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THE D,-CLASSICAL ORTHOGONAL POLYNOMIALS

(COMMUNICATED BY FRANCISCO MARCELLAN)

ATEF ALAYA

ABSTRACT. The Dy, -classical orthogonal polynomial sequences are defined through
the D,-Hahn’s property: sequences that are orthogonal together with their

D, -first derivative, where Dy, (p) = p’ + ufop, for all p € C[X]. We charac-
terize them by means of a functional equation, a D,-second order linear dif-
ferential equation, the first and the second structure relations. A D,,-classical
orthogonal sequence is especially a D-Laguerre-Hahn sequence of class less
than or equal to two. A complete classification of the D,-classical sequences

is obtained. The functional equation coefficients, the structure relations coef-
ficients, the three-term recurrence relation coefficients and the class are when-
ever given.

1. INTRODUCTION

Lot of works dealing with orthogonal polynomials mention the very classical ones:
continuous (Hermite, Laguerre, Bessel and Jacobi), discrete (Charlier, Meixner,
Krawtchouk and Hahn) or their analogues with respect to lowering difference or
differential operators (Hahn operator, Delta operator, Dunkl operator, etc..) [14],
(18], [19], 321, [36], BT, [0, [51), [55), and [L1], [13], [15], [35), [56).

Rodrigues formula, Hahn property, Bochner condition, first and second structure
relations, and Pearson equation are important common tools to characterize and

construct these polynomial sequences [1], [4], [6], [7], [8], [14], [18], [22], [26], [30],
[32], [36], [37, [49], [B0], [51], [57], [63], [20]. In fact, using these tools, different
unified presentations of classical orthogonal polynomials are done in the literature
either for continuous case, discrete case or their analogues: through an algebraic
approach [47], [49], a functional approach [26], [39], a distributional approach [27],
53], a hypergeometrical approach [9], [33], a difference calculus approach [19], a

matrix approach [63], etc...[44]
Besides, different natural procedures are used to build new orthogonal polyno-

mial sequences (See ﬂzﬂv [El]v mv ['Bﬂ’ “EH) m’ HZSL P—ZL m’ m’ @]7 mv [@ﬂ
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and [54]). They start by using some classical polynomials and yield a lot of poly-
nomial sequences but generally with no apparent link between them. In front of
the accumulation of the obtained results of such procedures, the need of structure
and classification of orthogonal polynomial sequences was natural. Among others,
the papers [9], [12], [23], [25], [28], [31], [44], [34], [35], [41], [43], [45] and [46] pro-
vide sketches in this direction highlighting the so-called semiclassical polynomial
sequences, and where classical orthogonal polynomials are seen as semiclassical
ones of class zero. In the same context, in [33] the authors emphasize the hyper-
geometric character rather than the sequences therein. An algebraic approach is
also presented in [47] for the so-called Laguerre-Hahn polynomials generalizing the
semiclassical case. Some early tries worthy of being evoked too in the same object
are [59], [60] and [61].

All these works usually give orthogonal polynomials generalizing (by their prop-
erties and their characterizations) the classical orthogonal polynomials, but gener-
ally it is difficult to explicitly construct them except under further assumptions as
the symmetry [2], [3], [16], [I7], [29], [52], [57], [58] and [62].

The aim of this work is to pick up orthogonal polynomial sequences under a low-
ering operator denoted by D,,, generalizing the standard derivative D = %. This
operator was first introduced to see all Laguerre-Hahn polynomials of class zero,
build in [T6], as the unique solutions of D, Hahn’s property. In [42], the authors
define the D,-semiclassical polynomials and classify them using the notion of the
class. Here, we expose the D,,-classical orthogonal polynomials by means of Hahn’s
property with respect to the operator D,,. In particular, through an algebraic ap-
proach, we state several characterizations of them as a natural extension of the cor-
responding properties for the very classical ones (generalizing the Hahn property,
the Pearson equation, the second order linear differential equation and the structure
relations). It is also shown that such polynomial sequences are D-Laguerre-Hahn
sequences of class at most two, and that are D,-semiclassical sequences of class
zero. Finally, by solving a nonlinear system fulfilled by the corresponding three-
term recurrence relation coefficients, we give explicitly all D,-classical orthogonal
polynomial sequences.

2. BACKGROUND

Let P be the vector space of polynomials with coefficients in C and P’ its dual. For
u € P, (u, p) means the action of the form (linear functional) u over the polynomial
p. In particular, (u), = (u,z™), n > 0, are the moments of u. When (u)p = 1, then
u is said to be normalized.
We set P :={ue€P | (u)#—n, n>1}.
Let us define the following operations on P':
ForallceC,p, g€ P, and u, v € P’

<quyp> = <u,qp>, <'LL/7 p> = —<u’p/>’
(6c, p) = p(e), 0. : Dirac delta at ¢, (§ := dp),
(uv,p) = (v,up), where (up) (z) = (uy, W>7

(@O wp) = (u,0up) = (u, LDZPOy

xr—cC
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where (u,,.) means the action of u over the polynomial on the y-variable.

Now, let {B,,}n>0 be a monic polynomial sequence (MPS), with deg B,, = n, and
let {wy }rn>0 be its dual sequence defined by (wp, Bpm) = 6nm, n, m > 0, where
Opn,m is the Kronecker delta. Note that wp is normalized and it is said to be the
canonical form of {B),},>0. The following Lemmas are helpful for the sequel.

Lemma 2.1. [47, [49] Let {wy}n>0 denotes the dual sequence of a given MPS
{Bn}n>0. For any u € P, and any integer p > 1, the following statements are
equivalent

(a) <u7B;D—1> # 0, and <U7Bn> =0,n=>p.

p—1
(b) 3N, €C, 0<u<p—1, A1 #0 such that u= Z)\#w#.
pu=20
Lemma 2.2. [2,46] Let u, v € P', f,g € P, and (a,b,c) € C3 with a # 0, we have
du=u, uv=ou, f(uw)= _fu)v+x(ubyf)(x)v, (2.1)

TyU) = Tb((T—bf)u)v f(hqu) = ha((haf))ua
), (- c)((sc - c)_lu) = u,

(fu)" = fu'+ f'u, f

™ Huww) = (27 u

~—
<
I
=N
8
<

(x—c)7? ((x — c)u) =u — (u)o0e,
(@ =) (fu) = f(O)((z = o) u) + (Oef)u = (u,0cf)dc, (2.2)
u(fg)(z) = ((fu)g)(z) + zg(z)(ubo f)(z),
(00(f9))(x) = ((Bof)g)(x) + £(0)(fog) (). (2.3)

Here the shift 75, and the dilation h, are respectively defined by
(rou, f) = (u, - f) = (u, f(x + b)), and (hau, f) = (u, ha f) = (u, f(ax)).
Lemma 2.3. [2|46] For allu, v € P, and f, g € P, the following formulas hold

(ubo(f9)) () = g(x)(ubo f)(x) + ((fu)bog) (), (2.4)
fla™ ) = 27 (fu) + (u, 60 )9, (2.5)
fla™ (wv)) = a7 (u(fv)) + (Wb f)(@)u, fru® = (fu)® + 22 f(z)(ubof)(2)u,
(u?,00(fg)) = (u, f(ubog) + g(uby f)). (2.6)
Remark. [2, [16] A form u has an inverse ™! (i.e uvu™t = &), if and only if

(u)o # 0.

A MPS {B,}n>0 is called orthogonal (MOPS) with respect to a form w, if
(w,B,By) = 0, n # m, and (w, B2) # 0, n > 0. In this case, w is said to be
regular (quasi-definite). Necessarily w = (w)owq, with (w)g # 0. In the sequel, we
shall take any regular form w normalized. Hence w = wy.

Definition 2.4. [I8 42]A nonzero form w is said to be weakly regular, if for any
polynomial A such that Aw = 0, then A = 0.

Lemma 2.5. [42] A regular form is weakly regular.

Proposition 2.6. [46] 47, [49] Let {P,}n>0 and {Qn}n>0 be two MOPS with re-
spect to u and v respectively, and A, B are two polynomials with deg(A) = s, and
deg(B) =t. The following assertions are equivalent:

(a) Au = Buw.
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n+s
(b) A(x)Qn(z) = Z A Po(x), n>1 with Ay pn—t #0, n >t

v=n-—t

Proposition 2.7. [406,[47] A MPS {B,},>0 with dual sequence {wy, }n>0 is orthog-
onal, if and only if one of the following statements holds:

(a) wy, = (wo, B2)"1B,wg, n > 0.

(b) {Bn}n>0 satisfies the three-term recurrence relation (TTRR)

{ Bo(z) = 1, Bi(z)= z — Bo, (2.7)
Brya(7) = (= But1)Brut1(®) — Yns1Bu(), n >0, .
with Bp € C and yp+1 # 0, n > 0.

(c) There exist two complex number sequences {Bn}tn>0 and {Yn+1}n>0, such
that

Yn+1Wn+1 = (3j - 5n)wn — Wp—1, Yn+1 7é Oa n Z O? (wfl = 0) (28)

Definition 2.8. Let w be a normalized form. For any MPS {B,}n>0, we define

the associated sequence of the first kind with respect to w, denoted by {B;Ll)(w)}nzo
as follows (see [1,10])

Byi1(z) — Bnta(§)
z—§
Once {B;,}n>0 is orthogonal with respect to wg and fulfills (2.7)), then we have:

B (w)(x) = (wboBas)(x) = (w, ) >0,

Proposition 2.9. [2,[47] The sequence {Bél)(w)}nzo is orthogonal with respect to
w, if and only if:

<w7 B/n> = 07 n Z 37
{ (w, Ba) # 72. (2:9)
B B
In this case, we have w = Awy with A(zx) = MBg(x) + MBl(m) + 1L
Y172 At
Besides, the sequence {B,(Ll)(u)}nzo verifies the following TTRR
Blw)@)=1 , B (w)@) =2 -4, 210
o) _ ORYRE) L B (2.10)
Bn+2(UI)($U) - (IL' - ﬂn-‘,—l)Bn-‘rl(w)('r) - ’yn-‘,-l n (’U))(.’l?), n Z 0’
where
BV =B —(w,Br) , BY =Buyr, n>1, (2.11)
W == (w,Bs) A =g, n > 1 (2.12)
Furthermore, the form w fulfills
B
(Awg)w = z—w. (2.13)

71

Proof. From ({2.7]), one has
By13(x) — Buys(y) = (x — Bat2) (Bn+2 (z) — Bn+2(y))_

Ynt2(Bpt1(2) — Bug1(y)) + (z — y) Bni2(y), n >0,
and

By (x) — Ba(y) = (z — 1) (Bi(z) — Bi(y)) + (x — y)B1(y).
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Then {BS"” (w)}n>0 fulfills

BMw)(@)=1 B’ (w)(z) =2z~ B+ (w,B),
BY,(w)(@) = (2 — Buy2) BN, (w)(x) — nia BY (w)(z)+
(w, Bpy2), n > 0.

By virtue of Favard’s theorem [46] [56], {B,(ll)(w)}nzo is orthogonal if and only if
(w,Bp)=0,n2>3, and (w,Bs3) # 2. (2.14)
The relations (2.10) — (2.12)) hold.

Since we have (2.14)), the expression of A is obtained by applying Lemma to w
and taking into account the assertion (a) of Proposition On the other hand:

(w, B (w)) = 8,0, n>0
(w,whoBp+1) = (w1,Bpt1), n>0
(7Y (ww) —wy,B,) = 0, n>1.
Besides (x~!(ww) — w1, By) = 0. Hence (2.13)) holds. O

Remark. When w = wq, the conditions are satisfied. Hence, if we set BSLD =
Bﬁll)(wo), then {qu,l)}nzo verifies the following shifted TTRR

By'(w)= 1, B{"(2) =z~ p,
1 1 1
BY,y(x) = (z — Buy2) B (2) — vns2BY (2), n > 0.
Finally, if we denote {uh(ll)}nzo the dual sequence of {By(ll)}nzo, thus 'ylw(()l) =
—x2wy A7),

The shifted MPS {Bn}nzo of a given MPS {B,, },,>¢ is given by:
Bn(z) = a "By (azx +b), n >0, (a,b) € C* x C. (2.15)

A shift preserves the orthogonality. Precisely, if {B), }n>0 is a MOPS with respect

to wg and fulfills 1) then the sequence {Bn}nzo defined by 1' is orthogonal
with respect to

’IIJO = (ha—l (o} T_b)wo (2.16)

and one has

By(x)=1 , Bi(x)=2—PBo,
Byi2(7) = (. — But1) Bnr1 (%) = Ynr1Bn(z), n >0,

ﬁn_

~ b "
with Bn=——, and Jpq1 = Tntl > 0.
a

—— n
) ) pi
a

Definition 2.10. Let v € ', and o a nonnegative integer. A MPS {B,}n>0 is
said to be quasi-orthogonal of order o with respect to v, if

(v, 2"B,)y=0,0<m<n—o—1, n>0o+1, (2.17)

Ir >0, (v,2""?7B,) #0.

A MPS {B,,}n>0 is said to be strictly quasi-orthogonal of order o, with respect to
v, if it satisfies , and (v,z""?B,) # 0,n > o.
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Remark.
1). The strict quasi-orthogonality of order zero is orthogonality.
2). A MOPS {B,}n>0 with respect to its canonical form wq is (strictly) quasi-
orthogonal of order o with respect to a form v, if and only if there exists a (unique)
polynomial ¢ of degree o such that v = ¢wq [2] 23] 25].

From now onwards, the symbol D means the usual derivative operator; i.e D =
d
% .
Definition 2.11. [3| [16] 23| 42] Let {B,}n>0 be a MOPS with respect to wy. We
say that wq is a D-Laguerre-Hahn form if it fulfills a functional equation of type

(Buo) + (Wwo) + Bla~"u3) =0, (2.18)

with (®,¥, B) € P3, ® monic.

The sequence {B,,},>0 is also called D-Laguerre-Hahn. The minimum value of all
integers max (deg U —1, max(deg @, deg B) —2), for each triplet (®, ¥, B) satisfying
, is called the class of wg. If wy is of class s, then the sequence {By,},>¢ is
said to be of class s.

Between many characterizations of a D-Laguerre-Hahn MOPS, we mention the
following.

Proposition 2.12. [3| 16} 23 [42] Let { By, },>0 be a MOPS with respect to wy. The
following assertions are equivalent:
(a) {Bn}n>o0 is D-Laguerre-Hahn.
(b) {Bn}n>o fulfills the so-called structure relation:
n+d
(I)(x)B;H-l(x) - B(JJ)BS)(J:) = Z en,kBk(m)v n>s+1, Opns#0 (2.19)
k=n—s

with d = sup(¢,r) and s =sup(p — 1,d — 2), and where t,r and p are respectively
the degrees of ®, B and W.

When B = 0 in (2.19), the sequence { By, },>0 (resp. wp) is called D-semiclassical
[I7]. A D-semiclassical MOPS (resp. form) of class zero is known as D-classical
one.

We recall that for all u € P, we define the linear derivative operator D, (see [42])

D,:P—P
p — Dy(p) = p" + ubop,

p(z) — p(y)>
T —y

or equivalently D, (p)(x) = p'(x) + (uy, , p € P. In particular, we have

n—2
D,(z") = (n—|— (u)o)x"_1 + Z(u)n_u_lx”, n>2, Dy(x) = (u)o+1, Dyu(1)=0
v=0
and
D,(w)= v —z ' (uw), w e P, (D,(w),p) = —(w,Dy(p)), peP. (2.20)
The first D,,-derivative MPS of a MPS {B,, } >0 is denoted by { B (.;u)},>0. Thus
Bl (z5u) = (n+ (u)o + 1) ' Dy(Bps1)(@), n > 0. (2.21)
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If we denote by {wy }n>o (resp. {wl(u)},>0) the dual sequence of {By,}n>o (resp.
(B w)bso), then [£2:

D, (wil(u)) = —(n+ (u)o + 1)wyq1, n > 0. (2.22)
In what follows, we need the following formulas [42):
D, (fg)(x) = Du(f)(@)g(x) + f(x)Du(g)(x) (2.23)
+(ubo(f9)) (@) — (ubof)(2)g(x) — (ubog) (x)f(w),
D, (fv) = fDu(v) +Du(f)v+ (vof)(z)u — (ubo f)(z)v. (2.24)

Besides, with some straightforward calculations, the following formulas hold.
Proposition 2.13. For allw € P', p € P, and (a,b) € C\ {0} x C, we have:
Du(pr) = TbDT,bu(p%

D,(nw) = D, _,u(w), (2.25)
Du(hap) = ahaDh,,,u(p); (226)
Dy (haw) = a~'haDp__,u(w). (2.27)

In [42], the authors studied the so-called D,,-semiclassical sequences. In partic-
ular, they showed that the defined sequences are special D-Laguerre Hahn ones. In
this work we shall elaborate the D,,-classical case. In section 3, we start by defining
a D,,-classical sequence through the D,-Hahn’s property (see deﬁnition. Then,
we prove four characterizations that generalize the standard ones in the usual D-
classical case (Hermite, Laguerre, Bessel and Jacobi) ; the Pearson’s equation, the
second order linear differential equation, the first and the second structure relations.
We show particulary that any D,-classical orthogonal polynomial sequence is, in
sense of [42], a D,,-semiclassical sequence of class zero. Hence, it is a D-Laguerre-
Hahn’s sequence of class s at most 2. In section 4, we establish and solve in detail
the nonlinear system fulfilled by the corresponding three-term recurrence relation
coefficients. This allows us to give explicitly the functional equation coefficients
and precise the class s.

3. THE D,-CLASSICAL SEQUENCES

Definition 3.1. Letu € Py. We say that a MPS { By, }n>0 is Dy -classical sequence,
if it is orthogonal together with its first D, -derivative sequence {BS] (;u)}n>o0 given
by (The D,-Hahn’s property).

A regqular form that its corresponding MPS is D, -classical is also said to be D, -
classical. Thus, for any D, -classical MPS we have :

{ By(zr) = 1, Bi(z) = x— fo, (3.1)
Bri2(z) = (. — Bnt1)Bni1(®) — Ynt1Bn(x), n >0,
and
B (au) = 1, BN (w;u) = = -,
{ B y(wsu) = (2 = Buy1) BYLy (w5u) = Fnsa BR (230), n > 0. 32

In the sequel, we denote by {wy,}n>0 (resp. {wl(u)}ns0) the dual sequence of

{By}nso (resp. {BH(;u)}ns0.). Also, the letter u will usually denote an element
of g
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(1]

Unless otherwise stated, and in order to simplify the notation, we will write wy,
instead of wh (u) and BY instead of BY (z;u).
3.1. The functional equation fulfilled by wy.

Lemma 3.2. If {B,}n>0 is a Dy-classical sequence, then there exist two nonzero
polynomials ® and B, ® monic, deg® < 2, and deg B < 2, such that

w([)l] = k®wg, K is a normalizing factor, (3.3)
u = Buy, (3.4)
with
k®(z) = eBs(x) + fBi(z) + Bo(z), (3.5)
where
e =+ (@0 +2) 0 + (B2 = 7)) = (o + 472,
£ = - [B+ (@0 + 28— (w0 +3)31]
and
B(x) = aBa(z) + bBa(x) + (w)oBo(x), (3.6)
with
a= %172 {(u)(ﬂz — ((w)o+2) (v +71 + (B2 — 31)2) + ((w)o + 4)%}7
b= %{(U)oﬁ = ((w)o +2)B2 + ((w)o + 3)31 = ((u)o + 1)30]

Furthermore, we have two additional conditions:

{ ((wo +2)7371 — 2((w)o + 3) 7472 + ((w)o +4)7273 =0, _ (3.7)
((w)o +2)73(B2 + B3 — 261) — ((w)o + 3)72(283 — f1 — f2) = 0. .

Proof. From 1) we have ﬁnﬂw,[ﬂrl = (x—Bn)wL” —w,[ﬂl, n >0, (w[j}l =0).
Applying D,, in both hand sides, we obtain thanks to (2.24) and ([2.22)

wlll = = (n4 (W) +2)Fns1Wnr2+ (n+ (W)o+1) (= Bo)wn 1 — (n+ (w)o)wp,n > 1,

(3.8)
w4+ u— (o + 1) (z = Bo)wn + 1 ((w)o + 2)ws = 0. (3.9)
Taking into account assertion (a) of the Proposition the relation (3.8]) becomes
Bl = 7, owo, n>1, (3.10)
: o NI (n+ (u)o + 2)Fn41
with Zpa(z) = (wl, (BIY) >[ T BTy B (@)
n+@ot+l) > _ (n+ (u)o)
By (8~ BB (@) = S B @), nx L

Bgl]w([}] = Z3wg,
Bgl]w([)l] = Zywg.
Since Bg] (x) = (x — Bl)Bgl] (x) — A1, then w([)l] = kPwy, where k is a normalizing
factor and k®(x) = ?1_1((:5 — gl)Zg(m) — Z4(:r)). With help of the expressions of

In particular, one has: {
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Zs(x) and Z3(x), and thanks to (3.1)), we get (3.5).
Substituting (3.3) in (3.10), we obtain thanks to Lemma 2.5

kBM(2)®(2) = Zpyo(z), n > 1. (3.11)
The analysis of degrees in latter equation shows that deg ® < 2.

Substuting (3.3) in (3.9), and taking into account the assertion (a) of Proposition
one has u = Bwg, where

B(x) = —k®(x) + (wo + 1)y7 (= = Bo) Bi(2) — (wo + 2)7i71 75 ' Ba(x).
Finally, the expression (3.6) is obtained using (3.5) and (3.1)). O

Remark.

1). From and Remark any Dy-classical sequence {By,}n>0 is (strictly)
quasi-orthogonal of order equal to deg ® with respect to w([)l].
Besides, when B # 0, it is also (strictly) quasi-orthogonal of order equal to degé
with respect to u.
2). Assume u # 0. From and Lemma the form w is weakly reqular.
3). From and , one has k®u = Ew([Jl]. Therefore, when B # 0, the or-
thogonal sequence {B,[ll]}nzo is quasi-orthogonal of order equal to deg B with respect
to the weakly-reqular form v = du.

We conclude that for any nonzero u € Pjy, a Dy-classical MPS {Bp}n>0 is in
particular a Dy-semiclassical sequence (see [42], Definition 2.7, p7).

Definition 3.3. Let wg be a regular form with (w)g # —n, n > 1, and <I>,\I!,§
are three nonzero polynomials, ® monic, deg® < 2, degV =1 and deg B < 2. The
triplet (®, U, B) is said to be admissible with respect to wy, if we have

1 ~
v'(0) — 5{@”(0)11 + (wo, ®)B"(0)} #0, n > 1.
Remark. When B = 0, we recognize the usual notion of admissibility of a pair of
polynomials [49].

Proposition 3.4. A MOPS {B,},>0 (with respect to wy) is Dy-classical, if and
only if there exists a triplet (O, U, B) admissible with respect to wy, such that u =
Bwyg, and wq is a solution of the functional equation

Proof. Applying D, in both hand sides of (3.3) and using (2.22)), we obtain the
((w)o +1)
K1

functional equation (3.12)), with ¥(z) =

Bj(z). From Lemma there

exists a polynomial B with deg§ < 2 such that u = Ewo.
On the other hand, using the relations (wo, B2)w, = Bywo and (wi, (BI2)wll =

By[ll]w([)l] in 7 we get:

—K,\I/Bg]wo + Du(B,[zl])w([)l] + (w([)ﬂ GOBEn])u — (uQOB,[ll])w([)l] =

(1] (11\2
wi, (BR)?)

—(n+ (u)o+1) o B2 )

n+1Wo, 1 > 0.
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Taking into account Lemma the fact that v; = (wg, B?), k=% = (wo, ®), and
the regularity of wg, we conclude that:

(@)D (By1)(2) = U(2)D o (Busr) () = (3.13)

1 1
(wo, @) (wp, (Bn')?)
<’LU0, BEL+1>

with A(p ; @, B,wo) = [(Pwo)boD 5 Buwo (p)}B [(Bwo)HOD Bu, (P )| ®, Vp € P.

In fact (3.13) is a linear D, -differential equation of second order, hence we obtain
a second necessary condition taking with each element of the sequence {By,}n>0.

We later prove that it is sufficient, too.
Examination of degrees in (3.13]) proves that

—(n+ (u)o +1)? Bpi1(x) — A(Bpy1: ®, B,wo)(z), n >0,

(wo, @) (wh, (BL)?)
<w07 Bn+1>

1 ~
m’(o)—§{¢”(o)n+<wo,<I>>B”(o)} = (n+(u)o+1) #0,n>1.
Thus, the condition is necessary.

Let us prove that it is sufficient. We shall first establish that w([)l] = k®wy. Indeed,
we have D, (Qwp) + Pwo = 0 and ¥(x) = ¥/ (0)B1(x) + (wo, ¥). But (wp, ¥) =
(Pwp, 1) = —(D (Pwy), 1) = 0. Thus D, (Pwp) + ¥/ (0)y1w; = 0, or D, (dwy) —

U'(0)m (1] 1] (u)op+1
(o + 1 w(wg) ence wy' = kPwy, where K T (0)7
Now, we will prove that {BE]}nZO is orthogonal with respect to wg] = kPwy.
Indeed, one has
(wy,a™BY) = (n+ (w)o+ 1) 7N wh, 2™ D u(Bat))

= (n+ (Wo+ 1) (!, Du(@” Bu1) = Do (a™)Bua
—{( nr1u)Box™ ) (uﬁoxm)Bn+1}>
(n+ (o + 1) wl, D (2™ By)
—maz™ B, — ((Bny1u)foz™))
(n+ (o + 1) =Dy (wl), 2™ Boy1)
—wm{wg, ®x™ B, 4 1) — <w([)1], ((Bng1uw)boz™)),
by virtue of (2.23)), (3.3) and (2.3). But
(i, (Buyrw)or™)) = (Busru, (wl6o2™)) = (wo, B(wf8o2™) B ).
Then,

il e Bl = (4 o + ) {(-Duwl!),e" Buy)
—{wp, {mmbxm_l + E(wg]eoxm)}BnJrﬁ}
= (n+ (u)o+ 1) w, |:I€\I/1'm — {mkr®(z)z™!
+B(w) fpz™ )}:|Bn+1>'
Therefore, (w([)l], mB,[}]) =0, 0<m<n-—1,n>1. Besides, form=n:

'(0) — %{@”(O)n + (wo, ®)B"(0)}

Wl gy —
(wy', =" By) (wo, @) (n + (u)o + 1)

(wo, 2" By () # 0,
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for all integer n > 1. O
As a consequence, a D, -classical form is a particular D, -Laguerre-Hahn one:

Theorem 3.5. Let wg be a regular form, ® be a monic polynomial, and B a
polynomial such that (wg, B) # —n, n > 1. We set u = Bwy, then the following
assertions are equivalent:

(a) There exists a polynomial ¥, deg W < 1 such that

D, (®wo) + Ywy = 0. (3.14)
(b) There exists a polynomial ¥y, such that
(Duwp)' + Uywo — (®B)(x~wd) = 0. (3.15)
In this case:
Uy (x) = U(z) + &(x) (wobo B) (x) + B(2) (wobo®) (). (3.16)

Proof. (a) = (b). From (2.20) one has D, (®wg) = (Pwg)’ — 2~ (u(Pwy)). But
(2.1) and the hypothesis give

uw(Pwg) = P(uwg) — x(webp®)(z)u = @((gwo)wo) — 2(wobo®) (x) Bwyg
= &(Bw? — z(woboB)(x)wo)) — x(wobo®)(x) Bwy
= @Ew% — xFwy,
where

F(z) = ®(z)(woboB)(z) + B(z)(weby®)(). (3.17)
Using and , it follows that
7! (u(Pwy)) = (®B)a~'w? — Fug — {(w%ﬁo(@é)) — (wO,F>} J.

Thus, (3.14)) becomes
(Dwo)’ + (F + W)wy — (®B)(z w2) + ((wd, o (®B)) — (wo, F))§ = 0.
Hence (3.15]) and ( - ) hold taking into account ([2.6)).
(b) = (a). Let us consider the polynomial F' given by (3.17).
Setting u = Bwy and ¥ = ¥, — F, we have

D, (Pwo) + Ywy = (Pwp)' + Vwy — ™" (u(Pwp)) — Fuwo
= (@B)aMud) — o (u(@un)) — Fup.

But, calculations done above (in the proof of (a) = (b)) prove that u(Pwy) =
®Bw — xFwy. Therefore,

7 (u(®wy)) = 27! (@ﬁw%) — Fw + (wg, F)0,
= 2! ((m90(<1>§) + @(o)é(o))wg) — Fwg + (wp, F)3,

= Oy(PB)w? — (wd,00(®B))6 4+ ®(0)B(0)x'wi — Fwy +
(wo, F)d
= Gp(®B)w2 + ®(0)B(0)z 'wi — Fuy = (B) (2 'w2) — Fuy.
Thus the desired result. O



THE D,-CLASSICAL ORTHOGONAL POLYNOMIALS 89

Proposition 3.6. Let {B,},>0 be a D, -classical sequence (with respect to wg)

fulfilling li with uw = Bwg. The sequence {En}nzo defined by || s Dg-
classical and it fulfills

Dy (®wo) + Yo =0, and 4= Buwg = ha-1 0 T_pu, (3.18)

where B(z) = Blaz +b), Wy = (hg-1 o 7_p)wy, ®(z) = a~'®(azx +b), ¥(z) =
a7 (ax +b), and t = deg(P).

Proof.
Using (2.16)), we have

D(x)wy = D(x)(1p 0 he)wWo = Tb( T_b‘b h «Wo )
= Tp0h, [((h o7_p)P)w )]—Tboh [ (aa?+b)f[/50}.
Thanks to and ( -7 we obtain

Du(@wo) = 7D, . (ha ((I)(CLZC + b)’lﬂo)) = ailrb o haDha_loT,bu((I)(a'r + b)lT)o)

From , we get -

The trlplet (<I>, \I’, B) is admissible since for any integer n > 1, one has:

N ~n

W(0)— 5 {3 O+ @0, $)B (0)} = o> {0 (0)~ L {#" O)n+(wo, ) B"(0)} } £ 0.
]

Proposition 3.7. A D, -classical form (u # 0) fulfilling (3.15|) is a D-Laguerre-
Hahn form of class max(deg(¥) — 1, deg(B) + deg(®P) — 2).

Proof.
Let wg be a D,-Laguerre-Hahn form of class s, thus

s < max { deg(¥y) — 1, max { deg(®), deg(®) + deg(é)} - 2}

< max { deg(¥,) — 1, deg(®) + deg(B) — 2}.

Note that B = ( since u # 0.
Necessarily s = max{deg(klfl) — 1, deg(®) + deg(é) - 2}. If not, the equation

(3.15) will be simplified. Then, there exists a root ¢ of ® such that if we write
®(z) = (x — ¢)0.(P)(z), we obtain

(0c(®ywo) + (0e(w1) + 62(2) g — 0.(®B) (2" ug) = 0.
From Theorem B3} the form wo fulfills
D, (Gc(fb)w()) + Wowg = 0, (3.19)
where
W) = 0.(91) + 02(®) — 0.(®)(2) wobo B)(x) — Bla) (wolof(®)) (@) (3:20)

On the other hand, computing D,, ( (z — C)HC(@)wo) gives, taking into account the
;

7). (E19) and (320):

regularity of wg, and the relations (3.1
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(z — ) Vs(z) = ¥(z) + ((w)o + 1)0:(P) + ((90(<I>)w0)90(x - c))é(m)
- (u90 (- c)) (2)0.(®) ().
In particular, one has deg(¥s) < 1. So, we can write Uy(z) = aBi(z) + b, with

a, b€ C, and a # 0. Applying By in both hand sides of (3.19) gives b = 0.
Therefore U (x) = aBj(x). Similarly we get U(z) = aB;(z) with @ # 0. Hence, wg

fulfills two functional equations (3.12f) and (3.19)). Therefore we have Du((ad) —

590(<I>))w0> = 0. So a® — af.(®) = 0. Examination of degrees proves that this is
not possible. O
3.2. The second order linear differential equation.
Proposition 3.8. A MOPS {B,},>0 with respect to wg is D,,-classical if and
onlyAif there exist three polynomials @,V and B, ® monic, deg® < 2, deg¥ =1
deg B < 2, and a complex number sequence {\,}n>0, An # 0, n > 0, such that
u = Bwg and that {B,},>0 satisfies

®(a)D7(By41)(x) — ¥(2)Dy(Bnt)(z) = (3:21)

AnBni1(@) = A(By1; @, B,wo)(x), n >0,
with  A(p; ®, B, wo) = [(®wo)0oDyg,, (p)]B — [(Bw)6Dg,, (p)]®, Vp € P.
Proof.
We have seen that the condition is necessary (see (3.13) ), where
2
(n+ (wo +1)" (wo, @) wg !, (Bi)?)
<w07B3L+1> 7

Conversely, the examination of leading coefficients in both hand sides of (3.21)) gives

Ap = — n > 0.

%{@"(O)n (w0, ®)B(0)} — W(0) = (n + (o +1) A £0, n> 1.

Thus (9, U, ﬁ) is admissible. Besides, using 1) we get for n > 0:

)\n<w0> Bn+1>

®D2(B,11) — VD, (B, A(Bpi1;®, B,
(wo, @Dy, (Bnt1) u(Bn+1) + A(Bpy wp)) P P

=0.

But (wg, ®D2(B,11) — ¥Dy(Bni1) + A(Bpy1; ®, B,wg)) =
(n+ (u)o + 1)_1<Du {Du(q)wo) + \Ifwo} ,Bni1), n>0.

Furthermore, it is easy to see that (D,, [DU(CI)wO) + \Ilwo] ,Bo) = 0. Hence

(D, {Du(@wo)—k\Dwo} ,B,) =0, n > 0. This implies that D,, [Du(@wo)—k\llwo} =0.
Then D, (Pwg) + Ywy = 0. This ends the proof.

3.3. The first structure relation.

Proposition 3.9. A MOPS {B,,}»>0 is D,-classical if and only if there exists a
monic polynomial ® with deg(®) =t < 2, such that

n—+t
O(2)B(z) = Y AuBu(x), Ann #0, 120, (3.22)

where {BLl]}nZO is defined by 1D
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Proof. The condition is necessary. Indeed, the regular forms wy and w([)l] verify
wél] = kPwy. Thanks to Proposition this is equivalent to lb
The condition is sufficient. Indeed, applying wg in both hand sides of (3.22) gives

(CDwO,BL”> =0, n>1, and <<I>wo,B([)1]> = Xo,0 # 0. Lemma implies that
(1]

wy' = kPwo where K = (wo, ®)~! = Ay §. Then
(o BYBL) = k{wy, @B BL))
n+t
_ my_ [0, m<n, nzl,
= KZZ:)\TL,U<wO’B”Bm> B { H>\n,n<w07BrQL> 7&07 m=n.
The sequence {BL1 ]}nZO is orthogonal with respect to w([)ll' =
Remark.

(a) From (3.11)), (3.5) and (3.1)), we can write the structure relation (3.22)) as

given by Al-Salam and Chihara in the D-classical case [7]:

®(2)B(z) = { Xy, + Yoz} Bui1(2) — yas1 T Ba(z), n >0, (3.23)
where for n > 1:

_ -1 1 (TL + (U)O + 1)371 (n + (U)O + Q)ﬂn 1371 1

X, = -k <w([)]’(Bn1])2>|: BT B (wO,B§+2)+ + }7
Xo = & '(f—pue),

n+ (u 1 n+ (u 2)Ant1
Yo = ﬁ_1<w5”,(373})2>[( <JOSB)§:>) = +<fuo),032+3>7 2.
Yo = /fle,

1 oy [ (4 (u n+ (u 2)Vn+1

I = _H_1<w[[)]’(B’[L]) >[<(w07+3(3¢-)s-01)> ( +<1(Uo),OB;«L+2)>7 - }’
To = & '(e—~7"(2(w)o +3)).

Using the orthogonality of {B,,},>0 in (3.23), we get (3.22)). In particular:

1 gl
A = Ynt1(Yn = Tn) = K_IW(Q” +2(u)o+1) #0, n>1,
(Q(U)o + 3)

n+1>
# 0.
RY1

Thus, the condition 2n + 2(u)g +1# 0, n > 1 holds.

In fact, the condition Y,, —T;, # 0, n > 0 is a consequence of the regularity
of wy. Indeed, let {B,,},>0 be a MOPS with respect to wg, and fulfilling
1D Applying wq in both hand sides of 1) we get )\w([)l} = dwy, with
A = (wp, ). Since wy is regular, we have A # 0.

Besides, from the orthogonality of { B, },>0, and thanks to (3.23]), one has:
Forn>0,and 0 <m < n:

and )\0’0 =

~—
=

(wi!, BUBLY = X~H®wo, BYBLY)
= A Y, {{Xn + Y2} By (z) — %HT,LBn(x)}B,%
0, if m<n, n>1,
'YnJrl(Yn — ’I‘n)<7dl]07 B'r2L>7 lf m =n.
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such that Y,, — T},, = 0. Then <w([)1], (Br[Llo])2) = 0. Thanks to (3.22)), this
implies (BEO]w([)l],BEb = 0,n > 0. Hence Bl}ng” = 0. But /\wo1 = dwy.
Then B,[llo] dwg = 0. This contradicts the regularity of wy.

We must have Y,, — T,, # 0, n > 0. If not, there exists an integer ng > 0
P

Proposition 3.10. A MOPS {B,,}»>0 is Dy -classical if and only if there exist two
polynomials ® and B, ® monic, deg(®) < 2, deg(B) < 2 and (wy, B) = 1, such
that

()B4 (x) — B(x)By(Ll)(x) = q3(x;n)B,y1(x) + F,Bp(z), n >0, (3.24)

where qz(.;n), n >0, is a polynomial deg (qg(.;n)) <3, n>0 and

B(z) = —®(z)B(x). (3.25)

In this case, we have:
gs(z;n) = @(m)(woﬁoé(aﬁ)) + (n+ (u)o + 1){X, + Yz}, n>0, (3.26)
Fo() = —(n+ (w)o + 1)yn1Th + 73 (wo, BB2)bn0, 1> 0. (3.27)

In particular, the sequence {By}n>0 is a D-Laguerre-Hahn sequence.
Proof. The condition is necessary. Thanks to Remark (a), and , we have :
®(z)Bj 11 (z) + ®(2)(uboBry1) = (n+ (w)o + 1){ Xy, + Yoz} Byga(z)  (3.28)
—(n + (u)o + 1))7n+1Tan(x), n > 0.
Since u = Ewo, we get:

B(y)(Bnt1(z) — Buta1(y))

(ufoBny1)(z) = (wo, Py

) (3.29)

- g(x)Bfll)(x) — (woﬁog(x))Bn_H(m)
_72_1<w0’ §32>5n,07 n > 0.
Substituting (3.29) in (3.28), the equations (3.24)-(3.27) hold.

The condition is sufficient. Indeed, we set u = Ewo. Using (3.29) and (3.25) in
(13.24)), gives, for n > 0:

() Bl 1 (2) + () [(ug By+1) () ~ (w000 B) Buy1 ()] = a3(w,1) Bsa () +F By (),

which can be written as <I>(x)B7[11] () = Ay(x,n)Bpy1(x) — Yps1TnBn(z), n >
0, where T,, = —(n + (u)o + 1)71%;11Fn, n > 0, and Ay(z,n) = (n+ (u)o +

1) - {q3(z,n)+(z) (ubyB) (z)}, n > 0.Comparing the degrees, we get deg (A1 (.,n)) <
1, n > 0. Thus, we can write A;(z,n) = X,, + Yz, n > 0. From Remark (b),

necessarily Y,, — T,, # 0, n > 0. Taking into account the first part of Remark
and Proposition the desired result holds..

ol
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3.4. The second structure relation.

Proposition 3.11. A MOPS {B,},>0 is Dy-classical if and only if there exist an
integer 0 <t < 2 and a polynomial B, deg(B) < 2, such that u = Bwg and:

Bu(z)= > XwBl(z), Ant #0, n>t, (3.30)

v=n—t

where {BLI]}nzo is defined by l}
Proof. The condition is necessary. Indeed, we have w([)l] = kPwy. From Proposition

this is equivalent to (3.30|). Besides, from Lemma one has u = Ewo.
3-30)

The condition is also sufficient. Indeed, the relation | can be written as:
By () = BY() + an B | () + b, B! ,(z), n >0, (3.31)
with apg = b() = bl =0.
On the other hand, applying D, in both hand sides of (3.1)) gives
(n+ (o) +2)By1, () = (n+ (o + 1) (z = Bus1) BY (2) = (n+ (w)o) Y1 B, (2)

N +<u7 B’I’L+1> + B’I’L+1(:L'); n Z 0.
By lj the fact that u = Bwyg, and the orthogonality of {B,,},>0, we have:

By () =1, Bl(z) =z — b, ) (332)
By 15(@) = (2 = Bns1)Bpiy (€) = An1Br'(z), n 20,
N a1 + (u, B ~ —
with By = 81 — 1(u)(<)—|—11>’ Brt1 = Bngz — (n+ (u)o +2) 1fln+2a n=>0
o —by + ((w)o +1)y2 — (u, Ba) _ —bnt2 + (0 + (Wo + 1) yns2 0> 1
71 (U)0+2 y Yn+1 n+ (U)0+2 ) = 1.

Necessarily, 7, # 0, n > 1, otherwise there exists an integer N > 1 such that
S — : (e — plUl -

An = 0. Thanks to (3.32), there exists ¢ € C such that By'(c) = By ,(c) = 0.
Then, By[ll] (¢) =0, n > N. This is absurd because if not, the relation 1) implies
that B, (c) =0, n > N. Thus the sequence {By, },>¢ is not orthogonal. O

Proposition 3.12. We suppose that {B,, }n>0 is Dy, -classical, and fulfills (3.1 and
(3.2). Then {By}n>0 verifies:

By (z) = B(z) + anBE]_l(x) + anT[Ll]_Q(x), n>1, (3.33)
with ay = ((Wo+1)(B1—Bo)—(u, Br), an = (n+(w)o)(Bn—PBn-1), n>2,
and b =0, bo=((wo+1)v2— ((w)o+2)71 — (u, Ba),

b = (n+ (Wo — 1)y — (n+ (w)o)Fn-1, n >3,
Proof. Taking the derivative in (3.1]), then using (2.4)), we get:
(n+ (w)o + 2)37[3_]‘_1(:10) =(n+ (wo+1)(z— Bry1)BM(2) (3.34)
—(n+ (o)1 By (2) + (u, Bus1) + Boya(x), n >0,
But from (3.2]), where n — n — 1, one has:
2BW(z) = BY () + B,BW (z) + 3, Bl (z), n > 0. (3.35)
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Using in (3.34), we obtain
B (2) = By} () + (n+ (o + 1) (Busr = Bn) B (2)
+((n+ (@o) i1 = (n+ (o +1)3 ) BIL (@) = (u, Busa), n =0,
The relation holds since we have (u, B,) = (wo, BB,) = 0, n > 3, and
BM =0, n>1. O

3.5. The functional equation fulfilled by w([)l].

Proposition 3.13. The form w([)l] satisfies:

- R 2 ~
((IDw([)l])' + \I/w([)l] - n_lB(x_l (w([)l]) ) +aB(0)§ =0,

where \T/(sc) =H -9 — 2§(w090<1>)(33), H:=F—-9, anda = 2<w([) ], (wpbo®)) —

K<w8790(¢2)>'

Proof. Multiplying both hand sides of (3.15) by x®, and taking into account the

identity w([Jl] = kPwy, we get

@iy + (H — ®)wl! — kB2 (2 wd) = 0. (3.36)
On the other hand, we have
022 ) = 2 (@%ud) + (wd, 0y (92)3, (3.37)

and ®2wi = (Pwp)? + 22®(x)(wobho®)(z)wo. Then (3.37) will be written, thanks

(1]

to wy' = kPwy, as follows

®* (27 'wf) = k%2 ( [1]) + 2ﬁ_1x_1($(w090<1>)(w)w([)1}) + (w?, 05 (®?))6 = 0.
With the help of the last equation, the relation (3.36]) gives the desired result. [
Remark. Another expression for a is: a = r{wg, wo (0o ®)?—22(webo®)(x) (0o ®)(z)).

3.6. The nonlinear system fulfilled by 3,, vn+1, Bn and 7,1.
On the one hand, the comparison of constant terms in the equation BF] () =

((u)o + 2)71 (Bh(z) + (ubyB2)(x)), gives

((w)o +2)Bo = ((u)o +1)B1 + Bo — (u, By). (3.38)

On the other hand, multiplying both hand sides of (3.33) by z, and taking into
account (3.2)), we have

Byi1(2) = Bila(@) + {Buss + ansr f BIL (2)+ (3.39)
{fY\nJrl +Bntnt1 bt }Br[zl] (x)+{an+1§n+bn+1gn*1 }37[311 (z)+

bur17n-1 B 5(@) — (u, Bui1) B (@) — (u, Bua)Bo, n > 1.

Using (3.1 and -, we get

7Bn41(w) = BiLo(@) + {anss + Busr [ B (0)+ (3.40)

{bn+2 + Bnt1@ni1 + ’Yn+1}B[1] (z)+
{ n+16n+1 + an7n+1}B[ ] ( ) + bn'YnJrlBr[L] 2( )
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(U, Bry2) — Bny1(u, Buy1) — Ynp1(u, Bn), n>1.

Comparing and gives, thanks to , the following system:
(n+ (o +2) B — (n+ (o) Bur = (n+ (o +1)Bus1 — (n+ (uo —1)By
+(u, B1)6n,1+ ((w)oBo — (u, B1))dn,0, n > 0. (B-1=0)
(n+w)o+3)Vnt1— (n+(w)o+1)3n = (n+Wo+1) Vg2 — (n+(w)o—1)yni1+
(n + (u)o + 1)(5n+1 — Bn)Q + (u, Ba)dn 1
—[(u, Bo) + (u, B1)(B1 — Bo) — (W)om1]dn, n>0. (5o =0)

(n+ (wWo+2)Fnt1[—2Bn+2+ B+ B\nJrl] + (n+ (w)o+1)Ynt2|[— 2B+ B y2 +(ﬁn+1])
3.41
—[(u, Ba) (B2 — Bo) + 2 {u, B1)]6n0 =0, n>0.
(n+ (w)o +3)Fnt2Vn+1 — 2(n+ (Wo +2) Ynt3¥n+1 + (n+ (Wo + 1) Vnts¥nt2 (3.42)
—’)/3<U, BQ>6n’O = 0, n 2 0

Remark. The first additional condition 18 none other than , withn = 1.

4. CANONICAL CASES

If we set:
-t W,
" n —+ (u)o +1
then, (3.42)) gives

Ynt1, Wwith 9, #0, n>1, (4.1)

’l9n+2’l9n+1 - 219n+1 +1=0,n2>1, (42)
<ua BQ>

Y991 — 201 +1 — ——""— =0. 4.3

S (7 P (*3)

Since (4.2) is a Riccati equation, we consider ¥,, = §n+1, n>1,& #0, n>1.

Thus &,4+3—2&+2+&+1 = 0, n > 1. So, the general solution is&, = an+b, n > 2,

1)+b
where (a,b) € C*\{(0,0)}. We deduce that 9,, = %, n > 2. Therefore,
an

. . <ua B2>
the relation 1] ives {1 - =a-+b.
. ’ (o + 1720

Two cases appear:

B
(A) I—M = 0. Consequently, 9,, = n , n > 2 and 9 is arbitrary.
((u )< )>2 n—1
B) 1- _u By) # 0. Here we have:
((w)o 11) 2 - .
ﬁnzw’nzz and ¥ = a+ [7 <U, 2> ]
an+b a+b ((w)o + 1)y2
We have to distinguish two subcases:
B
B, a—=0 Then 9, =1 n>2 and o) =1 B2
, ((u)01+ 1)z
B:. a#0. Ifwesetp:f,wecanwriteﬂn:w, p#£-n, n>
a n—+p

2 B
2, and 9, = 2 - {u, B3) "
p+1 ((wo + 1)z
Note that when p — co, we reorganize the subcase B;.
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Remark. Taking into account , the second additional condition becomes
, with n = 1.

Remark. Before solving the above system, we shall give update expressions of
polynomials ®(x) and B(x). Indeed, it is easy to see that:

(1] (1]
k®(z) = MBQ(@ + MBl(x) +1.
Y172 Y1
But from 3.5’%), one has (w([) ],Bg> =by = ((u)o + 1)v2 — ((w)o + 2)%1 — (u, Ba).
Using (E , we obtain ( wo ,Ba2) = ((u)o + 1)y2(1 — ¥1) — (u, B). We also have
1]

. . +1)8 +1)Bo—(u, B
<w([)1],Bl> = a;. Using (3.38), gwes( , B1) ( Jot1)61- ((75?0)3_2 L Y

For E( ), we should remark that from and @ we get e = K, a+ K =

W and b+ f = W Finally, it is clear that:

Ba) = 12y ) 4 1020

Case (A). The system (3.41]) becomes:

(n+ ()0 +2)Bn — (n+ (1)0) Bro1 = (n+ (w)o + 1) Bnr1 — (n+ (u)o — 1) Bn+

By(x) + (u)o. (4.4)

(4.5)
(u, B1)0p1 + ((w)oBo — (u, B1))dn,0, n > 0.
(2n+ (u)o + 3) B (2n + (u)g — 1) gy
W%H C(n=1)(n+(u)o+1) Y1+ (Brgr = n)”, n 2 2
(4.6)
(e +9) .
V3 = ((u)0+2§((u)0+5) [{((u)o—l—1)191+1}72+((u)0+2)(52_51) }
_ ((u)o +2) " AV (B - BV
= e D, 339 [ (@0 + DB = Bo)* = (81 = Bo)lw, B1)).
(n + 1)3n+1 - (’I’L - 1)B\n = (’I’L + 2)Bn+2 — 'I”LﬂnJrl—i— (47)

~ ~ 1
{A=90B+ @=90B 4200 - 08 = i+ 5y

Subtracting 1' from , one has 6n — 0+25n+1 Bn 1 — u) +25n, n>2,

(u()0)_|_25"+1 + 51 _ (u)z)oﬁz’ n > 1. Inserting this

(u, B1>}5n70, n Z O

then by iteration En =
equation in (4.5)), we get
(2n+ (w)o +2)Bat1 — (20 + (o — 28, =2 (o +2)B1 — (Wb ) , n > 2.

((w)o +2) [((U)o +2)d — 9}

Therefore, 3, = d + (2n + (u)o)(2n + (u)o — 2)

, n > 2, where

4= g (W + 2~ 0)f0 + (o +2+0)f1 -

2o 72 o B} o =07

(U)O +1
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and 0 = B1 + ((w)o + 1)Bo + (u, By).

oo (w2 -] . B
= > 1. iterati 6) gives:
ence, B, + Gn T (o) @n + (e +2)’ n > us, iterating (4.6) gives

=D+ W +1) {_[““)0*2)‘“’}
T @0t (w)o — D20+ (o + 1) 2n + (u)o)?

[(wa+2)a-0]’

((u)o+5)73+ (OIEE } n>2.
2
_ ((w)o +3) ((u)0+0+1) [(( )o+2)d—9}
Moreover, we have y3 = ((u)o + 2)((w)o + 5) [ o ((U)o T 2)((u)o _,_4)2}7
_ (o +2)0 [0 — ((w)o +2)B0] [ (w)o + 1)[0 — ((w)o + 2) 5]
”e ((w)o + 1)((w)o + 3) {’YH_ (u)o + 2 [ (w)o + 2 —(u, B1>]}.

The above system is completely solved.
Note that in this case, the polynomial ®(x) is of degree 2 given by

(@) = (v —d)* = &, where u=4{(ﬁo—d>2+W%}~ (4.8)

w, we get W(z) = —o(z — fy), and B(x) = wBg(ﬂc) +
071 M

7lBl>Bl (x) + (u)o.

Depending on the number of roots of ®(x), two subcases appear:
A;. @ has a double root (u = 0). In this case ®(z) = (z — d)?. Through a

shift, we can choose 0 as a root. Then we assume that d = 0. So ®(x) = z2.

As. @ has two different roots (u # 0). Upper to an affine transformation, we
can assume that ®(z) = 2 — 1. This amounts to take d = 0 and p = 4.

In the subcase A;, we have d = u = 0. Then

w8y = D {0y 12— ) + (o +2+ 011 ).
(w)o+o+1)
[33 + (O)Oﬁ’h =0

Necessarily, 0 # —((u)o + 1) and then By # 0. Otherwise, (4.9) implies 51 =
(u By), and 0 = 0. Thus, v3 = 0 wihch is impossible. Consequently, v, =

(u ) +o+1°

Hence, ¥(z) = —2(az+1) and 1 =

(4.9)

= 2q, then a dilation allows us to assume that 8y = —a~

- ((w)o +1) . Taking into account 1)
a?((u)o +2a +1)

we get the results summarized in Table 1. In particular, thanks to Proposition

the sequence {B,,},>0 is a D-Laguerre-Hahn sequence of class s = 2.

For the subcase Aj, the relation remains valid. Besides, we have
(wo+o+1)
(u)o +1
corresponding coefficients (See Table 1). In particular, thanks to Proposition

the sequence {By, },>0 is a D-Laguerre-Hahn sequence of class s = 2.

=1- ﬁg. According to the value of Sy, we give explicitly the
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{og(e + 0(m)z)z + [0g14 — 1g2] (c + O(m))+
{0+ 090 — 1)z + ,000)— B[(1 + 0(n))g — TLO(n)]
z(,0g0(n) + ¢ + oz + m?vv\ :®[1d(2 + 0(n)) + 0g (g + 0(n)g)]e— 9 +x0(n) + .x(1 + (¢ + 9)©) o —
_ TL
20— 1)+ 0z + x(1+ 2o+ o?iﬁ =()ta +e(1+ o?vv& —=®)'a (1 + 02 4 0(n)) 05— = (2) 14
T T
{1 - ogo - L090)+ LT - 1g0g(z + 0(n)) + £ + O(n)z+
z(0g(0(n) + 07) — )+ z[1g(z + 0(n)) + 0 (v + 0(n)g)] — L@+0) + (v +0)o + 0(m)+
0y _
o+ o+ 0m) L = (g 2+ o)} = (g (204 0z + 0(n))o }o— = (2)g
‘gl u ‘g < u ‘g < Ut
(40 +ug)g(0(m) +ue)(1 = O(m) +ue) L4 0(m) +ug)g(0(n) + ug)(1 - O(n) +ug) (I 0(n) + ug)(O(n) +ug) (L — O(m) +ug) -
(0 — 0(n) + ug)(g + O(n) + ug)(0(n) + u)(1 — w)— = (T +0(n) +u)(0(n) + w)u(r — u)y— - 20(0(n) + uju— -
(Aot om)(e+ 0@+ 0m) " . €+ 0(n) — L tPet 0M)g@+ 0(m)(e + () "
(T+0—0(n)(g+ 0+ 0(n)(1 + 0n)) ” ¢ — Tgogg — Th - 201+ 0(n))— -
gy R RO tur) 2y GO DO Fur) g2y GO FUDOM) Fur)
= 8(z + 0(n))— - E 0g(z + 0(n))0(n) £ 90(n)— <
. T+ 92+ 0(n))(z+ 0(n)) — og 1y 4 0gg = 0 FQ.wa.To?&xm.Tc?xHom
o(1 + 0(n)) — Ogo(z + O(n)) ~ ~ ° o z— (c+0)(1+0(n)— =
‘g <u (0(n) +ug)F # 9 ‘g <u ‘g u
. (14 0(n) 4+ ug)g(0(n) + ug) (1 — O(n) + ug) g | OO U)o (O(m) +ug)(1 = O(m) tug) L, | (4 O() +uR)g(O(m) +ug) (T = O(m) +ug) L
1+ 0+ 0(n)(g+ 0(n))(z + 0(n €+ 0(n 1+ 24 0(n))(g + 0(n))(g + O(n
¢ o(n ¢ = CA ¢ = L ¢ ¢ = L
R R R e O (T Es [ — 1608z — T (z + O(m) - 070 BT o
T+ 04 0(n 1+ ©g + 0(n)) o
e T =TIL ¢ — TIgo, — TL ¢ AL T~ =1L
T om0 — D 0#¢— Tgoge {o}\0> (Tt 0=
B R AL R R zw O FURE= M ) o U@ =0 Fur)
< A EJNQ%;T . 0g (2 + 0(n)) A aﬂr %VTCA ,
T+ o0+ 0(n))(g+ 0(n T+ 0z + 0(n)) (g + 0(n))®
¢ n))— o0 ¢ = ¢ ¢ 0 o(n) ¢ =
(T +0(n))— # og(z 0™ (L 1 0(n)) — 9o g 231 | ‘0# 1+ 0z +0(n) 0,92 + (2 + 0(m) (1 1 0(m) g
IF # 0g IF =0g ‘o# P Z—=0f
0# 0 (0 —@)o— = (2) g — )T+ () = (@)n [T+ @0)e— = (@A
IF # 0% 1T =0 2= (@e TV
T— 2= (¥ 2y
T<u u—#£0(n) ©_ eI+ 0(n) =g m) (v) esep

(V) @se) - s[ermioui[od [eolsse[)-"(J oYL, 'T dT1dV],
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Case (B).
The subcase B;. Here (u, Bs) = ((u)o+1)(1 —91)72. The following system holds

(n+ (o +2)Bn = (n+ ()0)Ba—1 = (n+ (o +1)Bns1 — (n+ (wo — 1)Bn, n > 2.

R ) (4.10)
((w)o +3)B1 — ((u)o + 1)Bo = ((u)o + 2)B2 — (u)oB1 + (u, B1). (4.11)
TIn+2 'Yn+1 7 N\2
) ~ ~
% Y2 — 71 = ((w)o + 1)(B1 — Bo)?> — (B1 — Bo){u, B1).
BnJrl - B\n = Bn+2 - B’I’L+17 n> 1. (412)
0181 — Bo = 9182 — B1 + (U)O%W, By). (4.13)
Using (4.12) in (4.10), we get B, = féﬁnw + gﬂn+1,n > 1. Thus
Bn = (Bs — B2)(n —2) + B2,n > 2, s0
Bn = w(ﬂk@ —f2)+ B2, n>1. (4.14)
Thanks to , one has
5 __ _(uot3 (u)o +5 (Wo , 1
60 - 2((’LL)0 T 1) ﬁ?) + 2((’&)0 T 1) /62 + (u)(] + 1ﬁ1 (u)(] +1 <U,B1>, (415)

comparing ([3.38) and , we obtain
~ ((W)o+2)((u)o +3) Byt ((u)o +2)((u)o +5)

B2 = B1+ ((w)o +1)Bo + (u, By).

2 2

(4.16)

2

Thanks to (4.14)), the relation (4.13|) gives 83 = f2 — 19—0, where
1
1

= f— (uB } 417
‘" ()04—2{50 bt ot B (4.17)

Equation (4.16) becomes B2 = (1 + ﬂi[((u)o + 191 — ((w)o + 3)} So B3 =
1
By + ﬂi [((u)o + 1) — ((wo + 5)}, which gives 3, = —19£[Qn +(u)o—1] —c+
1

1
Bo + (u,B1), m > 2. From (4.17)), we have 51 = —((u)o + 2)c + fo +

. (u)o+1 .
~ c
W(u, By). Also, we have 3, = ~5 [Zn—&—(u)o] _C+BO+W<

1. From lj we obtain 30 = —((u)o + 1)c + Bo. Using the new expressions of 3,
and 3,, we get for n > 1:

u, By),n >

n u 2
Yn+1 = 7(((5(0423;911) 71+ e((wo +1) e = mrogr(w B | + (o + 1)(n = 1)}’
2
i1 = s o+ el(w)o + 1) e — rrtu Bo)| + (o + 1},

B =1+ () + l)c[c by (u, By
The system is completely solved. Note that in this case, deg® < 1 and

(Wo+De . (Wo+1)ehy
T 7

kP(x) = —
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If deg(®) =0 (c=0), then ®(x) = 1. After a suitable affine transformation, we can
((wo + Dp

——(u,B1) := A and yy = —————, wh = V1.

(o 1 (u, By) and y; 3 , where p 1

From (4.4) and (3.16), we get the expressions of B(z) and Uy (z). In particular, we
recognize here the D-Laguerre-Hahn sequence of class zero, nonsingular, of Hermite

type [2, [16] (see first column in Table 2).

suppose that By = —

((u)o + 1)c "
If deg(®) =1, (c #0), then k = - ————"— P(x) =20 — ——— —
S =1 £ U a) = o e
and ¥(x) = —E(l‘ — Bo). By means of a suitable affine transformation, we can
choose fy and ¢ such that _n + By =0, and ¢ = —¢;. Thus, ®(z) = = and
((w)o +1)
U)o C

1
U(z) = ﬂ—l(x — Bo). Putting o = 91 — ((w)o +2) + Bo + (u, By), we get the

1
(u)o +1

expressions written in second column of Table 2.

In particular: If ¢ = 1, according to Proposition the obtained sequence is the
D-Laguerre-Hahn sequence of class zero, nonsingular, of Laguerre type [2] [16]. If
91 # 1, we recognize the perturbated sequence of order one of the D-Laguerre-Hahn
sequence of class zero, nonsingular, of Laguerre type [2, [16]. It is a D-Laguerre-
Hahn sequence of class s = 1.

TABLE 2. The D,-Classical Polynomials - Case (B)

SubcaseBl:l‘?l::l—uyiBz)#O , (W)o #—n, n>1
((w)g +1)y2 _
P(z) = 12 P(z) = zl
V(z)=—(x—A), p#0, V(x) = — (= — Bo), Bo # 0,
p " Y
= ———(u,By) := ], = a+ 2(u 1 A,
Bo (u)0+1< 1) Bo +2(w)o + 1+ .
a:=191 — ((u)o +2) + Bo + ﬁ(uaBl% A €C,
_ Br=2((w)o+ 1 +a+1+((u)o+1)(¥1 —1),
Bn =0,n>1, 53,, = 2(n£(u)0) +a+1, n 202, '
1
"= Mv (p=11) 71 = Bod1((w)o + 1),
n~2k('u,)o+1
Yn41 = fﬂ’t >1, Int1 = (n+ (w)o +1)(n+a+ (u)o +1), n>1,
A -t o+,
Bo = A, Bo=2(uwo+a+2+ (w)o+ 11 —1+A,
Bn =0,n >1, Bn =2(n+ (u)o) +a+2, n=>1,
u 1
g = ot e oy, 1= 91((wo + (e + (wo +2),
~ n+(2u)o ~
’Yn:TanQa An = (n+ (u)o)(n+a+ (u)o+1),n =2,
a# —(n+(uo+1),n=>2,
B(z) = Mzz B(z) = a -9y z?
P (e +2(u)o £ 14+ M)
+2)\(P - 2)96 +((“)0 + 1)1 —91) + (91 — 1)(4(w)o + 2o + 3) — (u)o + (91 — 2)/\36
P N 2(a+2(1;\)0+1+)\)191
S14 222 4 (g + 1p, | + 0T 1)<<u>oga)+ (ot
1
2(2 — p) 40 2(1 —91) 2
v =z - —. w =
1(@) T 1) = w0 £ 1+ 001

+2((u)0 + 1)1 — )%+ (91 — 1)(6(u)o +3a+A+5) +a+1— A

(a4 2(u)o + 1+ X)9
L= 9) (o) —a 1 ’ !

AT
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((u)o + 1)

The subcase B;. Here k = —
(p+2)m

2 given by (4.8), where
d:%{ﬁo-ﬁ-ﬁl‘i‘w[ﬂ — Bo — 0+1<u Bl>]}
+
B= 4{(/30 —d)? + [((J)[;T)m + lhl}
As in the previous cases, we analyse the situations ®(z) = 22, and b(z) = 2 — 1.

(p+2) B (z), and
U

, and the polynomial ®(x) is of degree

(4.18)

Particulary, we usually suppose d = 0. Note that here ¥(x) = —

Bz) = ((u)o+1){[1_ (P+1)191:|x2+ [[W—Q(ﬂ P (u, By) ]x

" pt2 p+2 (u)o+ 1
(4.19)
(p+ 1)ds Worn__ folu, Bu)
+[1 7](5051 M)+ (u )00+1 - (Ou)o+1 }

In particular, the sequence { By, },>¢ is a D-Laguerre-Hahn sequence of class s < 2.
Besides, the system (3.41)) becomes

(n+ (w)o +2)Bn — (n+ (W)0)Bn-1 = (n+ (W)o +1)Bps1 — (n+ (u)g — 1)Bn, n > 2.

R R (4.20)
((u)o +3)B1 — ((u)o +1)Bo = ((w)o + 2)B2 — (u)oB1 + (u, By). (4.21)
((w)o +2)Bo = ((u)o + 1)B1 + o — (u, B1). (4.22)

(2n + (u)o +p+4) (2n + (u)o + p) _ _3 n
(nt@o+2)ntptl) "2 (s (ot ntp) "7 (But1 =), ( = 2)'
4.23

((u)o + p +6) ((u)o +1)9 ¥ =2
T L e e R G U
(w)o+p+4) 7

y — (u, B1)]. (4.25)

~ ~ 1
W+ D+ 12 " o1~ A W—Fo- s
(4 p+2)Buss — (4 B = (14 p+3)Buss — (4 p Dfuyrs n > 1. (4.26)

> Ui 5 (pt 3)191 1
V161 — (1* 2)50* VB — B+ @ +1<uaBl>' (4.27)
Subtracting (4.26)) from (4.20), we get
(w)o = p+1)(Bat1 = Bn) = (o — p = D(Buta = But1), 7> 1. (4.28)
Two situations arise:
®By : p# (u)o—1
_ (3 A _ (wo—p+1
Here By o — fs1 = E(Buy1 — Bu), n > 1, where € = +20 P~ Then
(wo—p—1

Bt = EBn + P2 — EB1, n > 1.
Relation (4.20)), where n — n + 1, gives

_(2n+(u)o+p+5) - 2n+ (Wo +p+1) 4 ) )
((u)o—p—1) Bri1+ (w)o —p—1 Bp =282 —EBr), n > 1. (4.29)

On the other hand, since d = 0, we have
(u, Br) = (((w)o +2)€ — ((u)o + 1)) o + (((u)o +2)€ + ((u)o + 1)) B1,  (4.30)
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where £ := ((1‘)2%21)”“. Then, |D becomes

Bo = —tB1 + (1 = 0)fB. (4.31)
Using and , respectively in and , gives
((w)o +3)B1 = ((w)o +2)B2 + £Bo + (L + 1)B (4.32)
(p+2)B1 = (p+3)B2 + Lfo + (£ + 1)y (4.33)
The difference and the sum of the two last equations give respectively:
By — B =0, (4.34)
(o + p+5)(B1 — B2) = 2060 +2(1 + ) 1. (4.35)
Therefore,
B = —MWO +2(1+£)B4], (4.36)
(w)o +
_ ((Wo—p+1)
Ba = @oTpt5 (680 + 2(1 + £)31]. (4.37)

Back to (4.29) and taking into account (4.34)), we discuss two situations:
©Bo1: 2n+ (wo+p+1#0, Vn>1.

Iterating (4.29) gives
B = — (doctot D ((Wo—pLtB0204051] 1, > 1,
W= G W e D@ (w5 13) (4.38)
By = — (oot D 308 n>1 :
ntl = @nt(uwotp+D)@nt(wotpts) 77 =7

Therefore,

~ 2 3)[¢ 2(1+¢
Bni1— Bn=— ((wo + p+ 3)[60 +2(1 + )] > 1. (4.39)

2n+ (Wo+p+ )20+ (Wo+p+3) "
In order to compute the coefficients v, 11 and 7,11, we study two possibilities:
o &(z) =22 Taking w= O and using (4.30) in (4.18), we have 53 +y1(1+7) = 0.
Besides, from ) and one has
B — 50 = (Z —1)Bo + (£ +1)p1,
B — Bo — gt (w Br) = )0+1(,30 + B1).

Necessarily 1+ % # 0. Otherwise Sy = 0. Then, from We obtain B\O —p1=0.
Therefore, equat leads to 31 — B2 = 0. Then (4.24) gives (w)o+p+6=0.
Taking n = 3 in (4.23)), gives v5 = 0 which is absurd. We conclude that

—03
TR Bo # 0. (4.41)
In , necessarily (u)o+p-+4 7& 0. If not, one has y1 = —((u)o+1)(31 —BO)(,Bl -
BO (u)o+1 (u, B)). Thanks to and (4.41)), we get (fﬁo +(1+ 5)51)2 =0,
or equlvalently Kﬁo + (14 ¢)p, = 0. Thus, (4.35 proves that Bi — B = 0. Taking

into account , we deduce [5’1 B2 = 0. So, from we obtain 5,411 — 5n =
0, n>1. Equatlon , where n = 2, implies that v4 = O which is not possible.
Once the expression of 72 is obtained, we easily deduce the rest of the three term
recurrence coefficients (see first column in Table 3). In addition, we have

B(z) = ;;;f{ [(w)o +1—(p+1)¢]z*+

(4.40)

7=
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{[((u)o +p+3)0—2((w)o + 1)] Bo + ((wo + p+ 3)551}:%
[(U)O_FI_(IO"'U@BOﬁ W}

U (z) = ;;f{[(u)o +1—(p+1)fa?
{[((w)o +2)¢ - ((U)o 1)]Bo + ((w)o + p + 3)€61 fa*+
{[((Wo+p+3)t—2((w)o+1)] 88 + [(w)o+ 1+ ((w)o+2)¢] BB ffo“f’“:ﬁ e
+[(wo +1 - (p+ 1) B3 — DO ot}
e &(z) = 22 — 1. We note here that since too many subcases will appear later, we
simply refer to (4.19) and (3.16) for computing the polynomials B(z) and ¥y (z). On

the other hand, taking y = 4 and using (4.30) in ,we get v (14 4)=1-p52
We distinguish two subcases:

If ¢ = —1, relations (4.30), (4.31) and (4.40) are still valid. Besides, Sy = £1

and vy, € C\ {0}. Thus, it is easy to obtain the corresponding coefficients given in
the second column of Table 3.

1— 2
If £ # —1, we have y; = ?f()), Bo # £1 and relations (4.30), (4.31]), (4.35

and . In order to explicit the coefficients v,, and ¥,,, we need to discus many
situations when solving equations —. The results are summarized in the
last column of Table 3.

e Byyp: AN > 1, such that 2N + (u)g + p+ 1 = 0. From , we get

(N + (u)o + 1)B1 — (N + (u)o)B2 = 0. (4.42)
N + (u)o
~ < Pnt1,n > 1.
N+(u)0+1ﬁ 1
Then, from (4.20) we have (n — N +2)5,42 — (n — N)Bp41 = 0,n > 1. Thus, the
expressions of 3, and §,, hold as shown in Table 4.
For N > 3, we have g3 = 0. Thanks to 1D one has 31 = 0. Consequently,

taking into account (4.30)), (4.31) and (4.32), we get

Bo=Bo+ B, B =(1 +5)307§1 = —4Bo, B1 — Bo = —Po,
(u, B1) = [( Jol + (u)o +1]Bo, (4.43)
Bi = Bo — tayerz(u, Bi) = — 1 o,

((u)o + 1)1
2N + (u)o —1°
(2n—2N+3) (2n—2N—1) -0
(o +2)(n—2N—(w)o) 1"+2 ~ nt(wot)(n—2N—(u)o—1) In+tl =
where n >2,n¢g {N -1 N},

Therefore, subtracting (4.20)) from (4.26[), we obtain B\n =

where ¢ = — The coeflicients v,,+1 satisfy the following system:

52
WWH + <N+<u>o+1><N+<u>o+2ﬂN (VA DT

(N+(u>g+2><fg+<u>oﬂN+2 + WW“ = raET
0,

(o T3 ON+ (0 D~ g2 =
otz V2t =—(1+ 0)(B3.
Remark that ¢ 75 —1, otherwise we obtain 73 = 0 If we assume that p = 0, then

thanks to this is equivalent to y1 = —7 +€ So v2 = 0 which is impossible.
We conclude that necessarily p = 4, or equivalently v; = (11 +§°) The coefficients

~n and 7, follow.
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Thanks to (4.42), it is easy to see that equations (4.43)) are still valid for N = 2.
Besides, 83 — B2 = 81 — B2 = —(u)ﬁﬁz and

(2n—1) . (2n—5) —
Ao+ 2)(n—(wo—D 1142 ~ nF @t D(n—(ajo—5) 1+l = 01 = 3,

3 1 _ 2
(o 2) o) 4 T 272 73 = (B2 = B1)%,
((u)0+3)2’}/3 + (u)—g+2’72 = _/\(52 - ﬁ1)27
(u)ﬁ% +m=—(1+0)45;.
As in the case where N > 3, we prove that £ # —1, and so u = 4. This leads to the
expressions found in Table 4.
Finally, if N = 1, the relations 1)1) give thanks to 1) B1— B2 = LB+
(+1)B1, B1—Bo = (E+1)B1+ (€~ 1)Bo, By —Bo— oy (s Br) = —cryier (Bo-+B1).
In particular, as done above, we obtain:
_ (n+(w)ot+1)(n—(u)o—3) = _ (nt(uo)(n—(u)o—2)
Tnt1 = (2271)(2%3)0 ;n > 2, and 3, = (2n31)(2n7??) =2
We can also prove that necessarily p = 4. Hence, (1 + )y, = (1 — 32). Discussing
the cases £ = —1 and ¢ # —1, ends the computations. R R
e Byy: p = (u)p — 1. Thanks to 1) we have 8,411 = f1,n > 1. So, from

we get R
((wo + D((u)o +2)(B2 — B1)

n = B +
Pt =0t G o + D+ (w))
5 (wWo+2)"Ba+B1+((w)o+1)Bo+(u,B1) .
gl = o ((zu)oi2)((ufo+3) 0 L. Hence, (4.27)) leads to
2 =

[((w)o+1) (w)o+3+((w)o+4)91)] B1— [(wo+1) ((w)o+3) — (w)343(u)o+4)91 | Bo— ((w)o+3+201)(u, B1)

,n > 1. Using (3.38)) in (4.21) gives

291 ((u)o+2)?

therefore, B = [(M)DHHW)OHWI)]ﬁ;;(£§zif;;;?((u)o+2)ﬁl)] PP,

It is mentioned previously that d = 0, thus

(u, Br) = [((w)o +2)91 = ((w)o +1)] o + [((w)o +2)01 + ((w)o + 1)] fr.  (4.44)

This implies Bl = 0 and Bn = 0,n > 1. Always with the help of 1) we ob-

.5 wot1) [91 Bo+(14+01)8 ~
tain: By = (1 —V1)Bo — V151, Bny1 = - EZHLEOLS(TSHU;;) ] ;n>1, Br—Bo=

(91 — D)o+ (1+91)Br, and B — Bo — gy (s B1) = — ik (Bo + Bv).
Then, for n > 2, we get

(2n+2(u)o+3) o (2n+2(u)o—1) ~ ((w)o+1)? [19150+(1+191)51]2
i+ @o+2) (n+(wa) 72~ k(o +D) (n(w)o—1) 12+ = 7 (nk(wo+ D2 (nt(w))”
(2(u)o+5) GRS P [19150+(1+191),31]
@0 +3)(WoTD) 13~ (wot2 12 = (Wot2z

Qo803 — ) = — 9 (Bo + 1) [(91 — 1)fo + (1 +91)Ba).
Discussing the situations ®(x) = 22 and ®(x) = 2% — 1, as done above, we find the
expressions summarized in Table 5. In particular, for ®(z) = 22 — 1, we have:

— (1 Wot ) (n4p)[2n+(Wotp+1)? —(Wotpt+3)*w?] | - 3
Tnt1 @nt(wotpt2)2nt(Wotpt Znt(u)gtp) 0=
with (2n + (u)o + p+ 1)% — ((u)o + p + 3)*w? # 0,n > 3, (4.45)

5 — (@) (ntpt)[@nt(Wotpt )~ (wotp+3)w?] 5 g
T T T (o Fet2) @t (wotpt D2 2nt (o te) 0Tt
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TABLE 3. The D,-Classical Polynomials - Case (B)
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u, B
Subcase Bap: 1 — ﬁ #£0 , (wo # —n, n>1,
u)o Y2
_ pt2[y _ _(u,Ba) _ _ ((w)o+1)9q _
o1 = B2 1 - el o —nn 21, 0= LOED0L G s g0 + (04 1)
B211: 2n+(u)o+p+1#0, Vn>1,
®(x) = a2 — 1
b (z) = x2, = —1, [# -1,
L 1 2
V(@) = =9 @ — go), v(e) = — L1 @ — go)
1 - 83)
o= Bo A AL B EC
If (uo+p+4=0:w==1,
~ o3 R
Al o Al e v2 € C\ {0}, Bo = 280 — w,
2 5
- A £ Al 8, — (2(u)o + 5)w n>2
s pLos [ (2n — 3)(2n — 5)
N L PP P (2(u)o + 3)w
3£ + ~ Qo | Bp=—"—"—"""——,n=>1,
P i b 541 (2n — 1)(2n — 3)
1:013 o | & 511’5 v3 =
= o33t o PN 1
TEEFe|2 HatE = (o + 3)[(¢ + vz +4((wo + ),
‘+$'§$i P S
- B BN
i S8 i (n+(u>0+1)(n*(u)0*4)
O CRAS 2 HMESR n >3,
- It3% = ST (2n — 3)2
« I+ P <e+1m+4((u)0+2>¢omeC\{O},
S fEge e T 2 ) Fo =
E+ 83 ~+ o [SEH+EE 1
?iﬁii e LI 12984 T L0 D (44 1) 4+ (o + 2],
=7|= o &) =
- o5 g S SRR aa ~ _ (i wo)(n = (w)o - 3)
I e B s o LRy o+ An = , >3,
i g Il ol e o ST (2n — 3)2
JaE RS 1 rRusEs | [ Hdofeto=0:
S SRl CUIE 3 ESEeSe W=z,
S lE N Piaol S I e
No w;f Q I <« t,’c? :]_ = -g N‘;I _ 74((U)O +2)
I+TE T s =z 7 2T T e
P = “H HV Soo | VL HV 7427337(22,(7%€C7\){0,2},
[ woon w(2(u)o +
- o J:r ® oo oo t g Bn= ——"(_ —"-n=>2
& & &« e E T R (2n —5)(2n —7)
R , Bo = —£B1 + (1 — £)Bo,
~ 3w(2(u)o + 5)
n=———"——,n 1,

(2n —5)(2n — 3 =

(n v (w)o + 1)(n — (u)o — 6)

. . . n >4,

[a\] — [a] — 2n — 5)2

AlOAl AlAl o A((w) + 4)0

= ® s e = sy 7°

~ ~ ~ (= ~ 0+2

it :’_ — © Y2 = (Ezg i4>“/3«
+ |+ 0

U o =) (u)o + 2

S St Qg | & 3= ———(v3—2),

e Tl o tal+ (w)o + 4

e oy|o © ("+(u)o)("*(u)0*5)

& s~ + |2+ =2 Fn = n >4

aF gt RS ICRN IR " (2n — 5)2 =%

gL e SH|++|+ i 9 If3N24,2N+(u)g+p:0:*

Q:ggﬁ N=2elg o =
Qﬁt L‘Qtt té 2@ ; + C o Bn and Enarc given by
Wt HE aRTET 22 w YN IN+2 € C\ {0},
= - 9T | + T & n+ (u)g+1)(n — 2N — (u)g
a3z 4z e &3k~ g1 =
s &=+ + Sli= " (2n — 2N — 1)2 '
8&5 IS gj+ ol o 5:;\6++ n#{N—1N+1}andn>3,
Y u2ER|E giffmo AN-1,N+1 € C\ {0},
o s +3 e 5 _ (n+@o)(n - 2N — (w)o +1)
w b o= |T=|Tee = & n 2 5
o & o 8 - £ §j;i- ] (2n —2N — 1)
& @ (Q(q H Q S‘,Q@ [ n#{N —-1,N+1} and n > 3,
——— o we g

e g
S q4 @ £& & IfVn > 2, 2n+ (w)g +p #0:

Brn and B\nare given by forn > 1,
((w)o +2)(w® = 1)
o=~ # 1,
£+ 1D)((wo +p+4)
(p+2)¢(w? — 1)

T T e D)o + p AL

Yn+1 and Fpare given by forn > 3,.
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T+ N T u NL

(@+O0(M)+N) (1+9(m)+N) (1—g(NT—17))
(0(n)—Nz—u)(0(n)+u)g

= Tty
‘ N e+ 0(n)+ N
+0( Ioﬂ anb;?i (e
N z+0(m)+ N 1+ +N )
[0 + Mo B ode | (S ) — = N&
{o}\o > NL

‘ T u< ., OtNZT—uZ)(I—NT—%Z) _ u
T-NSuse (RN ::oswiw ="
(c—NZ)(E=NT — ozl
Tt ND) O — ~
c(e=ND)a+D)  _ 1

7(1=0(n)+Ne)

(e+9(n)+N) (1+0(n)+N) (1— g(NE—uE))

¢ Zut — o=l (g—ug)(g—uz) ¢ = Ttug
TN <u NE (T—0(m)—Ne—w)(1F+0(n)+u)g g €< U GTom—u)( Ammrw: “k T < U GOy — ) (1 O(n) T )
£ Ngj 4+ NL_EEOEN g — et E:ENA?E?VV =
07 %8 + N m ot +ae [ 5. A V) It - Q‘TE =1L
%2n+ N et +N _\ — T+NL (e+0(n))2 = (1+0(n))7 =
4 (1+0(n)+nN)e TIF # o r? ~ 2 g wmwvﬁ = cL
{or\o> NL €T u (g—ug)(g—ug) _ 1qug , 2 z+ @NJ
T NSuSg —UtNE—uR(Q-NEu®) _ _ rtug (e=0(n)—w)(T+0(n)+u) — IF#0(20 — )5 =
:L:i NT—w) (1+0(n)+u) e+ 0(n)T # % TI— £
(s—Ng)(E—N7T) — L ‘g — L(e+ 0(n)) = &L
To0(m N (e+0(n)= LB B .
<@+ (e=N7) _ g = #9 zxom — = o~ 0# g%z —z — T
AN+BE@H\ O£ 70T # 0g - 2FL 1L ‘(tg0de —z — L) (1 + O(n))— = &
I—#70# 1 TF # 0 jn? Qg-D7 ‘(Tgogg —g — Th)(z + 0(n))— = ek
{or}\0> W F =0g
1- =33
E<N T=N I=N
RERY) .

PERY)

‘I=N ‘D> Ng¢g ‘I=N ‘93 TtNg

‘<N ‘D3 T Ng ‘T< N D> Ng

zlu ‘T=N‘0="g zlu ‘T=N‘0= Tt

‘T< N ‘0=T1"Ng+ Ng _ _ TN ‘0= Ng+ TNy

TTugIN UNT-N}Buo=ug T<® TN H{NT-N}Bu0o=TT

‘(0g — 31‘%?&\

= (@A ‘T 7= (D)

—0(n —
6:+§+93H“3,% =)0 u‘utT+0(n)+ N ﬁ

TL(

‘0=1+d+0(n)+ Nzg‘T < NE :2Itg

TZuu—£0(n) ¢ %

(1 + O(n))

Cg ‘n

(Tg ‘n)

1+0(n)) _ L 0(n)+ Nz

=:1
1-0(n)+Nz ¢

— 1 :12g aseoqng

(g) ese) - seroui[og [ed1sse[)-"( oYL, § 14V,
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—0(n)gtug)(1+0(n)gt+uz) _ 4« (Te+D(e+0(m)a) _ 1
2z (1 0(m) =, (0(n) F) ¥ oot leG+0(n)) — %

TS uU0F m(1+0(n) — (14 0(n) +u)
— o g(0(m)+u)(1—-0(n)zg+ug)(1+0(n)zg+ug)

2wl

¢ — T+ug
g<u [o7 T+ 00 — [T+ Om F ] (1= 2 (0(m) +))
. 2(2+9(n)) (s+0(n)z) (e+0(n)z) — el
(£me(1H0(m) = ¢ (2+0(m) ) (640(m)) (140(n)
¢ _ (et D(e+0(m)g)
(™= D —"Fomy = *
: oﬁﬂ L+ oﬁwm+:vm ‘T uAL e
. ST 1—0u—u)(Ou—u)y _u
c-ususg e (E—0w)— (B 40u—w) &
"NRNAM — oﬁv%\ = H\c:x(\
L0}V 03 Ok {mo(§ — ouyg  THOULLE = 1 Oug .
T OuZTulm (§—0u) =L - uSuSe {7 + 09) 0z + :.w%\ =k (r = 4« (1= 0(M)z+ug) (14+0(n)g+ug) u
. (1= Oug—ug)(1 = Ou—u)(Ou—w) — Ty {(Tg + 0g)0gig + L} LELUME_ _ 1 e P (1+0(m) =%
T3mﬁm\Q:V\N%Lwc:\:vfm\c:‘\:xm+c:\5 Te(1+0(n)) — %
e (B —0u)d— = OuL ,Am\smAm M Ou)g + Trof\w\ = o+0ug
. _ (& —0u—uw)
g+ 0uut— Am|o:wﬁm|o:|5ﬁm+o:|5 =Tt
et : ! T0)(g4+0(n))
0=T1+0(n)g+ Oug ‘¢ < Oug i e 0#A€e+0(n)z 1 e Ffz‘lnc«
™ Ta(1+0(n))
— Ta
pTuk =uL (& el =sL o)\ 3L «( mMMvm =1L
%N:A%HTE\( oA L el (L E)— =T {0}\DD el :g=¢+0(n)g 1 ® ‘22 u ‘IF # O(n) + ug
L €
By = fo}\p 3t LEFD6 _ g . (1 g0 v
D (= ¢ (T=0(M)g4+ug) (14 0(M)g+ug) _ 4 (e +w) (1-g(O(n)etuz)) 4y,
F0=g+0(mz e R (] [( =) R ™ (1= 2O T 4)) 5 (17 0(n))
g Tuck = »Tﬁ:ﬁtaﬁwu N OAGERT
el ut ANNAMV\AMN\ wy TuL ,T+ ek(1 + %L E-=5 ‘07 (Tg + 09)0dg + T ‘g I u
gy -
oA e rE = oo o3 B (O(m)+u) (1-9(n)z+ug) (1+9(n)z+uz) T 0
et 2O +w) (1-0(n)z+ue) 1+0(Mz+uz) _ {4 h LT (EH0(ME)  _ g
0=g+0(mz e (1= 2(0(m)T)) (14 0(m)g+w) (1—w) 0# FCRO)
e+t  _ ‘ L AL DNNSLY L . S
Qg-DTe " {o}\a> 1-#7e OgTq
T
TZug=g Tgia—og(la —1) = 0g g T u LTUPHGOMED  _wy G515 (0g - @)(1 + 0(n)— — = (2)n
g g - n .
IF #0d | IF =0g | ‘0 # 09
1—#Tgpue 1 — 2= (2)p | I—=Tgpuel— o= (2)p | = (@)
o(n 0(n _ eL(1 + 0(n))
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Finally, note that if u = 0, we recognize the very classical orthogonal polynomial
sequences. Precisely, we find Hermite and Laguerre polynomials respectively in the
first and the second column of Table 2. The Bessel polynomials are in the first
column of Table 3 and the Jacobi polynomials are obtained in the last case of the
third column of Table 3.
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