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ON THE HYERS-ULAM-GǍVRUTA STABILITY OF A PEXIDER

HOSSZÜS FUNCTIONAL EQUATION

(COMMUNICATED BY JANUSZ BRZDEK)

IZ. EL-FASSI∗ & A. CHARIFI & S. KABBAJ

Abstract. In this paper, we will investigate the Ulam-Rassias-Gǎvruta sta-

bility of the pexiderized Hosszú’s functional equation

f(x+ y + αxy) = g(x) + h(y) + k(xy)

for all x, y ∈ R and α ∈ R∗.

1. Introduction

The stability problem of functional equations has been originally raised by S.
M. Ulam. In 1940, he posed the following problem: Give conditions in order for a
linear mapping near an approximately additive mapping to exist (see [18]).

In 1941, this problem was solved by D. H. Hyers [6] for the first time. This
problem has been further generalized and solved by Th. M. Rassias [13]. Thereafter,
the stability problem of functional equations has been extended in various directions
and studied by several mathematicians (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12]). In [2]
we have the study of the Hyers-Ulam stability of the Hosszüs functional equation

f(x+ y + xy) = f(xy) + f(x) + f(y), x, y ∈ R.
The main purpose of this work is to study the Ulam-Rassias-Gǎvruta stability of
the pexider Hosszüs functional equation

f(x+ y + αxy) = g(x) + h(y) + k(xy), (1.1)

for all x, y ∈ R and α ∈ R∗, with the condition that

|f(x) + f(−x)| ≤ δ + η(x).

Many investigations were used to establish Hyers-Ulam stability of this equation
in the case α = 1 (see [1], [2], [11], [13]). In this paper, we will investigate the
Ulam-Rassias-Gǎvruta stability of the pexider Hosszú’s functional equation (1.1)
and we give some applications.
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This paper is a continuation, of the previous work by B. Bouikhalene, J. M.
Rassias, A. Charifi and S. Kabbaj of under title “on the approximate solution of
Hosszüs functional equation” see [2].

The paper is organized as follows: in the second section after this introduction
we give some notions, preliminary results. In the fourth section, we give general
solution of eq (1.1), in the fifth section, we study the stability of eq (1.1) and the
last section contains some applications.

2. Notations

Throughout this paper we use following notations:

• δ, δ′ are two positive real numbers.
• η : R −→ R+.
• ψ : R×R −→ R+ is one application and ψ0 = ψ, ψn(x, y) = ψn−1(2εx, 2εy)

with n ∈ N∗ and ε ∈ {−1, 1}.
• For some application f : R −→ R, we define θ : R× R −→ R+ by
θ(x, y) = 5δ

′
+ 2|f(1)|+ψ(x, 2y+ 1) +ψ(x+ y+ xy, 1) + 2ψ(x, y) +ψ(y, 1)

if one of numbers x or y is non null and θ(0, 0) = δ
′
+ ψ(0, 0).

• ψ̃(x, y) =
∑+∞
i= 1−ε

2

ψi−1(2
εx,2εy)

2iε+
1−ε
2

and consequently

θ̃(x, y) = 5δ
′
+ 2|f(0)|+ ψ̃(x, 2y+ 1) + ψ̃(x+ y+xy, 1) + 2ψ̃(x, y) + ψ̃(y, 1).

3. Preliminary results

Lemma 3.1. Let δ be a positive real number and let f, g, h, k : R −→ R,
ϕ : R× R −→ R+ and η : R −→ R+ be functions satisfying the following inequality

|f(x+ y + xy)− g(x)− h(y)− k(xy)| ≤ ϕ(x, y), x, y ∈ R, (3.1)

and

|f(x) + f(−x)| ≤ δ + η(x).

Then f, g, h, k satisfies the following inequalities

i) |f(0)− g(0)− h(0)− k(0)| ≤ ϕ(0, 0),
ii) |g(x)− f(x)| ≤ ϕ(x, 0) + |g(0)|+ |f(0)|+ ϕ(0, 0),

iii) |f(x)− h(x)| ≤ ϕ(0, 0) + |f(0)|+ |h(0)|+ ϕ(0, x),
iv) |f(x)−k(x)| ≤ δ+ η(x) +ϕ(−x,−1) +ϕ(−x, 0) +ϕ(0, 0) + |f(0)|+ |g(0)|+
|h(−1)|+ |f(−1)|.

Proof. i) Letting x = y = 0 in (3.1) we obtain

|f(0)− g(0)− h(0)− k(0)| ≤ ϕ(0, 0).

ii) Replacing y by 0 in (3.1) we get

|g(x)− g(0) + f(0)− f(x)| ≤ ϕ(x, 0) + ϕ(0, 0), x ∈ R

then we obtain the result.
iii) Replacing (x, y) by (0, x) in (3.1) we obtain

|f(x)− f(0) + h(0)− h(x)| ≤ ϕ(0, 0) + ϕ(0, x), x ∈ R,
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and we get the result.
iv) Putting y = −1 in (3.1) we find

|f(−1)− g(x)− h(−1)− k(−x)| ≤ ϕ(x,−1),

and using the previous inequalities, we get the result. �

Lemma 3.2. Let f, g, h, k : R −→ R satisfies the functional inequality (3.1). Then
f satisfies the inequality

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ δ
′
+ ψ(x, y) (3.2)

for all x, y ∈ R, where

δ
′

= δ + 3ϕ(0, 0) + |f(−1)|+ |h(−1)|+ 3|f(0)|+ 2|g(0)|+ |h(0)|
and

ψ(x, y) = ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + ϕ(−xy,−1) + ϕ(−xy, 0) + η(xy).

Proof. By Lemma 3.1 and f, g, h, k satisfies (3.1) we get

|f(x+ y + xy)− f(x)− f(y)− f(xy)| ≤ |f(x+ y + xy)− g(x)− h(y)− k(xy)|
+ |f(x)− g(x)|+ |f(y)− h(y)|+ |f(xy)− k(xy)|

≤ δ
′
+ ψ(x, y),

where δ
′

= δ+3ϕ(0, 0)+ |f(−1)|+ |h(−1)|+3|f(0)|+2|g(0)|+ |h(0)| and ψ(x, y) =
ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + ϕ(−xy,−1) + ϕ(−xy, 0) + η(xy).
Which complete the proof of lemma. �

4. general solution of eq (1.1)

In this section we give general solution of the functional equation (1.1).

Theorem 4.1. The functions f, g, h, k satisfies the functional equation (1.1) and
f is odd function if only if there exists an additive function T : R→ R such that

f(x) = T (αx),

g(x) = T (αx)− h(0)− k(0),

h(x) = T (αx)− g(0)− k(0)

and
k(x) = T (α2x) + 2k(0) + g(0) + h(0),

for all x ∈ R and α ∈ R∗.

Proof. Assume that the functions f, g, h, k satisfying (1.1) and f is odd function.
Replacing in the first y by 0 in (1.1) we get

g(x) = f(x)− h(0)− k(0),

in the second x by 0 and y by x we obtain

h(x) = f(x)− g(0)− k(0).

Putting y = −1
α in (1.1) and using the previous equalities we find

k(x) = f(αx) + 2k(0) + g(0) + h(0),

for all x ∈ R and α ∈ R∗. This implies that

f(x+ y + αxy) = f(x) + f(y) + f(αxy), (4.1)
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for all x ∈ R and α ∈ R∗. Replacing (x, y) by ( xα ,
y
α ) in (4.1)and we put F (x) = f( xα )

we obtain

F (x+ y + xy) = F (x) + F (y) + F (xy), (4.2)

for all x, y ∈ R. By Theorem 4.1 in [2], there there exists an additive function
T : R→ R such that

F (x) = T (x),

which implies that

f(x) = T (αx),

for all x ∈ R and α ∈ R∗.
The converse is obvious. The proof of Theorem is complete. �

5. Stability of eq (1.1)

In this section we establish the Ulam-Rassias-Gǎvruta stability of equation (1.1).

Theorem 5.1. Let δ be a positive real number and α a real non-zero and let
f, g, h, k : R −→ R, ϕ : R× R −→ R+ and η : R −→ R+ be functions satisfying the
following inequality

|f(x+ y + αxy)− g(x)− h(y)− k(xy)| ≤ ϕ(x, y), x, y ∈ R (5.1)

and

|f(x) + f(−x)| ≤ δ + η(x). (5.2)

Assume that ψ̃(x, y) < +∞. Then there exists a unique quadruplet (T,U, V,W ) of
functions, T,U, V,W : R −→ R solution of equation (1.1) such that

|f(x)− T (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)),

|g(x)− U(x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(x, 0)

+ ϕ(0, 0) + |f(0)|+ 2|g(0)|,

|h(x)− V (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(0, x)

+ ϕ(0, 0) + |f(0)|+ 2|h(0)|,

|k(x)−W (x)| ≤ θ̃(αx, 1

2α
) + θ̃(αx,

−1

2α
) + 2|f(0)|+ 2(δ

′
+ ψ̃(

αx

2
,
−1

α
))

+ δ + ϕ(−αx, −1

α
) + ϕ(−αx, 0) + ϕ(0, 0) + η(αx)+

2|g(0)|+ |h(0)|+ |h(
−1

α
)|+ |f(

−1

α
)|,

where

δ
′

= δ + 3ϕ(0, 0) + |f(
−1

α
)|+ |h(

−1

α
)|+ 3|f(0)|+ 2|g(0)|+ |h(0)|,

ψ(x, y) = ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + ϕ(−xy,−1) + ϕ(−xy, 0) + η(xy)

for all x, y ∈ R. Moreover
T is additive, U(x) = T (x)− a1, V (x) = T (x)− a2, W (x) = T (αx) + a1 + a2 with
a1 = f(0) + g(0) and a2 = f(0) + h(0) two fixed numbers.
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Proof. Putting F (x) = f( xα ), G(x) = g( xα ), H(x) = h( xα ) and K(x) = k( x
α2 ) for all

x ∈ R and α ∈ R∗. Then the inequalities (5.1) become

|F (x+ y + xy)−G(x)−H(y)−K(xy)| ≤ ϕ(
x

α
,
y

α
)

=: φ(x, y) (5.3)

and

|F (x) + F (−x)| ≤ δ + η(
x

α
) := δ + η

′
(x), (5.4)

for all x, y ∈ R and α ∈ R∗.
By Lemma 3.1 and 3.2 we get

|F (x+ y + xy)− F (x)− F (y)− F (xy)| ≤ δ
′
+ ψ

′
(x, y),

with

δ
′

= δ + 3φ(0, 0) + |F (−1)|+ |H(−1)|+ 3|F (0)|+ 2|G(0)|+ |H(0)|

and

ψ
′
(x, y) = φ(x, y) + φ(x, 0) + φ(0, y) + φ(−xy,−1) + φ(−xy, 0) + η

′
(xy)

= ψ(
x

α
,
y

α
).

By Theorem 4.2 in [2], there exists a unique additive function T
′

: R −→ R such
that

|F (x)− T ′(x)| ≤ θ̃′(x, 1

2
) + θ̃′(x,

−1

2
) + |F (0)|+ 2(δ

′
+ ψ̃′(

x

2
,−1)),

where

θ̃′(x, y) = 5δ
′
+ 2|F (0)|+ ψ̃′(x, 2y + 1) + ψ̃′(x+ y + xy, 1) + 2ψ̃′(x, y) + ψ̃′(y, 1)

= θ̃(
x

α
,
y

α
),

for all x, y ∈ R. Then

|F (x)− T ′(x)| ≤ θ̃(x
α
,

1

2α
) + θ̃(

x

α
,
−1

2α
) + |F (0)|+ 2(δ

′
+ ψ̃(

x

2α
,
−1

α
)),

which implies that

|f(x)− T (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)),

for all x ∈ R, where T (x) = T
′
(αx). Letting y = 0 in (5.3) and using lemma 3.1 (i)

we get

|G(x)− F (x) + a1| ≤ ϕ(
x

α
, 0) + ϕ(0, 0) + 2|G(0)|, ∀x ∈ R (5.5)

where a1 = F (0) +G(0) = g(0) + f(0). Then

|G(x)− T ′(x) + a1| ≤ |F (x)− T ′(x)|+ |G(x)− F (x) + a1|

≤ θ̃(x
α
,

1

2α
) + θ̃(

x

α
,
−1

2α
) + |F (0)|+ 2(δ

′
+ ψ̃(

x

2α
,
−1

α
)),

+ ϕ(
x

α
, 0) + ϕ(0, 0) + 2|G(0)|,
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which implies that

|g(x)− U(x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(x, 0)

+ ϕ(0, 0) + |f(0)|+ 2|g(0)|,

for all x ∈ R, where U(x) = T
′
(αx)− a1.

Replacing (x, y) by (0, x) in (5.3) and using Lemma 3.1 (i) we obtain

|H(x)− F (x) + a2| ≤ ϕ(0,
x

α
) + ϕ(0, 0) + 2|H(0)|, ∀x ∈ R (5.6)

where a2 = F (0) +H(0) = h(0) + f(0). Then

|H(x)− T ′(x) + a2| ≤ |F (x)− T ′(x)|+ |H(x)− F (x) + a2|

≤ θ̃(x
α
,

1

2α
) + θ̃(

x

α
,
−1

2α
) + |F (0)|+ 2(δ

′
+ ψ̃(

x

2α
,
−1

α
)),

+ ϕ(0,
x

α
) + ϕ(0, 0) + 2|H(0)|,

which implies that

|h(x)− V (x)| ≤ θ̃(x,
1

2α
) + θ̃(x,

−1

2α
) + 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(0, x)

+ϕ(0, 0) + |f(0)|+ 2|h(0)|,

for all x ∈ R, where V (x) = T
′
(αx) − a2. Next, we replace (x, y) by (−x,−1) in

(5.3) we get

|K(x) +G(−x) +H(−1)− F (−1)| ≤ ϕ(
−x
α
,
−1

α
) (5.7)

for all x ∈ R.
It follow from (5.4), (5.5) and (5.7) that

|K(x)− F (x)− a1 − a2| ≤ |K(x) +G(−x) +H(−1)− F (−1)|+ |F (−1)|+ |H(−1)|
+ | −G(−x) + F (−x)− a1|+ |F (−x) + F (x)|+ |a2|

≤ ϕ(
−x
α
,
−1

α
) + |F (−1)|+ |H(−1)|+ ϕ(

−x
α
, 0) + ϕ(0, 0)

+ 2|G(0)|+ δ + η(
x

α
) + |F (0)|+ |H(0)|.

Thus

|K(x)− T ′(x)− a1 − a2| ≤ |K(x)− F (x)− a1 − a2|+ |F (x)− T ′(x)|

≤ θ̃(x
α
,

1

2α
) + θ̃(

x

α
,
−1

2α
) + 2(δ

′
+ ψ̃(

x

2α
,
−1

α
)) + ϕ(

−x
α
,
−1

α
)

+ ϕ(
−x
α
, 0) + η(

x

α
) + δ + ϕ(0, 0) + 2|F (0)|+ 2|G(0)|

+ |H(0)|+ |F (−1)|+ |H(−1)|
for all x ∈ R. Hence

|k(x)−W (x)| ≤ θ̃(αx, 1

2α
) + θ̃(αx,

−1

2α
) + 2|f(0)|+ 2(δ

′
+ ψ̃(

αx

2
,
−1

α
))

+ δ + ϕ(−αx, −1

α
) + ϕ(−αx, 0) + ϕ(0, 0) + η(αx)+

2|g(0)|+ |h(0)|+ |h(
−1

α
)|+ |f(

−1

α
)|,
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for all x ∈ R, where W (x) = T
′
(α2x) + a2 + a2. Moreover

T is a unique additive function. Since a1 = f(0) + g(0) and a2 = f(0) + h(0) two
fixed numbers, thus the triple (U, V,W ) is unique and the quadruplet (T,U, V,W )
is the solution of equation (1.1). The proof of Theorem is complete. �

Remark. If α = 1 we find a particular case of the Theorem 5.1.

6. Applications

In this section we give some applications of the Theorem 5.1.

Corollary 6.1. Let δ, γ be positive real numbers and α a real non-zero, and let
f, g, h, k : R −→ R be functions satisfying the following inequality

|f(x+ y + αxy)− g(x)− h(y)− k(xy)| ≤ γ, x, y ∈ R
and

|f(x) + f(−x)| ≤ δ.
Then there exists a unique quadruplet (T,U, V,W ) of functions, T,U, V,W : R −→
R solution of equation (1.1) such that

|f(x)− T (x)| ≤ 25

2
δ
′
+ 4|f(

1

α
)|,

|g(x)− U(x)| ≤ 25

2
δ
′
+ 4|f(

1

α
)|+ 2γ + 2|g(0)|,

|h(x)− V (x)| ≤ 25

2
δ
′
+ 4|f(

1

α
)|+ 2γ + 2|h(0)|,

|k(x)−W (x)| ≤ 25

2
δ
′
+ 4|f(

1

α
)|+ δ + 3γ + |f(0)|+ 2|g(0)|+ |h(0)|+ |f(

−1

α
)|+ |h(

−1

α
)|,

for all x ∈ R, where

δ′ = 8γ + |f(
−1

α
)|+ |h(

−1

α
)|+ δ + 3|f(0)|+ 2|g(0)|+ |h(0)|.

Moreover T is additive, U(x) = T (x) − a1, V (x) = T (x) − a2, W (x) = T (αx) +
a1 + a2 with a1 = f(0) + g(0) and a2 = f(0) + h(0) two fixed numbers.

Remark. If we take ϕ(x, y) = γ(|x|p + |y|p) where p 6= 1, 12 and γ ∈ R+ in the
Theorem 5.1, with the condition that |f(x) + f(−x)| ≤ δ, we find Ulam-Rassias
stability of equation (1.1).

Corollary 6.2. Let α a real non-zero and let f, h, k : R −→ R and ϕ : R× R −→
R+ be functions satisfying the following inequality

|f(x+ y + αxy) + f(−x)− h(y)− k(xy)| ≤ ϕ(x, y), x, y ∈ R. (6.1)

Assume that ψ̃(x, y) < +∞. Then there exists a unique triplet (T, V,W ) of func-
tions, T, V,W : R −→ R solution of equation f(x+y+αxy)+f(−x)−h(y)−k(xy) =
0 such that

|f(x)− T (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)),

|h(x)− V (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(0, x)

+ ϕ(0, 0) + 2|h(0)|,
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and

|k(x)−W (x)| ≤ θ̃(αx, 1

2α
) + θ̃(αx,

−1

2α
) + 4|f(0)|+ 2(δ

′
+ ψ̃(

αx

2
,
−1

α
))+

ϕ(−αx, −1

α
) + ϕ(−αx, 0) + ϕ(0, 0) + ϕ(αx, 0) + 2|h(0)|

+ |k(0)|+ |f(
−1

α
)|+ |h(

−1

α
)|,

where

δ
′

= δ + 3ϕ(0, 0) + |f(
−1

α
)|+ |h(

−1

α
)|+ 5|f(0)|+ |h(0)|,

ψ(x, y) = ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + ϕ(−xy,−1) + ϕ(−xy, 0) + η(xy),

δ + η(x) = ϕ(x, 0) + |h(0)|+ |k(0)|,
for all x, y ∈ R. Moreover
T is additive, V (x) = T (x)− a2, and W (x) = T (αx) + a2 with a2 = f(0) + h(0) a
fixed number.

Proof. Replacing y by 0 in (6.1) we get

|f(x) + f(−x)| ≤ ϕ(x, 0) + |h(0)|+ |k(0)|,
and we consider g(x) = −f(−x) and δ + η(x) = ϕ(x, 0) + |h(0)| + |k(0)|, then by
Theorem 5.1 we get the result. �

Corollary 6.3. Let α a real non-zero and let f, g, k : R −→ R and ϕ : R× R −→
R+ be functions satisfying the following inequality

|f(x+ y + αxy) + f(−y)− g(x)− k(xy)| ≤ ϕ(x, y), x, y ∈ R. (6.2)

Assume that ψ̃(x, y) < +∞. Then there exists a unique triplet (T,U,W ) of func-
tions, T,U,W : R −→ R solution of equation f(x+y+αxy)−g(x)+f(−y)−k(xy) =
0 such that

|f(x)− T (x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)),

|g(x)− U(x)| ≤ θ̃(x, 1

2α
) + θ̃(x,

−1

2α
) + |f(0)|+ 2(δ

′
+ ψ̃(

x

2
,
−1

α
)) + ϕ(x, 0)

+ ϕ(0, 0) + 2|g(0)|,
and

|k(x)−W (x)| ≤ θ̃(αx, 1

2α
) + θ̃(αx,

−1

2α
) + 3|f(0)|+ 2(δ

′
+ ψ̃(

αx

2
,
−1

α
))

+ ϕ(−αx, −1

α
) + ϕ(−αx, 0) + ϕ(0, 0) + ϕ(0, αx) + 3|g(0)|

+ |k(0)|+ |f(
−1

α
)|+ |h(

−1

α
)|,

where

δ
′

= δ + 3ϕ(0, 0) + |f(
−1

α
)|+ |f(

1

α
)|+ 4|f(0)|+ 2|g(0)|,

ψ(x, y) = ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + ϕ(−xy,−1) + ϕ(−xy, 0) + η(xy),

δ + η(x) = ϕ(0, x) + |g(0)|+ |k(0)|,
for all x, y ∈ R. Moreover
T is additive, U(x) = T (x) − a1 and W (x) = T (αx) + a1 with a1 = f(0) + h(0) a
fixed number.
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Proof. Replacing x by 0 and y by x in (6.2) we get

|f(x) + f(−x)| ≤ ϕ(0, x) + |g(0)|+ |k(0)|,
and we consider h(y) = −f(−y) and δ + η(x) = ϕ(0, x) + |g(0)| + |k(0)|, then by
Theorem 5.1 we get the result. �
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