ON CONVERGENCE AND ABSOLUTE CONVERGENCE OF FOURIER SERIES WITH RESPECT TO ORTHOGONAL POLYNOMIALS

(COMMUNICATED BY FRANCISCO MARCELLAN)

JOSEF OBERMAIER

Abstract

Let μ be a probability measure on the Borel σ-algebra of \mathbb{R} with compact and infinite support S, and $\left\{p_{n}\right\}_{n=0}^{\infty}$ be an orthonormal polynomial sequence with respect to μ. A Banach space $B \subset L_{1}(\mu)$ with norm $\|\|$ is called harmonic if the set \mathcal{P} of polynomials is dense in B, and $\|f\|_{1} \leq\|f\|$ for all $f \in B$. We are studying Fourier series of $f \in B$ with respect to $\left\{p_{n}\right\}_{n=0}^{\infty}$. Equipped with a proper norm the subspaces $B_{D} \subset B$ of convergent Fourier series, and $B_{A} \subset B$ of absolute convergent Fourier series are Banach spaces for its own. We show that in case B is not isomorphic to ℓ_{1} it holds $B_{A} \subsetneq B_{D}$. For example this result fits for $C(S)$ which is a harmonic Banach space not isomorphic to ℓ_{1}. In case μ is a Jacobi measures with $\alpha>-1 / 2$ or $\beta>-1 / 2$ an explicit function $f \in C([-1,1])$ with convergent but not absolute convergent Fourier series is constructed. For that purpose we prove a modification of Schur's inequality.

1. Introduction

In classical Fourier analysis it is well known that there exists a function $f \in C(\mathbb{T})$ such that the partial sums $\sum_{n=0}^{N} \hat{f}(n) e^{i n t}$ of its Fourier series are not uniformly converging to f. Also there exist uniformly convergent Fourier series which are not absolutely convergent. For that purpose one can take

$$
\begin{equation*}
f\left(e^{i t}\right)=\int_{-\pi}^{t} g(r) d r \tag{1.1}
\end{equation*}
$$

with

$$
\begin{equation*}
g(r)=\sum_{n=1}^{\infty} \frac{\cos (n r)}{\ln (n+1)} \tag{1.2}
\end{equation*}
$$

Then by simple means the Fourier series of f is not absolutely convergent. Since f is of bounded variation the Dirichlet-Jordan convergence criterion [14 implies that the Fourier series of f is uniformly convergent. Denoting the set of f with uniformly

[^0]convergent Fourier series by $U(\mathbb{T})$ and those f with absolutely convergent Fourier series by $A(\mathbb{T})$, we have
\[

$$
\begin{equation*}
A(\mathbb{T}) \subsetneq U(\mathbb{T}) \subsetneq C(\mathbb{T}) \tag{1.3}
\end{equation*}
$$

\]

see [4].
We focus on Fourier series with respect to an orthonormal polynomial sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$, where the support $\mathcal{S} \subset \mathbb{R}$ of the orthogonalization measure μ is assumed to be infinite and compact. It is well-known, that in case $\mathcal{S}=[-1,1]$ there exists $f \in C([-1,1])$ such that the Fourier series doesn't converge uniformly, see [2]. However, there also are systems such that every $f \in C(\mathcal{S})$ is represented by its Fourier series, see [6, [7], 8] and [9]. Now the question is, if there also are systems such that every uniformly convergent Fourier series is absolute convergent. In Section 2 we will prove in a more general setting, that this is not the case. Moreover, in case of Jacobi systems we are able to construct functions $f \in C([-1,1])$ with uniformly but not absolutely convergent Fourier series, see Section 3

2. Convergent and absolute convergent Fourier series in harmonic Banach spaces

Let μ be a probability Borel measure on \mathbb{R} with compact and infinite support \mathcal{S}. As usual, let

$$
\begin{equation*}
L_{p}(\mu)=\left\{f: \mathcal{S} \rightarrow \mathbb{C}: \int|f|^{p} d \mu<\infty\right\}, \quad 1 \leq p<\infty \tag{2.1}
\end{equation*}
$$

with norm $\|f\|_{p}=\left(\int|f|^{p} d \mu\right)^{1 / p}$, and

$$
\begin{equation*}
C(\mathcal{S})=\{f: \mathcal{S} \rightarrow \mathbb{C}: f \text { continuous }\} \tag{2.2}
\end{equation*}
$$

with norm $\|f\|_{\infty}=\sup _{x \in S}|f(x)|$. Furthermore, denote by \mathcal{P} the set of algebraic polynomials in one real variable and complex coefficients. $C(\mathcal{S})$ and $L_{p}(\mu)$ are harmonic Banach spaces in the following sense.

Definition 2.1. Let $B \subset L_{1}(\mu)$ be a Banach space with respect to a norm \|\| such that $\mathcal{P} \subset B$ is dense in B and

$$
\begin{equation*}
\|f\|_{1} \leq\|f\| \quad \text { for all } f \in B \tag{2.3}
\end{equation*}
$$

Then B is called an harmonic Banach space with respect to μ.
By Gram-Schmidt procedure there exists a unique sequence $\left\{p_{n}\right\}_{n=0}^{\infty} \subset \mathcal{P}$ of orthonormal polynomials with $\int p_{n} p_{m} d \mu=\delta_{n, m}, \operatorname{deg} p_{n}=n$ and p_{n} has positive leading coefficient. We call $\left\{p_{n}\right\}_{n=0}^{\infty}$ the orthonormal polynomial sequence with respect to μ.
The formal Fourier series of $f \in B$ with respect to $\left\{p_{n}\right\}_{n=0}^{\infty}$ is given by

$$
\begin{equation*}
f \sim \sum_{n=0}^{\infty} \hat{f}_{n} p_{n} \tag{2.4}
\end{equation*}
$$

where the Fourier coefficients are defined by

$$
\begin{equation*}
\hat{f}_{n}=\int f p_{n} d \mu \tag{2.5}
\end{equation*}
$$

If $f \in B$ has a representation $\sum_{n=0}^{\infty} c_{n} p_{n}$, then inequality 2.3 implies $c_{n}=\hat{f}_{n}$.

The Nth partial sum of the formal Fourier series of $f \in B$ is given by

$$
\begin{equation*}
D_{N}(f)=\sum_{n=0}^{N} \hat{f}_{n} p_{n} \tag{2.6}
\end{equation*}
$$

By simple means D_{N} is a continuous linear operator from B into B. For to investigate the subspace of convergent Fourier series we rely on the following lemma.
Lemma 2.2. Let $(X,\| \|)$ denote a Banach space and $\left\{F_{N}\right\}_{N=0}^{\infty}$ a sequence of continuous linear operators from X into X. Set

$$
\begin{equation*}
Y=\left\{y \in X: \lim _{N \rightarrow \infty} F_{N}(y)=y\right\} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|y\|\left\|=\sup _{N \in \mathbb{N}_{0}}\right\| F_{N}(y) \| \tag{2.8}
\end{equation*}
$$

Then $(Y,\| \| \|)$ is a Banach space, and it holds

$$
\begin{equation*}
\|y\| \leq\|y\| \quad \text { for all } y \in Y \tag{2.9}
\end{equation*}
$$

Since it is standard we omit the proof. Due to Lemma 2.2 we make the following definition.

Definition 2.3. Let $(B,\| \|)$ be a harmonic Banach space with respect to μ. Then the Banach space

$$
\begin{equation*}
B_{D}=\left\{f \in B: \lim _{N \rightarrow \infty}\left\|D_{N}(f)-f\right\|=0\right\} \tag{2.10}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|f\|_{D}=\sup _{N \in \mathbb{N}_{0}}\left\|D_{N}(f)\right\| \tag{2.11}
\end{equation*}
$$

is called space of convergent Fourier series with respect to B.
The absolute convergent Fourier series form a subspace of B_{D}.
Definition 2.4. Let $(B,\| \|)$ be a harmonic Banach space with respect to μ. The Banach space

$$
\begin{equation*}
B_{A}=\left\{f \in B: \sum_{n=0}^{\infty}\left\|\hat{f}_{n} p_{n}\right\|<\infty\right\} \tag{2.12}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|f\|_{A}=\sum_{n=0}^{\infty}\left\|\hat{f}_{n} p_{n}\right\| \tag{2.13}
\end{equation*}
$$

is called space of absolute convergent Fourier series with respect to B.
It is easily seen that $\left(B_{A},\| \|_{A}\right)$ is isometrically isomorphic to the Banach space $\left(\ell_{1},\| \|_{1}\right)$, where

$$
\ell_{1}=\left\{\left\{a_{n}\right\}_{n=0}^{\infty}: a_{n} \in \mathbb{C} \text { and } \sum_{n=0}^{\infty}\left|a_{n}\right|<\infty\right\},
$$

with norm $\left\|\left\{a_{n}\right\}_{n=0}^{\infty}\right\|_{1}=\sum_{n=0}^{\infty}\left|a_{n}\right|$.
Our aim is to give sufficient conditions for $B_{A} \subsetneq B_{D}$. For instance, if B_{D} is not isomorphic to ℓ_{1}, then $B_{A} \subsetneq B_{D}$. Assume as a relation of sets that $B_{A}=B_{D}$. Then the identity mapping $i d: B_{A} \rightarrow B_{D}$ is continuous, and due to the open mapping theorem [3, (14.16)] it is an isomorphism. Thus, B_{D} is isomorphic to ℓ_{1}, which is a
contradiction.
It is exciting that if B is not isomorphic to ℓ_{1}, then $B_{A} \subsetneq B_{D}$, too. For a proof, we need the following lemma.

Lemma 2.5. Let $(B,\| \|)$ be an harmonic Banach space with respect to μ which is not isomorphic to ℓ_{1}. Then for all $N \in \mathbb{N}_{0}$ and all $C>0$ there exists $M>N$ and $a_{N+1}, \ldots, a_{M} \in \mathbb{C}$ such that

$$
\begin{equation*}
\sum_{n=N+1}^{M}\left|a_{n}\right|>C\left\|\sum_{n=N+1}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\| . \tag{2.14}
\end{equation*}
$$

Proof. Suppose that, contrary to our claim, there exists $N \in \mathbb{N}_{0}$ and $C>0$ such that

$$
\sum_{n=N+1}^{M}\left|a_{n}\right| \leq C\left\|\sum_{n=N+1}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\| \quad \text { for all } M>N, a_{N+1}, \ldots, a_{M} \in \mathbb{C}
$$

Let us fix such an N and let $M \in \mathbb{N}_{0}$ arbitrary. Since norms on finite dimensional spaces are equivalent, there exists $D>0$ such that

$$
\sum_{n=0}^{N}\left|a_{n}\right| \leq D\left\|\sum_{n=0}^{N} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\| \quad \text { for all } a_{0}, \ldots, a_{N} \in \mathbb{C}
$$

Setting $E=\max (C, D)$ we get

$$
\sum_{n=0}^{M}\left|a_{n}\right| \leq E\left(\left\|\sum_{n=0}^{\min (M, N)} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\|+\left\|\sum_{n=N+1}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\|\right)
$$

for all $M \in \mathbb{N}_{0}, a_{0}, \ldots, a_{M} \in \mathbb{C}$. If $i d$ denotes the identity mapping from $B \rightarrow B$, then

$$
D_{N}\left(\sum_{n=0}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right)=\sum_{n=0}^{\min (M, N)} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}
$$

and

$$
\left(i d-D_{N}\right)\left(\sum_{n=0}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right)=\sum_{n=N+1}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}
$$

Hence, there exists $F>0$ such that

$$
\sum_{n=0}^{M}\left|a_{n}\right| \leq F\left\|\sum_{n=0}^{M} a_{n} \frac{p_{n}}{\left\|p_{n}\right\|}\right\| \quad \text { for all } M \in \mathbb{N}_{0}, a_{0}, \ldots, a_{M} \in \mathbb{C}
$$

Therefore, $\left\{\frac{p_{n}}{\left\|p_{n}\right\|}\right\}_{n=0}^{\infty}$ is a basic sequence in B which is equivalent to the standard unit vector basis of ℓ_{1}, see [5, 4.3.6]. Taking into account that \mathcal{P} is dense in B, [5, 4.3.2] yields that B is isomorphic to ℓ_{1}. This is a contradiction to our assumption.

Now, we can state the main result of this section.
Theorem 2.6. Let B be an harmonic Banach space with respect to μ. If B is not isomorphic to ℓ_{1}, then $B_{A} \subsetneq B_{D}$.

Proof. Let us assume $B_{A}=B_{D}$. Then the identity mapping from B_{A} onto B_{D} is continuous. Hence, by the open mapping theorem the norms $\left\|\|_{A}\right.$ and $\| \|_{D}$ are equivalent.
Changing inequality 2.14 of Lemma 2.5 into

$$
\left\|\sum_{n=N+1}^{M} \frac{a_{n}}{\sum_{k=N+1}^{M}\left|a_{k}\right|} \frac{p_{n}}{\left\|p_{n}\right\|}\right\|<\frac{1}{C}
$$

shows that we are able to construct polynomials

$$
Q_{n}=\sum_{k=l_{n}}^{u_{n}} b_{k} \frac{p_{k}}{\left\|p_{k}\right\|}
$$

with $u_{n}<l_{n+1}$ and $\sum_{k=l_{n}}^{u_{n}}\left|b_{k}\right|=1$ for all $n \in \mathbb{N}$, such that

$$
\lim _{n \rightarrow \infty}\left\|Q_{n}\right\|=0
$$

Obviously it holds

$$
\left\|\frac{1}{N} \sum_{n=1}^{N} Q_{n}\right\|_{A}=1
$$

for all $N \in \mathbb{N}$. Since

$$
\begin{aligned}
\left\|\sum_{n=1}^{N} Q_{n}\right\|_{D} & =\sup _{0 \leq m \leq N-1, l_{m+1} \leq r \leq u_{m+1}}\left\|\sum_{n=1}^{m} Q_{n}+\sum_{k=l_{m+1}}^{r} b_{k} \frac{p_{k}}{\left\|p_{k}\right\|}\right\| \\
& \leq \sup _{0 \leq m \leq N-1}\left(\sum_{n=1}^{m}\left\|Q_{n}\right\|+1\right) \\
& \leq 1+\sum_{n=1}^{N}\left\|Q_{n}\right\|
\end{aligned}
$$

we get by a well-known result on Césaro means

$$
\lim _{N \rightarrow \infty}\left\|\frac{1}{N} \sum_{n=1}^{N} Q_{n}\right\|_{D}=0
$$

This is in contradiction with the equivalence of the norms $\left\|\|_{A}\right.$ and $\| \|_{D}$.
For classical Banach spaces we get the following corollary.
Corollary 2.7. In case $B=C(\mathcal{S})$ or $B=L_{p}(\mu), 1 \leq p<\infty$, it holds

$$
\begin{equation*}
B_{A} \subsetneq B_{D} \tag{2.15}
\end{equation*}
$$

Proof. Firstly let $B=C(\mathcal{S})$ or $B=L_{1}(\mu)$.
Assume T is an isomorphism from ℓ_{1} onto B. Since the standard vector basis $\left\{e_{n}\right\}_{n=0}^{\infty}$ is an unconditional basis in ℓ_{1}, we get by [5, 4.2.14] that $\left\{T\left(e_{n}\right)\right\}_{n=0}^{\infty}$ is an unconditional basis in B. This is a contradiction to [11, 15.1] and [11, 15.2].
Secondly let $B=L_{p}(\mu), 1<p<\infty$. By [5] 2.8.12] B doesn't have Schur's property [10]. Since ℓ_{1} does have Schur's property, B and ℓ_{1} can not be isomorphic.

Note that a proof of $A(\mathbb{T}) \subsetneq U(\mathbb{T})$ in the classical case could also be given along the lines of above.

3. Jacobi polynomials

Due to Corollary 2.7 there exists $f \in C(\mathcal{S})$ with uniformly but not absolutely converging Fourier series. The proof, however, has not been constructive. Therefore, another goal is to detect such a function. In this chapter we will provide a proper construction for certain Jacobi polynomial systems. The sequence $\left\{p_{n}^{(\alpha, \beta)}\right\}_{n=0}^{\infty}$, $\alpha, \beta>-1$, of orthonormal Jacobi polynomials is defined by the three term recurrence relation

$$
\begin{equation*}
x p_{n}^{(\alpha, \beta)}(x)=\lambda_{n} p_{n+1}^{(\alpha, \beta)}(x)+\beta_{n} p_{n}^{(\alpha, \beta)}(x)+\lambda_{n-1} p_{n-1}^{(\alpha, \beta)}(x) \tag{3.1}
\end{equation*}
$$

where $p_{-1}=0, p_{0}=1$,

$$
\begin{equation*}
\lambda_{n}=\left(\frac{4(n+1)(n+\alpha+\beta+1)(n+\alpha+1)(n+\beta+1)}{(2 n+\alpha+\beta+2)^{2}(2 n+\alpha+\beta+1)(2 n+\alpha+\beta+3)}\right)^{\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{n}=\frac{\beta^{2}-\alpha^{2}}{(2 n+\alpha+\beta)(2 n+\alpha+\beta+2)} \tag{3.3}
\end{equation*}
$$

They are orthogonal with respect to the measure

$$
\begin{equation*}
d \mu^{(\alpha, \beta)}(x)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)}(1-x)^{\alpha}(1+x)^{\beta} d x \tag{3.4}
\end{equation*}
$$

supported on $[-1,1]$. It holds the symmetric relation

$$
\begin{equation*}
p_{n}^{(\alpha, \beta)}(x)=(-1)^{n} p_{n}^{(\beta, \alpha)}(-x), \tag{3.5}
\end{equation*}
$$

see (13].
For our purpose we need a modification of Schur's inequality [1, Theorem 5.1.9]. Denote by $\mathcal{P}_{n} \subset \mathcal{P}$ the set of polynomials of degree less or equal to n, and let $\|f(x)\|_{\infty}=\sup _{x \in[-1,1]}|f(x)|$.

Lemma 3.1. Let $a, b \geq 0, c=\max (a, b)$ and $p \in \mathcal{P}_{n-1}$.
If $c \geq 1 / 2$, then

$$
\begin{equation*}
\|p(x)\|_{\infty} \leq 2^{|a-b|} n^{2 c}\left\|(1-x)^{a}(1+x)^{b} p(x)\right\|_{\infty} \tag{3.6}
\end{equation*}
$$

and if $c<1 / 2$, then

$$
\begin{equation*}
\|p(x)\|_{\infty} \leq 2^{|a-b|} c^{-2 c} n^{2 c}\left\|(1-x)^{a}(1+x)^{b} p(x)\right\|_{\infty} \tag{3.7}
\end{equation*}
$$

Proof. Let

$$
x_{k}=\cos \frac{(2 n-2 k+1) \pi}{2 n}, \quad k=1,2, \ldots, n
$$

denote the zeros of the Chebyshev polynomials of first kind

$$
T_{n}(x)=\cos (n \arccos x)
$$

Note that $T_{n}^{\prime}(x)=(n \sin n \theta) /(\sin \theta), x=\cos \theta$.
First, let $a=b \geq 1 / 2$. Without loss of generality we may assume that $p \in \mathcal{P}_{n-1}$ with $\left\|\left(1-x^{2}\right)^{a} p(x)\right\|_{\infty}=1$.
If $|y| \leq x_{n}$, then

$$
\begin{aligned}
|p(y)| & \leq\left(1-y^{2}\right)^{-a} \leq\left(1-x_{n}^{2}\right)^{-a} \\
& =\left(\sin \frac{\pi}{2 n}\right)^{-2 a} \leq\left(\frac{2}{\pi} \frac{\pi}{2 n}\right)^{-2 a}=n^{2 a}
\end{aligned}
$$

In case $x_{n}<y \leq 1$ we get

$$
\begin{aligned}
|p(y)| & =\left|\sum_{k=1}^{n} p\left(x_{k}\right) \frac{T_{n}(y)}{T_{n}^{\prime}\left(x_{k}\right)\left(y-x_{k}\right)}\right| \\
& \leq \frac{1}{n} \sum_{k=1}^{n}\left|p\left(x_{k}\right)\left(1-x_{k}^{2}\right)^{a}\right|\left(1-x_{k}^{2}\right)^{1 / 2-a} \frac{T_{n}(y)}{y-x_{k}} \\
& \leq \frac{1}{n} \sum_{k=1}^{n}\left(1-x_{k}^{2}\right)^{1 / 2-a} \frac{T_{n}(y)}{y-x_{k}} \leq \frac{1}{n}\left(1-x_{n}^{2}\right)^{1 / 2-a} \sum_{k=1}^{n} \frac{T_{n}(y)}{y-x_{k}} \\
& =\frac{1}{n}\left(1-x_{n}^{2}\right)^{1 / 2-a} T_{n}^{\prime}(y) \leq n\left(1-x_{n}^{2}\right)^{1 / 2-a}=n\left(\sin \frac{\pi}{2 n}\right)^{1-2 a} \\
& \leq n n^{2 a-1}=n^{2 a},
\end{aligned}
$$

where Lagrange interpolation has been applied twice time. For $-1 \leq y<x_{1}$ we deduce $|p(y)| \leq n^{2 a}$ quite similar.
Secondly, let $0 \leq a=b<1 / 2$. The case $a=b=0$ is trivial. Otherwise let k be the least number such that $k a \geq 1 / 2$. Thus the result of above implies

$$
\begin{aligned}
\|p(x)\|_{\infty}^{k}=\left\|p(x)^{k}\right\|_{\infty} & \leq(k n-k+1)^{2 k a}\left\|\left(1-x^{2}\right)^{k a} p(x)^{k}\right\|_{\infty} \\
& <(k n)^{2 k a}\left\|\left(1-x^{2}\right)^{a} p(x)\right\|_{\infty}^{k}
\end{aligned}
$$

Since $k a<1$ we get

$$
\|p(x)\|_{\infty} \leq k^{2 a} n^{2 a}\left\|\left(1-x^{2}\right)^{a} p(x)\right\|_{\infty}<a^{-2 a} n^{2 a}\left\|\left(1-x^{2}\right)^{a} p(x)\right\|_{\infty}
$$

Finally, for the general case we only have to take into account that

$$
\left\|\left(1-x^{2}\right)^{c} p(x)\right\|_{\infty} \leq 2^{|a-b|}\left\|(1-x)^{a}(1+x)^{b} p(x)\right\|_{\infty}
$$

Next we state a result on orthonormal Jacobi polynomials, which is mainly due to P. K. Suetin [12, Theorem 7.5], who attributes his result to S. N. Bernstein, and to [13, (7.32.1), Theorem 7.32.2].
Lemma 3.2. Let $\alpha, \beta>-1, \alpha^{\prime}=\max (\alpha+1 / 2,0)$ and $\beta^{\prime}=\max (\beta+1 / 2,0)$. Then there exists a constant $D>0$ with

$$
\begin{equation*}
\sqrt{1-x}^{\alpha^{\prime}} \sqrt{1+x}{ }^{\beta^{\prime}}\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq D \tag{3.8}
\end{equation*}
$$

for all $x \in[-1,1]$ and $n \in \mathbb{N}_{0}$.
Using Lemma 3.1 one gets certain uniform bounds for orthonormal Jacobi polynomials.

Lemma 3.3. Let $\alpha, \beta>-1$, $\gamma_{-}=\max (\alpha-3 / 2, \beta+1 / 2,0)$ and $\gamma_{+}=\max (\beta-$ $3 / 2, \alpha+1 / 2,0)$. Then there exists a constant $C>0$ with

$$
\begin{equation*}
(1 \mp x)\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq C n^{\gamma_{\mp}} \tag{3.9}
\end{equation*}
$$

for all $x \in[-1,1]$.
Proof. Let $\alpha^{\prime}=\max (\alpha+1 / 2,0)$ and $\beta^{\prime}=\max (\beta+1 / 2,0)$.
In case $\alpha^{\prime} \leq 2$ Lemma 3.2 implies

$$
\sqrt{1+x}^{\beta^{\prime}}(1-x)\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq D_{1}
$$

for all $x \in[-1,1]$. Thus by Lemma 3.1 it follows

$$
\left\|(1-x) p_{n}^{(\alpha, \beta)}(x)\right\|_{\infty} \leq C n^{\gamma_{-}}
$$

where $\gamma_{-}=\max \left(0, \beta^{\prime}\right)=\max (\alpha-3 / 2, \beta+1 / 2,0)$.
In case $\alpha^{\prime}>2$ we get by Lemma 3.2

$$
\sqrt{1-x}^{\alpha^{\prime}-2} \sqrt{1+x}^{\beta^{\prime}}(1-x)\left|p_{n}^{(\alpha, \beta)}(x)\right| \leq D_{2}
$$

for all $x \in[-1,1]$. Therefore, Lemma 3.1 implies

$$
\left\|(1-x) p_{n}^{(\alpha, \beta)}(x)\right\|_{\infty} \leq C n^{\gamma-}
$$

where $\gamma_{-}=\max \left(\alpha^{\prime}-2, \beta^{\prime}\right)=\max (\alpha-3 / 2, \beta+1 / 2,0)$.
The remaining assertion with γ_{+}holds due to (3.5).
Now we are able to show the following theorem.
Theorem 3.4. Let $\alpha>\beta$ and $\alpha>-1 / 2$ and set $b_{n}=(-1)^{n}\left(\frac{1}{n}+\frac{1}{n+1}\right)$. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \frac{p_{n}^{(\alpha, \beta)}}{p_{n}^{(\alpha, \beta)}(1)} \tag{3.10}
\end{equation*}
$$

is uniformly but not absolutely converging.
Proof. It holds

$$
\max _{-1 \leq x \leq 1}\left|p_{n}^{(\alpha, \beta)}(x)\right|=p_{n}^{(\alpha, \beta)}(1)
$$

see [13, (7.32.2)]. Thus

$$
\sum_{n=1}^{\infty}\left\|b_{n} \frac{p_{n}^{(\alpha, \beta)}}{p_{n}^{(\alpha, \beta)}(1)}\right\|_{\infty}=\sum_{n=1}^{\infty}\left|b_{n}\right|=\infty
$$

We will show that $\left\{\sum_{n=1}^{N} b_{n} p_{n}^{(\alpha, \beta)} / p_{n}^{(\alpha, \beta)}(1)\right\}_{N=1}^{\infty}$ is a Cauchy sequence with respect to the sup-Norm. Set

$$
r_{n}=\sum_{k=n}^{\infty} b_{k}=\frac{(-1)^{n}}{n}
$$

and take $M \geq N \geq 1$. Then we get

$$
\begin{aligned}
\sum_{n=N}^{M+1} b_{n} \frac{p_{n}^{(\alpha, \beta)}(x)}{p_{n}^{(\alpha, \beta)}(1)} & =\sum_{n=N}^{M+1}\left(r_{n}-r_{n+1}\right) \frac{p_{n}^{(\alpha, \beta)}(x)}{p_{n}^{(\alpha, \beta)}(1)} \\
& =r_{N} \frac{p_{N}^{(\alpha, \beta)}(x)}{p_{N}^{(\alpha, \beta)}(1)}-r_{M+2} \frac{p_{M+1}^{(\alpha, \beta)}(x)}{p_{M+1}^{(\alpha, \beta)}(1)} \\
& +\sum_{n=N}^{M} r_{n+1}\left(\frac{p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(x)-p_{n}^{(\alpha, \beta)}(x) p_{n+1}^{(\alpha, \beta)}(1)}{p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)}\right)
\end{aligned}
$$

It is obvious that

$$
\lim _{N \rightarrow \infty}\left\|r_{N} \frac{p_{N}^{(\alpha, \beta)}(x)}{p_{N}^{(\alpha, \beta)}(1)}-r_{M+2} \frac{p_{M+1}^{(\alpha, \beta)}(x)}{p_{M+1}^{(\alpha, \beta)}(1)}\right\|_{\infty}=0
$$

and applying Christoffel-Darboux formula

$$
\sum_{n=N}^{M} r_{n+1}\left(\frac{p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(x)-p_{n}^{(\alpha, \beta)}(x) p_{n+1}^{(\alpha, \beta)}(1)}{p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)}\right)
$$

$$
\begin{aligned}
= & (x-1) \sum_{n=N}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)} \sum_{k=0}^{n} p_{k}^{(\alpha, \beta)}(1) p_{k}^{(\alpha, \beta)}(x) \\
= & (x-1) \sum_{k=0}^{N} p_{k}^{(\alpha, \beta)}(1) p_{k}^{(\alpha, \beta)}(x) \sum_{n=N}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)} \\
& +(x-1) \sum_{k=N+1}^{M} p_{k}^{(\alpha, \beta)}(1) p_{k}^{(\alpha, \beta)}(x) \sum_{n=k}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)} .
\end{aligned}
$$

According to [13, (4.1.1) and (4.3.3)] we have

$$
p_{n}^{(\alpha, \beta)}(1)=\left(\frac{(2 n+\alpha+\beta+1) \Gamma(\beta+1) \Gamma(n+\alpha+1) \Gamma(n+\alpha+\beta+1)}{\Gamma(\alpha+1) \Gamma(\alpha+\beta+2) \Gamma(n+1) \Gamma(n+\beta+1)}\right)^{\frac{1}{2}}
$$

Applying the well-known Stirling's formula with respect to the asymptotic of the Gamma function one gets

$$
p_{n}^{(\alpha, \beta)}(1)=C n^{\alpha+1 / 2}\left(1+O\left(n^{-1}\right)\right)
$$

where $C>0$ is a constant. Moreover, (3.2) implies

$$
\lambda_{n}=\frac{1}{2}+O\left(n^{-2}\right)
$$

Due to the fact that $\left\{r_{n}\right\}_{n=1}^{\infty}$ is alternating it follows

$$
\left|\sum_{n=k}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)}\right| \leq D k^{-2 \alpha-2}
$$

where $D>0$ is a constant not depending on M and k. Applying Lemma 3.3 there exists $\gamma<\alpha+\frac{1}{2}$ such that

$$
\begin{gathered}
\left|(x-1) \sum_{k=N+1}^{M} p_{k}^{(\alpha, \beta)}(1) p_{k}^{(\alpha, \beta)}(x) \sum_{n=k}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)}\right| \leq \\
E \sum_{k=N+1}^{M} k^{\alpha+\frac{1}{2}} k^{\gamma} k^{-2 \alpha-2}=E \sum_{k=N+1}^{M} k^{\gamma-\alpha-\frac{3}{2}},
\end{gathered}
$$

and

$$
\begin{array}{r}
\left|(x-1) \sum_{k=0}^{N} p_{k}^{(\alpha, \beta)}(1) p_{k}^{(\alpha, \beta)}(x) \sum_{n=N}^{M} \frac{r_{n+1}}{\lambda_{n} p_{n}^{(\alpha, \beta)}(1) p_{n+1}^{(\alpha, \beta)}(1)}\right| \leq \\
F \sum_{k=0}^{N} k^{\alpha+\frac{1}{2}} k^{\gamma} N^{-2 \alpha-2} \leq G N^{\gamma-\alpha-\frac{1}{2}}
\end{array}
$$

with $E, F, G>0$ constants. Therefore, the right hand side of both inequalities above is tending to zero with $N \rightarrow \infty$.

Note that in case $\alpha=\beta>-1 / 2$ by [13, Theorem 4.1] it holds

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \frac{p_{2 n}^{(\alpha, \alpha)}(x)}{p_{2 n}^{(\alpha, \alpha)}(1)}=\sum_{n=1}^{\infty} b_{n} \frac{p_{n}^{\left(\alpha,-\frac{1}{2}\right)}\left(2 x^{2}-1\right)}{p_{n}^{\left(\alpha,-\frac{1}{2}\right)}(1)} \tag{3.11}
\end{equation*}
$$

and in case $\alpha<\beta$ and $\beta>-1 / 2$ the symmetric relation 3.5 implies

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \frac{p_{n}^{(\alpha, \beta)}(x)}{p_{n}^{(\alpha, \beta)}(-1)}=\sum_{n=1}^{\infty} b_{n} \frac{p_{n}^{(\beta, \alpha)}(-x)}{p_{n}^{(\beta, \alpha)}(1)} \tag{3.12}
\end{equation*}
$$

Hence, due to Theorem 3.4 both series are uniformly but not absolutely convergent.
Acknowledgements. I am very thankful to Ryszard Szwarc for many helpful advices and fruitful discussions on this topic. Additionally, I would like to thank the work by the referees whose suggestions have substantially improved the manuscript.

References

[1] P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[2] G. Faber, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. Deutsch. Math.-Verein. 23 (1914) 192-210.
[3] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, New York, 1969.
[4] J. P. Kahane, Séries de Fourier absolument convergentes, Springer, New York, 1970
[5] Robert E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
[6] J. Obermaier, A continuous function space with a Faber basis, J. Approx. Theory 125 (2003) 303-312.
[7] J. Obermaier, R. Szwarc, Polynomial bases for continuous function spaces, in: Trends and Applications in Constructive Approximation, M. G. de Bruin, D. H. Mache and J. Szabados (eds.), International Series of Numerical Mathematics Vol. 151, Birkhäuser Verlag, Basel, 2005, 195-205.
[8] J. Obermaier, R. Szwarc, Nonnegative linearization for little q-Laguerre polynomials and Faber basis, J. Comp. Appl. Math. 199 (2007) 89 - 94.
[9] J. Obermaier, R. Szwarc, Orthogonal polynomials of discrete variable and boundedness of Dirichlet kernel, Constr. Approx. 27 (2008) 1 - 13.
[10] J. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, J. Reine Angew. Math. 151 (1920) 79 - 111.
[11] I. Singer, Bases in Banach Spaces I, Springer, New York, 1970.
[12] P. K. Suetin, Classical orthogonal polynomials, Nauka, Moscow, 1976.
[13] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. Volume 23, Amer. Math. Soc. Providence, RI, 1975 (Fourth Edition).
[14] A. Zygmund, Trigonometric series, Vol. I, Third edition, With a foreword by Robert A. Fefferman, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2002.

Josef Obermaier
Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter LandStrasse 1, D-85764 Neuherberg, Germany

E-mail address: josef.obermaier@helmholtz-muenchen.de

[^0]: 2010 Mathematics Subject Classification. 42A20, 42C10.
 Key words and phrases. Orthogonal polynomials; Fourier series; Schur's inequality.
 © 2015 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted Jun 16, 2015. Published November 11, 2015.

