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EXISTENCE OF POSITIVE SOLUTIONS TO A COUPLED

SYSTEM OF NONLINEAR FRACTIONAL ORDER

DIFFERENTIAL EQUATIONS WITH M-POINT BOUNDARY

CONDITIONS

(COMMUNICATED BY TONGXING LI)

AMJAD ALI, KAMAL SHAH, RAHMAT ALI KHAN

Abstract. This article is concerned to the study of existence and uniqueness

of positive solutions to a class of coupled system with multi-point boundary
conditions of nonlinear fractional order differential equations. By using classi-

cal results of nonlinear Leray Schauder type, sufficient conditions are developed

for existence of at least one solutions. Further, sufficient conditions for unique-
ness of solution is also discussed. To demonstrate the concerned established

theory, we provide some appropriate examples.

1. Introduction

The theory of fractional order differential equations is the fastest growing area of
research due to its large number of applications in real world problems. Differential
equations of fractional order have great importance in many scientific and engi-
neering disciplines such as physics, mechanics, chemistry, biology, viscoelasticity,
control theory, signal and image processing phenomenons, economics, optimization
theory etc. For detail we refer the reader to study [1, 2, 3, 4, 5] and the refer-
ences there in. In recent years, many researchers have studied the existence and
uniqueness of positive solutions of boundary value problems for fractional order
differential equations, for example see [6, 7, 8, 9, 10]. Shah et al. [11], studied the
existence and uniqueness of positive solutions for the nonlinear m-point boundary
value problem of fractional order differential equation of the following form

−cDqu(t) = f(t, u(t),cDq−1u(t)); 0 < t < 1, 1 < q ≤ 2,

u(0) = 0, u(1) =

m−2∑
i=1

δiu(ηi),
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where cDq is the Caputo fractional derivative; δi, ηi ∈ (0, 1) with
m−2∑
i=1

δiηi < 1,

and f : J × R × R → R explicitly depends on the fractional order derivative. It
has been founded that differential equations of fractional order are the best tools
to explain many biological and chemical, physical and psychological phenomenon.
Differential equations of arbitrary order are used as a best tools for the description
of hereditary characteristic of various materials and genetical problems in biolog-
ical models. It is known fact that those mathematical models involve fractional
order differential equations are more realistic and practical as compare to those
mathematical models which involve classical differential equations. Due to these
importance applications of fractional differential equations researchers are taking
interest in the study of frictional order differential equations and their positive so-
lutions as they are meaningful. For more detail see [12, 13, 14, 15, 16] and the
reference there in. Recently the area devoted to the study of existence of positive
solutions for coupled systems of fractional order boundary/initial value problems
has gained considerable attention, because such types of systems often occur in
applications in various fields of science and technology. Due to the aforesaid facts,
in last few decades this area has gained much attentions from the researchers, we
refer [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] and the references therein. In [18],
Wang et.al, developed sufficient conditions for the existence of positive solutions to
the following coupled system of three point boundary value problem{

Dα
0+u(t) = f(t, v(t), Dβv(t)), Dβ

0+v(t) = g(t, u(t), Dαu(t)), 0 ≤ t ≤ 1,

u(0) = v(0) = 0, u(1) = au(η), v(1) = bv(η),

where 1 < α, β ≤ 2, 0 ≤ a, b,≤ 1 and 0 < η < 1 and the non-linear functions
f, g : [0, 1]× [0,∞)→ [0,∞) are assumed to be continuous.
Motivated by the aforementioned applications and importance of fractional order
differential equations, we consider the following coupled system of fractional order
differential equations with m-point boundary conditions

Dα
0+x(t) = f(t, x(t), y(t)), Dβ

0+y(t) = g(t, x(t), y(t)), 0 ≤ t ≤ 1,

x(0) = 0, x(1) =

n−2∑
j=1

λjx(ηj), y(0) = 0, y(1) =

n−2∑
j=1

µjy(ξj),
(1.1)

where Dα
0+, D

β
0+ are the standard Rieman-Liouvilli fractional order derivative of

order α, β respectively, where λj , µj ∈ (0,∞) and 0 < η1 < η2 < · · · < ηn−2 <

1, 0 < ξ1 < ξ2 < · · · < ξn−2 < 1, such that
n−2∑
j=1

λjη
α
j < 1,

n−2∑
j=1

µjξ
β
j < 1 and

1 < α, β ≤ 2. The nonlinear functions f, g : [0, 1] × R × R → R are assumed to
be continuous. We prove our main results by mean of some classical fixed point
theorems of nonlinear Laray-Schauder type and Banach contractions principle. We
develop necessary and sufficient conditions for the existence of positive solutions
and their uniqueness. Some examples are also provided for the illustration of our
results.

2. Preliminaries

In this section we recall some basic definitions and lemmas from fractional cal-
culus, fixed point theory and functional analysis [2, 3, 4, 5, 6, 7, 8, 9, 10].
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Definition 2.1. The fractional integral of order γ ∈ R+ of a function u ∈
L1([0, 1],R) is defined as

Iγ0+u(t) =
1

Γ(γ)

∫ t

0

(t− s)γ−1u(s)ds.

Definition 2.2. The Riemann-Liouville fractional order derivative of a function
u on the interval [0, 1] is defined by

Dγ
0+u(t) =

1

Γ(n− γ)

(
d

dt

)n ∫ t

0

(t− s)n−γ−1u(s) ds,

where n = [γ] + 1 and [γ] represents the integer part of γ.

Lemma 2.1. [5], Assume that u ∈ C(0, 1) ∩ L(0, 1) with fractional derivative of
order γ > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

IγDγu(t) = u(t) + d1t
γ−1 + d2t

γ−2 + d3t
γ−3 + · · ·+ dnt

γ−n,

for arbitrary dk ∈ R, k =, 1, 2, . . . , n, where n = [γ] + 1.

Lemma 2.2. (The nonlinear alternative of Leray -Schauder type [10]). Let D be
a closed convex subset of a Banach space X. Consider a relative open subset C of
D such that 0 ∈ C and let T : C → D be continuous and compact mapping. Then
either

(1) the mapping T has a fixed point in C; or
(2) there exist x ∈ ∂C and δ ∈ (0, 1) with x = δTx.

Lemma 2.3. Let ∆1 = 1 −
m−2∑
j=1

λjηj and ∆2 = 1 −
m−2∑
j=1

µjξj , for a given x, y ∈

C(I,R) and λj , µj ∈ (0,∞) with
m−2∑
j=1

λjη
α
j < 1 and

m−2∑
j=1

µjξ
β
j < 1, then BVP (1.1)

has a unique positive solution given by

(x, y) =

( 1∫
0

K1(t, s)f(s, x(s), y(s))ds,

1∫
0

K2(t, s)g(s, x(s), y(s))ds

)
, (2.1)

where K1(t, s),K2(t, s) are the Green’s functions and given by

K1(t, s) =



tα−1

∆1Γ(α) [(1− s)α−1 +
m−2∑
i=j

λj(ηj − s)α−1]− 1
Γ(α) (t− s)α−1; s ≤ t, ηj−1 < s ≤ ηj ,

j = 1, 2, ...,m− 1,

tα−1

∆1Γ(α) [(1− s)α−1 +
m−2∑
i=j

λj(ηj − s)α−1]; t ≤ s, ηj−1 < s ≤ ηj ,

j = 1, 2, ...,m− 1.
(2.2)

K2(t, s) =



tβ−1

∆2Γ(β) [(1− s)β−1 +
m−2∑
i=j

µj(ξj − s)β−1]− 1
Γ(β) (t− s)β−1; s ≤ t, ξj−1 < s ≤ ξj ,

j = 1, 2, ...,m− 1,

tβ−1

∆2Γ(β) [(1− s)β−1 +
m−2∑
i=j

µj(ξj − s)β−1]; t ≤ s, ξj−1 < s ≤ ξj ,

j = 1, 2, ...,m− 1.
(2.3)
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Proof. To obtain (2.1), see the proof of Lemma 3.1 in [11]. Therefore, we omit the
proof. �

Hence, equivalent system of integral equations of Coupled system (1.1) is given
by

x(t) =
tα−1

∆1Γ(α)

− ∫ 1

0

(1− s)α−1f(s, x(s), y(s)) ds+

m−2∑
i=j

λj

∫ ηj

0

(ηj − s)α−1f(s, x(s), y(s)) ds


+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), y(s)) ds =

∫ 1

0

K1(t, s)f(s, x(s), y(s))ds.

y(t) =
tβ−1

∆2Γ(β)

− ∫ 1

0

(1− s)β−1g(s, x(s), y(s)) ds+

m−2∑
i=j

µj

∫ ξj

0

(ξj − s)β−1g(s, x(s), y(s)) ds


+

1

Γ(β)

∫ t

0

(t− s)β−1g(s, x(s), y(s)) ds =

∫ 1

0

K2(t, s)g(s, x(s), y(s))ds,

where K1(t, s),K2(t, s) can be easily obtain as in (2.2) and (2.3). We call K(t, s) =
(K1(t, s),K2(t, s)) the Green’s functions of the BVP(1.1) which satisfies the follow-
ing lemma

Lemma 2.4. If 0 < ∆i < 1(i = 1, 2) then each Ki(t, s)(i = 1, 2) satisfies the
following properties
(i) Ki(t, s) ≥ 0(i = 1, 2) is continuous ∀t, s ∈ [0, 1],Ki(t, s) > 0(i = 1, 2),∀t, s ∈
(0, 1);
(ii)Ki(t, s) ≤ Ki(s)(i = 1, 2), for each t, s ∈ [0, 1],and mint∈[ω,1−ω]Ki(t, s) ≥
γiKi(s)(i = 1, 2), where 0 < ω < 0.5.

Proof. (i) Obviously K1(t, s) is continuous on [0, 1]× [0, 1] and by easy calculations
one can show that K1(t, s) ≥ 0,∀t, s ∈ [0, 1]. Similarly for K2(t, s) one can do the
same. Also it is obvious that Ki(t, s)(i = 1, 2) > 0, ∀t, s ∈ (0, 1).
(ii) One can easily check that Ki(t, s)(i = 1, 2) is decreasing with respect to t for
s ≤ t and increasing with respect to t for s ≥ t. Thus by the monotonicity of
Ki(t, s)(i = 1, 2) we obtain

max
t∈[0,1]

K1(t, s) = K1(s, s) =
tα−1

∆1Γ(α)
[(1− s)α−1 +

m−2∑
i=j

λj(ηj − s)α−1],

where s ∈ (0, 1), ηj−1 < s ≤ ηj , for j = 1, 2, ...,m− 1.

Similarly max
t∈[0,1]

K2(t, s) = K1(s, s) =
tβ−1

∆2Γ(β)
[(1− s)β−1 +

m−2∑
i=j

µj(ξj − s)β−1],

where s ∈ (0, 1), ξj−1 < s ≤ ξj , for j = 1, 2, ...,m− 1.

(2.4)

Hence the proof is completed. �

Let us introduce the space X = {x(t)|x(t) ∈ C1([0, 1])} whose norm is defined by

‖x‖ = sup{|x(t)|, t ∈ [0, 1]}. Then obviously

(
X, ‖x‖

)
is Banach space. Similarly

Y = {y(t)|y(t) ∈ C1([0, 1])} whose norm is defined by ‖y‖ = sup{|y(t)|, t ∈ [0, 1]}.
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Then obviously

(
Y, ‖y‖

)
is a Banach space. The product space X × Y is also a

Banach space under the norm defined by ‖(x, y)‖ = max{‖x‖, ‖y‖}.
Define a cone C = {(x, y) ∈ X ×Y : x(t) ≥ 0, y(t) ≥ 0}, then the cone C ⊂ X ×Y.

3. Main Work

Theorem 3.1. Assume that f(t, x, y), g(t, x, y) are continuous, then (x, y) ∈ X×Y
is a solution of BVP (1.1) if and only if (x, y) ∈ X×Y is a solution of the following
system of integral equations

x(t) =

∫ 1

0

K1(t, s)f(s, x(s), y(s))ds, y(t) =

∫ 1

0

K2(t, s)g(s, x(s), y(s))ds (3.1)

Define the operator T : X × Y → X × Y by

T (x, y)(t) =

(∫ 1

0

K1(t, s)f(s, x(s), y(s))ds,

∫ 1

0

K2(t, s)g(s, x(s), y(s))ds

)
= (T1(x, y)(t), T2(x, y)(t)).

(3.2)

Then by Theorem (3.1), the fixed points of the operator T are the solutions of the
integral equations (3.1).

Theorem 3.2. Assume that f(t, x, y), g(t, x, y) are continuous on [0, 1]×R2 → R,
then the operator defined in (3.2) T : C → C is completely continuous.

Proof. We first prove that T : C → C defined in (3.2) is completely continuous.
Due to continuity and nonnegativity of Ki(t, s) for (i = 1, 2), f and g the operator
T is continuous for all (x, y) ∈ C. Let Ω ⊂ C be bounded then there exist a positive
constant K and L such that |f(t, x, y)| ≤ K and |g(t, x, y)| ≤ L for all (x, y) ∈ Ω.
Then for every (x, y) ∈ Ω and using |t| ≤ 1 we have

|T1(x, y)(t)| =
∣∣∣∣ tα−1

∆1Γ(α)

m−2∑
j=1

λj

∫ ηj

0

(ηj − s)α−1f(s, x(s), y(s))ds− tα−1

∆1Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), y(s))ds

+
tα−1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), y(s))ds

∣∣∣∣
≤
∣∣∣∣ tα−1

∆1Γ(α)

m−2∑
j=1

λj

∫ ηj

0

(ηj − s)α−1f(s, x(s), y(s))ds− tα−1

∆1Γ(α)

∫ 1

0

(1− s)α−1f(s, x(s), y(s))ds

∣∣∣∣
+

∣∣∣∣ tα−1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), y(s))ds

∣∣∣∣
≤ |tα−1|

∆1Γ(α)

m−2∑
j=1

λj

∫ ηj

0

(ηj − s)α−1|f(s, x(s), y(s))|ds+
1

Γ(α)

∫ t

0

(t− s)α−1|f(s, x(s), y(s))|ds

⇒ |T1(x, y)(t)| ≤ 2K

∆1Γ(α+ 1)

similarly |T2(x, y)(t)| ≤ 2L

∆2Γ(β + 1)
.
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Thus from the above inequality it is follow that the operator T is uniformly bounded.
Next we show that T is equi-continuous for this let 0 ≤ t ≤ τ ≤ 1 we have

|T1(x, y)(τ)− T1(x, y)(t)| =
∣∣∣∣ τα−1

∆1Γ(α)

m−2∑
j=1

λj

∫ ηj

0

(ηj − s)α−1f(s, x(s), y(s))ds

+
τα−1

Γ(α)

∫ τ

0

(τ − s)α−1f(s, x(s), y(s))ds

− tα−1

∆1Γ(α)

m−2∑
j=1

∫ ηj

0

(ηj − s)α−1f(s, x(s), y(s))ds

− tα−1

Γ(α)

∫ t

0

(t− s)α−1f(s, x(s), y(s))ds

∣∣∣∣
≤ K

∆1Γ(α)
|τα−1 − tα−1|

m−2∑
j=1

λj

∣∣∣∣ ∫ ηj

0

(ηj − s)α−1

∣∣∣∣ds
+

K

Γ(α)

(∫ t

0

[(τ − s)α−1 − (t− s)α−1]ds−
∫ t

0

(t− s)α−1ds

)
.

Thus after simplification, we get

|T1(x, y)(τ)− T1(x, y)(t)| ≤ K

∆1Γ(α+ 1)

(
[τα−1 − tα−1]

m−2∑
j=1

λjη
α
j + [τα − tα]

)

implies that |T1(x, y)(τ)− T1(x, y)(t)| ≤ K

∆1Γ(α+ 1)

(
τα−1 − tα−1 + τα − tα

)
,

(3.3)

similarly we can obtain

|T2(x, y)(τ)− T2(x, y)(t)| ≤ L

∆2Γ(β + 1)

(
τβ−1 − tβ−1 + τβ − tβ

)
. (3.4)

As the functions on the right hands of (3.3) and (3.4) are uniformly continuous
on [0, 1]. Therefore the operator T (x, y) is equi-continuous and thus the T (Ω) is
equi-continuous set and uniformly bounded as T (Ω) ⊂ Ω . Thus T is completely
continuous. Hence proof is completed. �

For existence of at least one positive solution, we prove the following lemma.

Theorem 3.3. Assume that f(t, x, y), g(t, x, y) are continuous on [0, 1]× R2 → R
and satisfy

(A1) |f(t, x(t), y(t))| ≤ a0(t) + a(t)[|x(t)|+ |y(t)|],

(A2) |g(t, x(t), y(t))| ≤ b0(t) + b(t)[|x(t)|+ |y(t)|],

(A3) 0 < Υ1 =
∫ 1

0
K1(t, s)a0(s)ds <∞, Υ2 =

∫ 1

0
K1(t, s)a(s)ds < 1,

(A4) 0 < Υ3 =
∫ 1

0
K2(t, s)b0(s)ds <∞, Υ4 =

∫ 1

0
K2(t, s)b(s)ds < 1.
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Then the system (1.1) has at least one positive solution in

Ω =

{
(x, y) ∈ C : ‖(x, y)‖ < min

(
Υ1

1−Υ2
,

Υ3

1−Υ4

)}
. (3.5)

Proof. Let Ω = {(x, y) ∈ X × Y |‖(x, y)‖ < ε}, where ε = min

{
Υ1

1−Υ2
, Υ3

1−Υ4

}
.

Let us defineT : Ω→ C as in (3.2). Let (x, y) ∈ Ω, so ‖(x, y)‖ < ε. Then

‖T1(x, y)‖ = max
t∈[0,1]

|
∫ 1

0

K1(t, s)f(s, x(s), y(s))ds|

≤
∫ 1

0

K1(t, s)a0(s)ds+

∫ 1

0

K1(t, s)a(s)[|x(s)|+ |y(s)|]ds

≤
∫ 1

0

K1(t, s)a0(s)ds+

∫ 1

0

K1(t, s)a(s)‖(x, y)‖ds

= Υ1 + Υ2‖(x, y)‖ ≤ ε.
Similarly, ‖T2(x, y)‖ ≤ ε, so ‖T (x, y)‖ ≤ ε.

(3.6)

Hence T (x, y) ⊂ Ω̄. Therefore, inview of Theorem 3.2 T : Ω̄ → Ω̄ is completely
continuous.
Now let us call the eigen value problem

(x, y) = ρT (x, y), ρ ∈ (0, 1). (3.7)

Then under the assumption that (x, y) is a solution of (3.7) for ρ ∈ (0, 1), we obtain

‖x‖ = ‖ρT1(x, y)‖ = ρ max
t∈[0,1]

∥∥∥∥∫ 1

0

K1(t, s)f(s, x(s), y(s)

∥∥∥∥
<

∫ 1

0

K1(s, s)[a0(s) + a(s)(‖x‖+ ‖y‖)ds

=

∫ 1

0

K1(s, s)a0(s)ds+

∫ 1

0

K1(s, s)a(s)‖(x, y)‖ds

= Υ1 + Υ2‖(x, y)‖ ≤ ε.
Similarly ‖y‖ = ‖ρT2(x, y)‖ ≤ ε, so ‖(x, y)‖ < ε,

(3.8)

which show that (x, y) is not in ∂Ω. Hence by Lemma 2.2, T has a fixed point in
Ω̄. So BVP(1.1) has at least one positive solution. Thus proof is completed. �

Theorem 3.4. Assume that f, g : I × R × R → R are continuous functions and
there exist two positive functions φ(t), ψ(t) such that for all t ∈ [0, 1] and xi, yi ∈
R, i = 1, 2,

(A5) |f(t, x1, y1)− f(t, x2, y2)| ≤ φ(t)[|x1 − x2|+ |y1 − y2|],
(A6) |g(t, x1, y1)− g(t, x2, y2)| ≤ ψ(t)[|x1 − x2|+ |y1 − y2|].

Then the system(1.1) has a unique positive solutions if

λ =

∫ 1

0

K1(s, s)φ(s)ds < 1, µ =

∫ 1

0

K2(s, s)φ(s)ds < 1. (3.9)
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Proof. Since Ki(t, s), i = 1, 2 and f(t, x, y), g(t, x, y), are nonnegative, so for any
(x, y) ∈ C we have T (x, y) ≥ 0, also T (C) ⊂ C.

‖T1(x2, y2)− T1(x1, y1)‖ = max
t∈[0,1]

|T1(x2, y2)− T1(x1, y1)|

= max
t∈[0,1]

∣∣∣∣ ∫ 1

0

K1(t, s)[f(s, x2(s), y2(s))− f(s, x1(s), y1(s))]ds

∣∣∣∣
≤
∫ 1

0

K1(s, s)φ(s)ds[‖x2 − x1‖+ ‖y2 − y1‖]

≤ λ[‖x2 − x1‖+ ‖y2 − y1‖].

(3.10)

Similarly, we can get

‖T2(x2, y2)− T2(x1, y1)‖ ≤ µ[‖x2 − x1‖+ ‖y2 − y1‖]. (3.11)

Thus from (3.10),(3.11) we have

‖T (x2, y2)− T (x1, y1)‖ ≤ max(λ, µ)‖(x2, y2)− (x1, y1)‖. (3.12)

Therefore under the condition(3.9) T is a contraction operator. Also T is completely
continuous operator by Lemma 3.2, so by Banach’s fixed-point theorem the operator
T has a unique fixed point, which is the the unique positive solution of BVP(1.1).

�

4. Example

Example 4.1. Consider the following problem

D
7
4x(t) = 1 +

t2

4
+

sinx(t)

4
+
t ln(1 + y(t))

t2 + 3
, t ∈ (0, 1),

D
3
2 y(t) = 10 + e−2πt +

cos 2x(t)

16
+

y(t)

15 + t
, t ∈ (0, 1),

x(0) = 0, x(1) =

10∑
j=1

1

3j
x

(
1

2j

)
, y(0) = 0, y(1) =

10∑
j=1

1

2j
y

(
1

3j

)
.

(4.1)

We have∣∣∣∣f(t, x(t), y(t)

∣∣∣∣ =

∣∣∣∣1 +
t2

4
+

sin(x(t))

4
+
t ln(1 + y(t))

t2 + 3

∣∣∣∣ ≤ (1 +
t2

4

)
+
|x(t)|

4
+

t

t2 + 3
|y(t)|,∣∣∣∣g(t, x(t), y(t)

∣∣∣∣ =

∣∣∣∣10 + e−2πt +
cos 2(x(t))

16
+

y(t)

15 + t

∣∣∣∣ ≤ (10 + e−2πt

)
+
|x(t)|

16
+

1

15 + t
|y(t)|.(4.2)

Hence

Υ1 =

∫ 1

0

K1(s, s)a0(s)ds =

∫ 1

0

K1(s, s)(1 +
s2

4
)ds <∞,

Υ2 =

∫ 1

0

K1(s, s)a(s)ds ≤
∫ 1

0

K1(s, s)ds ≈ 0.99984 < 1,

Υ3 =

∫ 1

0

K2(s, s)b0(s)ds =

∫ 1

0

K2(s, s)(10 + e−2πs)ds <∞,

Υ4 =

∫ 1

0

K2(s, s)b(s)ds ≤
∫ 1

0

K2(s, s)ds ≈ 0.76889 < 1.

(4.3)
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by Theorem (3.3), BVP (4.1) has at least one positive solution in

Ω =

{
(x, y) ∈ C : ‖(x, y)‖ < min

(
Υ2

1−Υ1
,

Υ4

1−Υ3

)}
.

Example 4.2. Consider the following multi-point BVP

D
3
2x(t) =

1

t2 + 1
+

cos2(x(t))

4
+

sin2(y(t))

8
, t ∈ [0, 1],

D
3
2 y(t) = e−t

2

+
cos 2(x(t))

16
+

1

15 + y(t)
, t ∈ [0, 1],

x(0) = 0, x(1) =

100∑
j=1

1

2j
x

(
1

4j

)
, y(0) = 0, y(1) =

100∑
j=1

1

3j
y

(
1

2j

)
.

(4.4)

Here

α =
3

2
, β =

3

2
, λj =

1

2j
, µj =

1

3j
, ηj =

1

4j
, ξj =

1

2j
, j = 1, 2, 3, . . . , 100

f(t, x, y) =
1

t2 + 1
+

cos2(x(t))

4
+

sin2(y(t))

8
,

g(t, x, y) = e−t
2

+
cos(2x(t))

16
+

1

15 + y(t)
.

Set xi(t), yi(t), (i = 1, 2) ∈ [0,∞) and t ∈ [0, 1], then we have

|f(t, x2, y2)− f(t, x1, y1)| ≤ 1

2
[|x2 − x1|+ |y2 − y1|],

|g(t, x2, y2)− g(t, x1, y1)| ≤ 1

8
[|x2 − x1|+ |y2 − y1|]

φ(s) =
1

2
, ψ(s) =

1

8
.

(4.5)

λ =

∫ 1

0

K1(s, s)φ(s)ds ≤
∫ 1

0

K1(s, s)ds = 0.99984 < 1,

µ =

∫ 1

0

K2(s, s)ψ(s)ds ≤
∫ 1

0

K1(s, s)ds = 0.76889 < 1.

(4.6)

Thus all the conditions of Theorem (3.4) are satisfied, so the given BVP(4.4) has a
unique positive solution.
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