is a another sequence in X.
First of all we show that {yn} is a Cauchy sequences of X, for this, consider

d(y2n, y2n+1) = d(Ax2n, Bx2n+1)

- αd(Sx2n, Tx2n+1) + β
d(Sx2n, Ax2n)d(Bx2n+1, Tx2n+1)

1 + d(Sx2n, Tx2n+1)

+ γ
d(Sx2n, Bx2n+1)d(Ax2n, Tx2n+1)

1 + d(Sx2n, Tx2n+1)
+ η

d(Sx2n, Ax2n)d(Sx2n, Tx2n+1)

1 + d(Sx2n, Tx2n+1)

+ ξ
d(Bx2n, Sx2n+1)d(Bx2n+1, Tx2n+1)

1 + d(Bx2n, Sx2n+1)

- αd(y2n−1, y2n) + β
d(y2n−1, y2n)d(y2n+1, y2n)

1 + d(y2n−1, y2n)
+ γ

d(y2n−1, y2n+1)d(y2n, y2n)

1 + d(y2n−1, y2n)

+ η
d(y2n−1, y2n)d(y2n−1, y2n)

1 + d(y2n−1, y2n)
+ ξ

d(y2n, y2n)d(y2n+1, y2n)

1 + d(y2n, y2n)

- αd(y2n−1, y2n) + β
d(y2n−1, y2n)d(y2n+1, y2n)

1 + d(y2n−1, y2n)
+ η

d(y2n−1, y2n)d(y2n−1, y2n)

1 + d(y2n−1, y2n)
.

Or

|d(y2n, y2n+1)| ≤α|d(y2n−1, y2n)|+ β|d(y2n+1, y2n)|
∣∣∣∣ d(y2n−1, y2n)

1 + d(y2n−1, y2n)

∣∣∣∣
+ η|d(y2n−1, y2n)|

∣∣∣∣ d(y2n−1, y2n)

1 + d(y2n−1, y2n)

∣∣∣∣
⇒ |d(y2n, y2n+1)| ≤ (α+ η)|d(y2n−1, y2n)|+ β|d(y2n+1, y2n)|.
Or consequently
d(y2n, y2n+1) - (α+ η)d(y2n−1, y2n) + βd(y2n+1, y2n)
or
d(y2n, y2n+1) - α+η

1−β d(y2n−1, y2n) since α+η
1−β = k < 1,

then d(y2n, y2n+1) - kd(y2n−1, y2n).
Proceeding in similar way, we have

d(y2n, y2n+1) - kd(y2n−1, y2n) - k2d(y2n−2, y2n−1) - . . . - k2nd(y0, y1).

Finally, we can conclude that d(yn, yn+1) - knd(y0, y1).
Now for all m > n, m,n ∈ N

d(yn, ym) -d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(ym−1, ym).

-knd(y0, y1) + kn+1d(y0, y1) + · · ·+ km−1d(y0, y1).

-
kn

1− k
d(y0, y1).

Or |d(yn, ym)| ≤ kn

1− k
|d(y0, y1)|.

Taking limit n→∞, we have |d(yn, ym)| → 0, since k < 1.
This implies that {yn} is a Cauchy sequence in X.
Since X is a complete therefore there exist a point z ∈ X such that

lim
n→∞

Ax2n = lim
n→∞

Tx2n+1 = lim
n→∞

Bx2n+1 = lim
n→∞

Sx2n+2 = z.

Now since B(X) is a closed subset of X and so z ∈ B(X).
Now B(X) ⊆ S(X), then there exists a point u ∈ X,such that z = Su.
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Now we show that Au = Su = z, by the inequality (2.1), we have

d(Au, z) -d(Au,Bx2n+1) + d(Bx2n+1, Tx2n+1) + d(Tx2n+1, z)

-αd(Su, Tx2n+1) + β
d(Su,Au)d(Bx2n+1, Tx2n+1)

1 + d(Su, Tx2n+1)

+ γ
d(Su,Bx2n+1)d(Au, Tx2n+1)

1 + d(Su, Tx2n+1)
+ η

d(Su,Au)d(Su, Tx2n+1)

1 + d(Su, Tx2n+1)

+ ξ
d(Bu, Sx2n+1)d(Bx2n−1, Tx2n+1)

1 + d(Bu, Sx2n+1)

+ d(Bx2n+1, Tx2n+1) + d(Tx2n+1, z).

Letting n→∞, we have

d(Au, z) -αd(z, z) + β
d(z,Au)d(z, z)

1 + d(z, z)
+ γ

d(z, z)d(Au, z)

1 + d(z, z)
+ η

d(z,Au)d(z, z)

1 + d(z, z)
+

ξ
d(Bu, z)d(z, z)

1 + d(Bu, z)
+ d(z, z) + d(z, z).

⇒ d(Au, z) =0 or Au = z.

Thus Au = Su = z.
This implies that u is a coincidence point of (A,S).
Since A(X) ⊆ T (X) and now z ∈ A(X), then there exist a point v ∈ X such that
z = Tv. Now we show that Bv = z. By inequality (2.1) and by Au = Su = Tv = z,
we have

d(z,Bv) =d(Au,Bv)

-αd(Su, Tv) + β
d(Su,Au)d(Bv, Tv)

1 + d(Su, Tv)
+ γ

d(Su,Bv)d(Au, Tv)

1 + d(Su, Tv)

+ η
d(Su,Au)d(Su, Tv)

1 + d(Su, Tv)
+ ξ

d(Bu, Sv)d(Bv, Tv)

1 + d(Bu, Sv)

-αd(z, z) + β
d(z, z)d(Bv, z)

1 + d(z, z)
+ γ

d(z,Bv)d(z, z)

1 + d(z, z)

+ η
d(z, z)d(z, z)

1 + d(z, z)
+ ξ

d(Bu, Sv)d(Bv, z)

1 + d(Bu, Sv)
.

Or |d(z,Bv)| ≤ ξ
∣∣∣ d(Bu,Sv)
1+d(Bu,Sv)

∣∣∣ |d(z,Bv)|.

⇒ |d(z,Bv)| = 0, since ξ < 1 and
∣∣∣ d(Bu,Sv)
1+d(Bu,Sv)

∣∣∣ < 1.

⇒ Bv = z ⇒ Bv = Tv = z.
⇒ v is a coincidence point of (B, T ).
Now, we have Au = Su = Bv = Tv = z.
Since A and S are weakly compatible mapping then ASu = SAu⇒ Az = Sz.
Now we show that z is a fixed point of A. If Az 6= z then by using inequality (2.1),
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we have

d(Az, z) =d(Az,Bv)

-αd(Sz, Tv) + β
d(Sz,Az)d(Bv, Tv)

1 + d(Sz, Tv)
+ γ

d(Sz,Bv)d(Az, Tv)

1 + d(Sz, Tv)

+ η
d(Sz,Az)d(Sz, Tv)

1 + d(Sz, Tv)
+ ξ

d(Bz, Sv)d(Bv, Tv)

1 + d(Bz, Sv)

-αd(Az, z) + β
d(Az,Az)d(z, z)

1 + d(Az, z)
+ γ

d(Az, z)d(Az, z)

1 + d(Az, z)

+ η
d(Az,Az)d(Az, z)

1 + d(Az, z)
+ ξ

d(Bz, Sv)d(z, z)

1 + d(Bz, Sv)
.

(Since Az = Sz and Su = Au = Tv = Bv = z.)
This follows

|d(Az, z)| ≤ α|d(Az, z)|+ γ
∣∣∣ d(Az,z)
1+d(Az,z)

∣∣∣ |d(Az, z)|.
So that |d(Az, z)| ≤ (α+ γ)|d(Az, z)|, since α+ γ < 1,
implies d(Az, z) = 0⇒ Az = z. Hence we have Az = Sz = z.
Now (B, T ) is weakly compatible pair, so BTv = TBv ⇒ Tz = Bz.
Next we show that z is a fixed point of B. Suppose Bz 6= z, then inequality (2.1)
yields

d(z,Bz) =d(Az,Bz)

-αd(Sz, Tz) + β
d(Sz,Az)d(Bz, Tz)

1 + d(Sz, Tz)
+ γ

d(Sz,Bz)d(Az, Tz)

1 + d(Sz, Tz)

+ η
d(Sz,Az)d(Sz, Tz)

1 + d(Sz, Tz)
+ ξ

d(Bz, Sz)d(Bz, Tz)

1 + d(Bz, Sz)
.

-αd(z,Bz) + β
d(z, z)d(Bz,Bz)

1 + d(z,Bz)
+ γ

d(z,Bz)d(z,Bz)

1 + d(z,Bz)

+ η
d(z, z)d(z,Bz)

1 + d(z,Bz)
+ ξ

d(Bz, z)d(Bz,Bz)

1 + d(Bz, z)
.

Or |d(z,Bz)| ≤ α|d(z,Bz)|+ γ
∣∣∣ d(z,Bz)
1+d(z,Bz)

∣∣∣ |d(z,Bz)|.
⇒ |d(z,Bz)| ≤ (α+ γ)|d(z,Bz)|.
This implies that d(z,Bz) = 0⇒ Bz = z. Hence Az = Bz = Sz = Tz = z.
Therefore z is a common fixed point of A,B, S and T.
Now we show that this fixed point is unique.
Let w be another fixed point of A,B, S and T, such that z 6= w. Then by inequality
(2.1)

d(z, w) =d(Az, Tw)

-αd(Sz, Tw) + β
d(Sz,Az)d(Bw, Tw)

1 + d(Sz, Tw)
+ γ

d(Sz,Bw)d(Az, Tw)

1 + d(Sz, Tw)

+ η
d(Sz,Az)d(Sz, Tw)

1 + d(Sz, Tw)
+ ξ

d(Bw,Sz)d(Bw, Tw)

1 + d(Bz, Sw)
.

Or |d(z, w)| ≤ α|d(z, w)|+ γ
∣∣∣ d(z,w)
1+d(z,w)

∣∣∣ |d(z, w)|.
⇒ |d(z, w)| ≤ (α+ γ)|d(z, w)|.
We immediately obtain that d(z, w) = 0 and therefore z = w.
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Thus z is a unique fixed point of A,B, S and T.
This complete the proof. �

Now we furnish an illustrative example to highlight the utility of Theorem (2.1).

Example 2.1. Let X = P∪Q, where P = {1,−i}, Q = {i,−1}. Define d : X×X →
C as follows
d(1,−1) = d(−1, 1) = 3eiθ;
d(−1, i) = d(i,−1) = d(1, i) = d(i, 1) = eiθ;
d(1,−i) = d(−i, 1) = d(−1,−i) = d(−i,−1) = d(i,−i) = d(−i, i) = 5eiθ;
d(1, 1) = d(−1,−1) = d(i, i) = d(−i,−i) = 0.
Then (X, d) is a complex valued generalized metric space, where θ ∈

[
0, π4

)
. Set

A = B and S = T . Define A,S : X → X as follows

A(x) =

{
−1, if x ∈ P,
i, if x ∈ Q

and S(x) =


−i, if x ∈ P,
−1, if x = −1,

i, if x = i.

Clearly the pair (A,S) is weakly compatible and A(X) ⊆ S(X).
Before discussing different cases, one needs to notice that

0 -d(Ax,Ay), d(Sx, Sy),
d(Sx,Ax)d(Ay, Sy)

1 + d(Sx, Sy)
,
d(Sx,Ay)d(Ax, Sy)

1 + d(Sx, Sy)
,

d(Sx,Ax)d(Sx, Sy)

1 + d(Sx, Sy)
,
d(Ax, Sy)d(Ay, Sy)

1 + d(Ax, Sy)

for all x, y ∈ X and for θ ∈
[
0, π4

)
.

It is sufficient to show that d(Ax,Ay) - αd(Sx, Sy), with α, β, γ, η, ξ ≥ 0
and α+ β + γ + η + ξ < 1.
Following cases for x, y ∈ X are discussed with α = 1

3 , β = 1
4 , γ = 1

5 , η = 1
10 and

ξ = 1
15 . Notice that α+ β + γ + η + ξ < 1.

Case I: When x ∈ P and y ∈ P, we have
d(Ax,Ay) = d(−1,−1) = 0 and d(Sx, Sy) = d(−i,−i) = 0
then we find that d(Ax,Ay) - αd(Sx, Sy) as 0 - 0, where θ ∈ [0, π/4).
Case II: When x ∈ P and y = −1, we get
d(Ax,Ay) = d(−1, i) = eiθ and d(Sx, Sy) = d(−i,−1) = 5eiθ

then we find that d(Ax,Ay) - αd(Sx, Sy) as eiθ - 5
3e
iθ, where θ ∈ [0, π/4).

Case III: When x ∈ P and y = −i, we find that
d(Ax,Ay) = d(−1, i) = eiθ and d(Sx, Sy) = d(−i, i) = 5eiθ

⇒ d(Ax,Ay) - αd(Sx, Sy) as eiθ - 5
3e
iθ, where θ ∈ [0, π/4).

Case IV: When x = i and y ∈ P, then
d(Ax,Ay) = d(i,−1) = eiθ and d(Sx, Sy) = d(i,−i) = 5eiθ

we get d(Ax,Ay) - αd(Sx, Sy) as eiθ - 5
3e
iθ, where θ ∈ [0, π/4).

Case V: When x = i and y = −1, we get
d(Ax,Ay) = d(i, i) = 0 and d(Sx, Sy) = d(i,−1) = eiθ

we find that d(Ax,Ay) - αd(Sx, Sy) as 0 - 1
3e
iθ, where θ ∈ [0, π/4).

Case VI: When x = i and y = i, we get
d(Ax,Ay) = d(i, i) = 0 and d(Sx, Sy) = d(i, i) = 0
then d(Ax,Ay) - αd(Sx, Sy) as 0 - 0, where θ ∈ [0, π/4).
Case VII: When x = −1 and y ∈ P, we get
d(Ax,Ay) = d(i,−1) = eiθ and d(Sx, Sy) = d(−1,−i) = 5eiθ

we find that d(Ax,Ay) - αd(Sx, Sy) as eiθ - 5
3e
iθ, where θ ∈ [0, π/4).
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Case VIII: When x = −1 and y = −1, we get
d(Ax,Ay) = d(i, i) = 0 and d(Sx, Sy) = d(−1,−1) = 0
then d(Ax,Ay) - αd(Sx, Sy) as 0 - 0, where θ ∈ [0, π/4).
Case IX: When x = −1 and y = i, we get
d(Ax,Ay) = d(i,−1) = eiθ and d(Sx, Sy) = d(i,−i) = 5eiθ

then we find that d(Ax,Ay) - αd(Sx, Sy) as eiθ - 5
3e
iθ where θ ∈ [0, π/4).

Thus mapping A and S satisfy inequality(2.1) of Theorem(2.1).
Therefore all the conditions of Theorem(2.1) are satisfied. Here, i ∈ X is a unique
common fixed point of pair (A,S).

If we set S = T = I in Theorem(2.1), then we get the following corollary.

Corollary 2.2. Let A,B be two self mappings of a complex valued rectangular
(generalized) metric space (X, d) satisfying :

d(Ax,By) -αd(x, y) + β
d(x,Ax)d(y,By)

1 + d(x, y)
+ γ

d(x,By)d(y,Ay)

1 + d(x, y)
+

η
d(x,Ax)d(x, y)

1 + d(x, y)
+ ξ

d(y,Bx)d(y,By)

1 + d(y,Bx)
, ∀x, y ∈ X.

Where α, β, γ, η and ξ are non negative reals such that α+ β + γ + η + ξ < 1.
Then A and B have a unique common fixed point.

Again if we set S = T in Theorem(2.1), then following corollary is obtained.

Corollary 2.3. Let A,B and S be three self mappings of a complex valued rectan-
gular (generalized) metric space (X, d) satisfying :
(i) A(X) ⊆ S(X) and B(X) ⊆ S(X);
(ii)

d(Ax,By) -αd(Sx, Sy) + β
d(Sx,Ax)d(By, Sy)

1 + d(Sx, Sy)
+ γ

d(Sx,By)d(Ax, Sy)

1 + d(Sx, Sy)
+

η
d(Sx,Ax)d(Sx, Sy)

1 + d(Sx, Sy)
+ ξ

d(Bx, Sy)d(By,By)

1 + d(Bx, Sy)
, ∀x, y ∈ X.

Where α, β, γ, η and ξ are non negative reals such that α+ β + γ + η + ξ < 1.
If pairs (A,S) and (B, T ) are weakly compatible and B(X) is a closed subset of X.
Then A and B have a unique common fixed point.

3. Application of property (E.A.) in complex valued
rectangular (generalized) metric space:

In this section, application of property (E.A.) is invoked to obtain fixed point
theorem.

Theorem 3.1. Let A,B, S and T be four self mappings of a complex valued rect-
angular (generalized) metric space (X, d) satisfying the conditions (1),(2),(3) of
Theorem(2.1) and also one of the pair (A,S) and (B, T ) satisfies property (E.A.).
If one of the mappings S(X) and T (X) is closed subset of X. Then the mappings
A,B, S and T have a unique common fixed point in X.

Proof. Firstly, suppose the pair (B, T ) satisfies E.A. property then there exists a
sequence {xn} in X such that

lim
n→∞

Bxn = lim
n→∞

Txn = t, for some t ∈ X.
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Since B(X) ⊆ S(X) then we find a sequence {yn} in X such that Bxn = Syn.
Hence lim

n→∞
Syn = t.

We claim that lim
n→∞

Ayn = t. Utilizing inequality(2.1) with x = yn and y = xn, we

have

d(Ayn, Bxn) -αd(Syn, Txn) + β
d(Syn, Ayn)d(Bxn, Txn)

1 + d(Syn, Txn)

+ γ
d(Syn, Bxn)d(Ayn, Txn)

1 + d(Syn, Txn)
+ η

d(Syn, Ayn)d(Syn, Txn)

1 + d(Syn, Txn)

+ ξ
d(Byn, Sxn)d(Bxn, Txn)

1 + d(Byn, Sxn)
.

Which on letting n→∞, reduces to
lim
n→∞

|d(Ayn, Bxn)| = 0⇒ lim
n→∞

Ayn = lim
n→∞

Bxn = t.

Now suppose S(X) is closed subset of X, then for some u ∈ X, we have Su = t.
Subsequently, we have

lim
n→∞

Ayn = lim
n→∞

Bxn = lim
n→∞

Txn = lim
n→∞

Syn = t = Su. (3.1)

Now we show that Au = Su.
Putting x = u and y = xn in inequality(2.1), we get

d(Au,Bxn) -αd(Su, Txn) + β
d(Su,Au)d(Bxn, Txn)

1 + d(Su, Txn)
+ γ

d(Su,Bxn)d(Au, Txn)

1 + d(Su, Txn)
+

η
d(Su,Au)d(Su, Txn)

1 + d(Su, Txn)
+ ξ

d(Bu, Sxn)d(Bxn, Txn)

1 + d(Bu, Sxn)
.

Letting n→∞ and using equation(3.1), we have
|d(Au, t)| = 0 implies Au = t = Su.
Which yield that u is a coincidence point of (A,S).
Since (A,S) is weakly compatible pair so we have ASu = SAu⇒ At = St.
Since A(X) ⊆ T (X) then there exist v ∈ X, such that Au = Tv.
Thus

Su = Au = Tv = t. (3.2)

Now we show that Bv = t, for this, putting x = u and y = v in inequality (2.1), we
have

d(Au,Bv) -αd(Su, Tv) + β
d(Su,Au)d(Bv, Tv)

1 + d(Su, Tv)
+ γ

d(Su,Bv)d(Au, Tv)

1 + d(Su, Tv)
+

η
d(Su,Au)d(Su, Tv)

1 + d(Su, Tv)
+ ξ

d(Bu, Sv)d(Bv, Tv)

1 + d(Bu, Sv)
.

Now using equation (3.2), we have |d(t, Bv)| ≤ ξ
∣∣∣ d(Bu,Sv)
1+d(Bu,Sv)

∣∣∣ |d(Bv, t)|,

since ξ < 1 and
∣∣∣ d(Bu,Sv)
1+d(Bu,Sv)

∣∣∣ < 1. Then we must have |d(t, Bv)| = 0.

or Bv = t. Hence Bv = Tv = t.
This shows that v is a coincidence point of (B, T ).
By weak compatibility of pair (B, T ), we have BTv = TBv ⇒ Bt = Tt.
Therefore t is a coincidence point of B and T.
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Now we show that t is a common fixed point of mappings B and T, for this putting
x = y, and y = t in inequality (2.1), we have

d(t, Bt) =d(Au,Bt)

-αd(Su, T t) + β
d(Su,Au)d(Bt, T t)

1 + d(Su, T t)
+ γ

d(Su,Bt)d(Au, T t)

1 + d(Su, T t)

+ η
d(Su,Au)d(Su, T t)

1 + d(Su, T t)
+ ξ

d(Bu, St)d(Bt, T t)

1 + d(Bu, St)

or |d(t, Bt)| ≤ α|d(t, Bt)|+ γ
∣∣∣ d(y,Bt)
1+d(t,Bt)

∣∣∣ |d(t, Bt)|.
⇒ |d(t, Bt)| ≤ (α+ γ)|d(t, Bt)|, since α+ γ < 1.
So we have d(t, Bt) = 0⇒ Bt = t and so Bt = t = Tt.
Now to show that t is also a common fixed point of mappings A and S.
From inequality (2.1), we have

d(At, t) =d(At,Bt)

-αd(St, T t) + β
d(St,At)d(Bt, T t)

1 + d(St, T t)
+ γ

d(St,Bt)d(At, T t)

1 + d(St, T t)
+

η
d(St,At)d(St, T t)

1 + d(St, T t)
+ ξ

d(Bt, St)d(Bt, T t)

1 + d(Bt, St)
.

Or |d(At, t)| ≤ α|d(At, t)|+ γ
∣∣∣ d(At,t)
1+d(At,t)

∣∣∣ |d(At, t)|.
⇒ |d(At, t)| ≤ (α+ γ)|d(At, t)|, since α+ γ < 1.
So we have d(At, t) = 0⇒ At = t and so At = t = Tt.
Hence At = Bt = St = Tt = t, i.e. t is a common fixed point of A,B, S, and T.
We arrive at same conclusion if we assume that T (X) is a closed subset of X.
Similar result can be obtained when we take E.A. property for another pair (A,S).
Arguing the same as in Theorem(2.1), uniqueness of fixed point follows immediately

�

4. CLR property and its application in complex valued
rectangular (generalized) metric space:

In this section, we establish the fixed point theorem using CLR property in
complex valued rectangular metric spaces.

Theorem 4.1. Let A,B, S and T be four self mappings of a complex valued rect-
angular (generalized) metric space (X, d) satisfying the conditions (1),(2),(3) of
Theorem(2.1). If the pair (A,S) satisfies CLRA property or the pair (B, T ) sat-
isfies CLRB property. Then the mappings A,B, S and T have a unique common
fixed point in X.

Proof. First we suppose that pair (B, T ) satisfies the (CLRB) property, then there
exists a sequence {xn} in X such that

lim
n→∞

Bxn = lim
n→∞

Txn = Bx, for some x ∈ X. (4.1)
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Since B(X) ⊆ S(X), then we have Bx = Su, for some u ∈ X.
Now we show that Au = Su, so putting x = u, y = xn in inequality (2.1)

d(Au,Bxn) -αd(Su, Txn) + β
d(Su,Au)d(Bxn, Txn)

1 + d(Su, Txn)
+ γ

d(Su,Bxn)d(Au, Txn)

1 + d(Su, Txn)
+

η
d(Su,Au)d(Su, Txn)

1 + d(Su, Txn)
+ ξ

d(Bu, Sxn)d(Bxn, Txn)

1 + d(Bu, Sxn)
.

Letting n→∞, and using equation (4.1), we have
|d(Au,Bx)| = 0 ⇒ Au = Bx.
Thus Au = Su = Bx = t. (say) Or Au = Su = t.
Which amounts to say that u is a coincidence point of A and S.

Now remaining part of the theorem can be obtained on similar lines as in previous
Theorem(3.1). �

We observe that all the theorems and corollaries discussed in this note can also
be proved on the similar lines in the setting of complex valued metric spaces
due to Azam et al.[3].
In the context of complex valued metric space, our Corollary (2.2), generalizes the
results of Azam et al.[3] and of Rouzkard et al. [9].

Remark. If we put γ = η = ξ = 0 in Corollary(2.2) in the context of complex
valued metric spaces, we obtain Theorem 4 of Azam et al.[3] as follows:
Let A and B be two self mappings of a complex valued metric space (X, d) satisfying

d(Ax,By) - αd(x, y) + β
d(x,Ax)d(y,By)

1 + d(x, y)
, ∀x, y ∈ X.

Where α, β are non negative reals such that α+ β < 1.
Then A and B have a unique common fixed point.

Remark. If we put η = ξ = 0 in Corollary (2.2) in the setting of complex valued
metric spaces, we get Theorem (2.1) of Rouzkard et al. [9] stated as:
Let A and B be two self mappings of a complex valued metric space (X, d) satisfying

d(Ax,By) - αd(x, y) + β
d(x,Ax)d(y,By)

1 + d(x, y)
+ γ

d(x,By)d(y,Ax)

1 + d(x, y)
, ∀x, y ∈ X.

Where α, β, γ are non negative reals such that α+ β + γ < 1.
Then A and B have a unique common fixed point.

Conclusion: In this paper, in Section (II) we used classical method to prove the
common fixed point of four mappings through Cauchy sequence and completeness
of space with rational type of contraction condition in complex valued rectangular
metric space. In Section (III) we applied E.A. property for the existence of common
fixed point which relaxed completeness of space but it requires closedness of sub
space. In Section (IV) we used CLR property to claim the existence of common
fixed point, this property never requires any condition of closedness of sub spaces,
continuity of one or more mappings.
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