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ON THE STABILITY AND INSTABILITY OF FUNCTIONAL

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS OF FIRST

ORDER

CEMIL TUNÇ AND SIZAR ABID MOHAMMED

Abstract. This paper is concerned with non-linear Volterra integro-differential
equation (VIDE) with constant time-lag, τ :

x′(t) = P (t)f(x(t)) −
∫ t

t−τ
K(t, s)f(x(s))ds.

Via Lyapunov functionals and basic inequalities, sufficient conditions are given
for the exponential stability (ES) and instability (I) of the trivial solution of the

former (VIDE). We introduce two new results for the above topics for the trivial

solution of that (VIDE). Our conditions involve the nonlinear generalization
and extensions of those found in the literature. The results to be obtained are

new and complements that in the literature.

1. Introduction

Mathematical models are powerful tools used to describe real world problems
in mathematical language and concepts. In the relative literature, one of famous
mathematical models is known as the (VIDE), which appeared after its establish-
ment by Vito Volterra, in 1926. Today, that kind of model has many important
and interesting applications in physics, biology and engineering, etc.. (see Wazwaz
[22] and the references therein).

In recent years, qualitative problems related to (VIDEs) have been extensively
studied. For the researches of such (VIDEs), we refer the reader to Adıvar and
Raffoul [1], Becker [2], Burton [3, 4, 5], Burton and Haddock [6], Burton and Mah-
foud [7], Graef et al. [9], Gripenberg et al. [10], Furumochi and Matsuoka [8],
Hara et al. [11], Miller [12], Raffoul [13, 14], Raffoul and Unal [15], Staffans [16],
Tunç [17, 18, 19, 20, 21, 22], Vanualailai and Nakagiri [23], Wang [24], Wazwaz [25],
Zhang [26] and many papers and books in their references.

By this information we mean that it is worth and deserve investigating qualita-
tive behaviors of solutions, stability, instability, boundedness, convergence, globally
existence of solutions, etc., of (VIDEs).
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In 2009, Becker [2] considered the scalar linear (VIDE)

x′(t) = −a(t)x(t) +

∫ t

0

b(t, s)x(s)ds. (1.1)

Becker [2] investigated some qualitative behaviors of solutions of (VIDE) (1.1) by
Lyapunov’s functional approach. He also gave examples to illustrate the obtained
results.

Later, in 2012, Adivar and Raffoul [1] considered the following linear (VIDE)
with constant time-lag, τ > 0,

x′(t) = p(t)x(t)−
∫ t

t−τ
q(t, s)x(s)ds. (1.2)

The authors discussed (ES), (I) of the trivial solution and the existence of some
inequalities with respect to the solutions of (VIDE) (1.2) by means of the Lyapunov
functionals.

In this paper, motivated by the ideas in [1] and [2], we consider the non-linear
(VIDE)

x′(t) = P (t)f(x(t))−
∫ t

t−τ
K(t, s)f(x(s))ds, (1.3)

where t ≥ 0, τ > 0 is a constant time-lag such that t−τ ≥ 0, K : [0,∞)×[−τ,∞)→
<, P : [0,∞) → < and f : < → < with f(0) = 0 are continuous functions with
Ω := {(t, s) : 0 ≤ τ ≤ s ≤ t <∞}.

Let

f1(x) =


f(x)
x , x 6= 0

f ′(0), x = 0.

Then, (VIDE) (1.3) is equivalent to

x′(t) = P (t)f1(x(t))x(t)−
∫ t

t−τ
K(t, s)f1(x(s))x(s)ds.

It is clear that Adivar and Raffoul [1] and Becker [2] discussed linear (VIDEs)
without and with time-lag, respectively. However, (VIDE) (1.3) is non-linear and
time-lag generalization of (VIDEs) (1.1) and (1.3). In reality, it may be followed
that (VIDE) (1.3) includes and improves (VIDEs) (1.1) and (1.2) studied by [1]
and [2]. In fact, let take zero instead of t−τ , P (t) = −a(t), f(x) = x and K(t, s) =
−b(t, s) and P (t) = p(t), f(x) = x and K(t, s) = q(t, s), respectively. Hence,
(VIDE) (1.3) becomes reduced to (VIDE) (1.1) and (VIDE) (1.2), respectively.

In the present work, we search (ES) and (I) of the trivial solution of (VIDE) (1.3).
The results to be obtained here are different from that given in the literature (see
([1]-[23]) and the references thereof). Namely, (VIDE) (1.3) and the assumptions
described are distinct in from that in ([1]-[25]). This case is an improvement of the
problems discussed in [1] and [2], and it shows the novelty and originality of the
paper.

2. Preliminaries

Let x(t) = x(t, t0, φ) be a solution of (VIDE) (1.3) on [t0−τ,∞) such that x(t) =
φ(t) on φ ∈ [t0 − τ, t0], t0 ≥ 0. For φ ∈ C[0, t0], let |φ|t0 := sup{|φ(t)| : 0 ≤ t ≤ t0}.
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Let

A(t, s) =

∫ τ

t−s
K(u+ s, s)du,

where t ∈ [0,∞) and s ∈ [−τ,∞).
It is clear that (VIDE) (1.3) can be written as

x′(t) = P (t)f(x)−A(t, t)f(x) +
d

dt

∫ t

t−τ
A(t, s)f(x(s))ds. (2.1)

Let

Q(t) = P (t)−A(t, t).

Hence, it may be seen from (VIDE) (2.1) that

x′(t) = Q(t)f(x) +
d

dt

∫ t

t−τ
A(t, s)f(x(s))ds. (2.2)

For the sake of brevity, if one follows the way in [1], it can be easily shown that
the following estimates are true:

(i) A(t, t− τ) ≡ 0, t ≥ 0,
(ii) A(t, s)K(t, s) ≥ 0, t ∈ [0,∞), s ∈ [−τ,∞),

(iii) A2
(
t− (α−1)τ

α , ξ
)
≥ A2(t, ξ) ≥ 0, 1 < α ≤ 2, t ∈ [0,∞), s ∈ [t− τ, t],∫ 0

−τ

∫ t

t+s

A(t, ξ)
∂A(t, ξ)

∂t
f2(x(ξ))dξds

= −
∫ t

t−τ

∫ ξ−t

−τ
A(t, ξ)K(t, ξ)f2(x(ξ))dsdξ

= −
∫ t

t−τ

∫ ξ−t

−τ
A(t, ξ)K(t, ξ)f2(x(ξ))dsdξ ≤ 0

and
∂A(t, s)

∂t
= −K(t, s).

3. Exponential stability

First, we describe a new auxiliary functional V = V (t) by

V =

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

+

∫ 0

−τ

∫ t

t+s

A2(t, ξ)f2(ξ)dξds. (3.1)

We benefit from the former auxiliary functional to prove the stability result of this
paper.

Before stating the first main result, we give some lemmas as auxiliary results.

Lemma 3.1. Let assumptions (ii), (iii) and

− 1

2τ
≤ Q(t)f1(x)

hold. If f1(x) ≥ 1, then
d

dt
V (t) ≤ Q(t)V (t),

where V (t) is given by (3.1).
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Proof. Take x(t) = x(t, t0, φ) as a solution of (VIDE) (1.3) such that φ ∈ C[−τ, 0).
If we differentiate V (t) along the solutions of (VIDE) (1.3), then it follows that

d

dt
V =

d

dt

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

+
d

dt

∫ 0

−τ

∫ t

t+s

A2(t, ξ)f2(ξ)dξds

= 2

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]
×
[
x′(t)− d

dt

∫ t

t−τ
A(t, s)f(x(s))ds

]

+τA2(t, t)f2(x)−
∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds

+

∫ 0

−τ

∫ t

t+s

2A(t, ξ)
∂A(t, ξ)

∂t
f2(x(ξ))dξds

= 2

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]

×
[
Q(t)f(x) +

d

dt

∫ t

t−τ
A(t, s)f(x(s))ds− d

dt

∫ t

t−τ
A(t, s)f(x(s))ds

]

+τA2(t, t)f2(x)−
∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds

+

∫ 0

−τ

∫ t

t+s

2A(t, ξ)
∂A(t, ξ)

∂t
f2(x(ξ))dξds

= Q(t)

[
f1(x)x2 − 2f1(x)x

∫ t

t−τ
A(t, s)f1(x(s))x(s)ds

]

+τA2(t, t)f2(x)−
∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds

+

∫ 0

−τ

∫ t

t+s

2A(t, ξ)
∂A(t, ξ)

∂t
f2(x(ξ))dξds +Q(t)f1(x)x2

= Q(t)f1(x)

[
x−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

−Q(t)f1(x)[

[∫ t

t−τ
A(t, s)f(x(s))ds

]2

+τA2(t, t)f2(x)−
∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds

+

∫ 0

−τ

∫ t

t+s

2A(t, ξ)
∂A(t, ξ)

∂t
f2(x(ξ))dξds +Q(t)f1(x)x2.
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Then, in view of the last estimate and the assumptions of Lemma 3.1, we have

d

dt
V ≤ Q(t)f1(x)V (t)−Q(t)f1(x)

[∫ t

t−τ
A(t, s)f(x(s))ds

]2

+
[
τA2(t, t) +Q(t)f1(x)

]
x2(t)−

∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds

−Q(t)f1(x)

∫ 0

−τ

∫ t

t+s

A2(t, ξ)f2(ξ)dξds. (3.2)

Via the Schwartz inequality, it may be followed that∫ 0

−τ

∫ t

t+s

A2(t, ξ)f2(x(ξ))dξds ≤ τ
∫ t

t−τ
A2(t, s)f2(x(s))ds,

[∫ t

t−τ
A(t, s)f(x(s))ds

]2

≤ τ
∫ t

t−τ
A2(t, s)f2(x(s))ds

and ∫ 0

−τ
A2(t, t+ s)f2(x(t+ s))ds =

∫ t

t−τ
A2(t, s)f2(x(s))ds.

Then, from (3.2), we reach that

d

dt
V ≤ Q(t)f1(x)V (t)−Q(t)f1(x)τ

∫ t

t−τ
A2(t, s)x2(s)ds

+
[
τA2(t, t) +Q(t)f1(x)

]
x2 −

∫ t

t−τ
A2(t, s)f2(x(s))ds

−Q(t)f1(x)τ

∫ t

t−τ
A2(t, s)f2(x(s))ds

= Q(t)f1(x)V (t) + [τA2(t, t) +Q(t)f1(x)]x2

+ [−2τQ(t)f1(x)− 1]

∫ t

t−τ
A2(t, s)f2(x(s))ds. (3.3)

Hence, we can conclude from (3.3) that

d

dt
V ≤ Q(t)V (t).

So, the conclusion of Lemma 3.1 follows. �

Theorem 3.2. Let 1 < α ≤ 2. If assumptions of Lemma 3.1 hold, then, the
inequality

|x(t)|2 ≤ 2

(
2α− 1

α− 1

)
V (t0) exp

(∫ t−(α−1)τ/α

t0

[P (s)−A(s, s)]ds

)
is true for t ≥ t0 + (α − 1)α−1τ, in which x(t) = x(t, t0, ψ) is a solution (VIDE)
(1.3). If

A(t, t)− P (t) ≥ ρ, (ρ ∈ <, ρ > 0), for all t ≥ t0,
then the trivial solution of (VIDE) (1.3) is (ES).

Proof. Under the assumptions of Lemma 3.1, and following the way done by Adivar
and Raffoul [1], it can be easily arrived at the result of Theorem 3.2. Hence, we
would not like to give the details of the proof. �
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Remark. If P (t)−A(t, t) is in L1[0,∞), then the solution x(t) of (VIDE) (1.3) is
(ES) provided that t ≥ t0 + (α− 1)α−1τ , where L1[0,∞) is the space of Lebesgue
integrable functions.

Remark. Since A(t, t) − P (t) ≥ ρ > 0, then it clear that x(t) is (ES). In fact, it
follows that

|x(t)|2 ≤ 2

(
2α− 1

α− 1

)
V (t0) exp

(
−
∫ t−(α−1)τ/α

t0

[A(s, s)− P (s)]ds

)

≤ 2

(
2α− 1

α− 1

)
V (t0) exp

(
−ρ(t− (α− 1)α−1τ)

)
.

This shows the desired result.

4. Instability

In this section, we give an instability result for the trivial solution of (VIDE)
(1.3). Before, we state our result, we define a new Lyapunov functional V1 = V1(t)
by

V1 =

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

− λ1

∫ t

t−τ
A2(t, s)f2(x(s))ds, (4.1)

where λ1 > 0 is a constant. We choose that constant later, and V1 is defined for
x ∈ C[−r,∞).

Lemma 4.1. Let assumptions (ii), λ1 > τ > 0 and λ1A
2(t, t) ≤ Q(t) hold for all

t ≥ 0. If f1(x) ≥ 1, then

d

dt
V1(t) ≥ Q(t)V1(t).

Proof. Let x(t) = x(t, t0, φ) be a solution of (VIDE) (1.3). In view of the assump-
tions of Lemma 4.1, the time derivative of the Lyapunov functional V1 given by
(4.1) along (VIDE) (1.3) implies that

d

dt
V1 =

d

dt

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

− λ1
d

dt

∫ t

t−τ
A2(t, s)f2(x(s))ds

= 2

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]
×
[
x′(t)− d

dt

∫ t

t−τ
A(t, s)f(x(s))ds

]
−λ1A

2(t, t)f2(x(t))− 2λ1

∫ t

t−τ
A(t, s)

∂A(t, s)

∂t
f2(x(s))ds

≥ 2

[
x(t)−

∫ t

t−τ
A(t, s)f(x(s))ds

]
× [Q(t)f(x)]

≥ 2xQ(t)f(x)− 2Q(t)f(x)

∫ t

t−τ
A(t, s)f(x(s))ds− λ1A

2(t, t)f2(x)
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= Q(t)f1(x)

[
x−

∫ t

t−τ
A(t, s)f(x(s))ds

]2

+Q(t)f1(x)

[
−
(∫ t

t−τ
A(t, s)f(x(s))ds

)2
]

+Q(t)f1(x)x2 − λ1A
2(t, t)f2(x)

= f1(x)Q(t)V1(t) + f1(x)Q(t)

[
−
(∫ t

t−τ
A(t, s)f(x(s))ds

)2
]

+λ1f1(x)Q(t)

∫ t

t−τ
A2(t, ξ)f2(x(ξ))dξ

+Q(t)f1(x)x2 − λ1A
2(t, t)f2(x)

= f1(x)Q(t)V1(t) + f1(x)Q(t)

[
−
(∫ t

t−τ
A(t, s)f(x(s))ds

)2
]

+λ1f1(x)Q(t)

∫ t

t−τ
A2(t, s)f2(x(s))ds

+Q(t)f1(x)x2 − λ1A
2(t, t)f2(x)

≥ Q(t)V1(t) + f1(x)Q(t)

[
−
(∫ t

t−τ
A(t, s)f(x(s))ds

)2
]

+λ1Q(t)

∫ t

t−τ
A2(t, s)f2(x(s))ds

+Q(t)x2 − λ1A
2(t, t)f2(x)

≥ Q(t)V1(t)− τf1(x)Q(t)

∫ t

t−τ
A2(t, s)f2(x(s))ds

+λ1f1(x)Q(t)

∫ t

t−τ
A2(t, s)f2(x(s))ds

+[Q(t)− λ1A
2(t, t)]f2

1 (x)x2

= Q(t)V1(t) + (λ1 − τ)f1(x)Q(t)

∫ t

t−τ
A2(t, s)f2(x(s))ds

+[Q(t)− λ1A
2(t, t)]f2

1 (x)x2

≥ Q(t)V1(t).

Hence, the conclusion of Lemma 4.1 follows. �

Theorem 4.2. If assumptions of Lemma 4.1 and the assumption∫ ∞
t0

A2(s, s)ds =∞

are true, then the trivial solution of (VIDE) (1.3) is unstable.

Proof. We consider the result of Lemma 4.1, that is, the inequality

d

dt
V1(t) ≥ Q(t)V1(t).
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Integrating this inequality from t0 to ∞, we obtain

V1(t) ≥ V1(t0) exp(

∫ t

t0

Q(s)ds). (4.2)

In view of the Lyapunov functional V1 = V1(t) given by (4.1), it is clear that

V1 = x2 − 2x

∫ t

t−τ
A(t, s)f(x(s))ds+

[∫ t

t−τ
A(t, s)f(x(s))ds

]2

−λ1

∫ t

t−τ
A2(t, s)f2(x(s))ds, (4.3)

in which λ1 > 0 is a constant, and we choose later.
It can be easily verified that

2 |mn| ≤ τβ−1m2 + βτ−1n2, (β > 0, τ > 0).

In the light of this inequality, the Schwartz inequality and (4.3), we obtain

−2x

∫ t

t−τ
A(t, s)f(x(s))ds ≤ 2 |x|

∣∣∣∣∫ t

t−τ
A(t, s)f(x(s))ds

∣∣∣∣
≤ τβ−1x2 + βτ−1

[∫ t

t−τ
A(t, s)f(x(s))ds

]2

≤ τβ−1x2 + β

∫ t

t−τ
A2(t, s)f2(x(s))ds.

Then, it is clear from (4.1) that

V1 ≤ x2 + τβ−1x2 + β

∫ t

t−τ
A2(t, s)f2(x(s))ds

+τ

∫ t

t−τ
A2(t, s)f2(x(s))ds− λ1

∫ t

t−τ
A2(t, s)f2(x(s))ds.

Let us choose λ1 = β + τ . Hence

V1 ≤ x2 + τβ−1x2 ≤ λ1(λ1 − τ)−1x2

so that

|x(t)|2 ≥ λ−1
1 (λ1 − τ)V1(t).

From the last inequality and (4.2), we obtain

|x(t)|2 ≥ λ−1
1 (λ1 − τ)V1(t)

≥ λ−1
1 (λ1 − τ)V1(t0) exp(

∫ t

t0

Q(s)ds)

≥ λ−1
1 (λ1 − τ)V1(t0) exp(

∫ t

t0

λ1A
2(s, s)ds). (4.4)

We note that ∫ ∞
t0

A2(s, s)ds =∞.

From inequality (4.4) and the above assumption, one can reach that the trivial
solution of (VIDE) (1.3) is unstable. This finishes the proof of Theorem 4.2. �
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Remark. By Theorems 3.2 and 4.2 , we extend and improve (ES) and (I) results
in the literature from linear (VIDEs) with time-lag to non-linear (VIDEs) with
time-lag (see Adıvar and Raffoul [1, Theorems 1 and 2]). In addition, it is clear
that (VIDE) (1.3) improves (VIDE) (1.2) investigated by Becker [2]. Our results
complement to that of Becker [2] and they have contribution to the literature. These
are newness and quality of the present paper.

5. Conclusion

We consider a kind of first order non-linear (VIDE) with constant time-lag. We
investigate (ES) and (I) of trivial solutions by two new auxiliary functionals. Our
results are new and differ from those found in the literature.

Acknowledgments. The authors of this paper would like to express their sincere
appreciation to the anonymous referee for his/her valuable comments and sugges-
tions which have led to an improvement in the presentation of the paper.
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