BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 9 Issue 1(2017), Pages 19-30.

f-HARMONIC MAPS FROM FINSLER MANIFOLDS

SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA MIRMOHAMMAD REZAII*

ABSTRACT. In this paper, the first and second variation formulas of the fenergy functional for a smooth map from a Finsler manifold to a Riemannian manifold are obtained. As an application, it is proved that there exists no non-constant stable f-harmonic map from a Finsler manifold to the standard unit sphere $S^n(n > 2)$.

1. INTRODUCTION

f-harmonic maps as a generalization of harmonic maps, geodesics and minimal surfaces were first studied by A. Lichnerowicz [9] in 1970. Recently, N. Course [6] studied the f-harmonic flow on surfaces. Y. Ou [14] analysed the f-harmonic morphisms as a subclass of harmonic maps which pull back harmonic functions to f-harmonic functions. In [4], the researchers studied the stability of harmonic and f-harmonic maps on spheres. Many scholars have studied and done researches on the f-harmonic maps, see for instance, [3, 4, 5, 9, 10, 14, 15].

f-harmonic maps are applied in many branches of geometry and mathematical physics. In view of Physics, f-harmonic maps could be considered as the stationary solutions of inhomogeneous Heisenberg spin system, see for instance [5, 14]. Furthermore, the intersection of f-harmonicity with curvature conditions justifies their application for gleaning valuable information on weighted manifolds and gradient Ricci solitons, see [10, 15].

Let $\phi : (M, g) \longrightarrow (N, h)$ be a smooth map between Riemannian manifolds and $f \in C^{\infty}(M)$ a positive smooth function on M. The map ϕ is called f-harmonic if $\phi \mid_{\Omega}$ is a critical point of the f-energy functional

$$E_f(\phi) := \frac{1}{2} \int_{\Omega} f \mid d\phi \mid^2 d\upsilon_g,$$

²⁰¹⁰ Mathematics Subject Classification. 53C60, 58E20.

Key words and phrases. Finsler manifolds; Harmonic maps; f-harmonic maps; Stability; Variational problem.

^{©2017} Universiteti i Prishtinës, Prishtinë, Kosovë.

 $^{^{*}\}mathrm{Corresponding}$ author.

Submitted Jun 28, 2016. Published January 2, 2017.

supported by Amirkabir University of Technology, Tehran, Iran.

Communicated by Uday Chand De.

for any compact sub-domain $\Omega \subseteq M$. Here dv_g is the volume element of M and $|d\phi|$ denotes the Hilbert-Schmidt norm of the differential $d\phi \in \Gamma(T^*M \otimes \phi^{-1}TN)$.

Let $\phi : (M, F) \longrightarrow (N, h)$ be a smooth map from a Finsler manifold (M, F) to a Riemannian manifold (N, h) and $f : SM \longrightarrow (0, \infty)$ be a smooth positive function on the projective sphere bundle of M. In this paper, the *f*-energy functional of ϕ is introduced and the corresponding variation formulas are obtained. It can be seen that the first and second variation formulas of the *f*-energy functional is consistent to that of Riemannian case if M is Riemannian and f is defined on M, see [4].

The concept of harmonic maps from a Finsler manifold to a Riemannian manifold was first introduced by X. Mo, see [11]. On the workshop of Finsler Geometry in 2000, Professor S. S. Chern conjectured that the fundamental existence theorem of harmonic maps on Finsler spaces is true. In [13], the researchers have proved this conjecture and shown that any smooth map from a compact Finsler manifold to a compact Riemannian manifold of non-positive sectional curvature could be deformed into a harmonic map which has minimum energy in its homotopy class. Y. Shen and Y. Zhang [16] extended Mo's work to Finsler target manifold and obtained the first and second variation formulas.

As an application, Q. He and Y. Shen [7] proved that any harmonic map from an Einstein Riemannian manifold to a Finsler manifold with certain conditions is totally geodesic and there is no stable harmonic map from an Euclidean unit sphere S^n to any Finsler manifolds. Harmonic maps between Finsler manifolds have been studied extensively by various researchers, see for instance, [7, 8, 11, 12, 13, 16].

The current paper is organized as follows:

In the second section, a few concepts of Finsler geometry are reviewed. In section 3, the *f*-energy functional of a smooth map from a Finsler manifold to a Riemannian manifold is introduced and the corresponding Euler-Lagrange equation is obtained via calculating the first variation formula of the *f*-energy functional. In section 4, the second variation formula of the *f*-energy functional for an *f*-harmonic map is derived. Finally, it is shown that there exists no non-constant stable *f*-harmonic map from a Finsler manifold to the standard sphere $S^n(n > 2)$.

2. Preliminaries and Notations

In this section, a few basic notions of Finsler geometry are provided which will be used later. For more details see ([1, 11, 12, 16]). Throughout this paper, it is assumed that M is an m-dimensional connected compact oriented manifold without boundary and $\pi: TM \longrightarrow M$ be its tangent bundle. Let (x^i) be a local coordinates system with the domain $U \subseteq M$ and (x^i, y^i) the induced standard local coordinates system on $\pi^{-1}(U)$. A Finsler manifold is a pair (M, F) includes a smooth manifold M and a Finsler metric $F: TM \longrightarrow [0, \infty)$ satisfies the following properties: i) F is smooth on $TM \setminus 0$, ii) $F(x, \lambda y) = \lambda F(x, y)$ for $\lambda > 0$, iii) The fundamental quadratic form

$$g := g_{ij}(x,y) \ dx^i \otimes dx^j, \qquad \qquad g_{ij} := \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}, \qquad (2.1)$$

is positive definite at every point $(x, y) \in TM \setminus 0$. The Riemannian manifolds and locally Minkowski manifolds are important examples of Finsler manifolds. In the sequel, the following convention of index ranges are used

$$1 \leq i, j, k, \dots \leq m,$$
 $1 \leq a, b, c, \dots \leq m-1,$ $1 \leq A, B, C, \dots \leq 2m-1.$

The Finsler structure F induces two more significant quantities as follows

$$\begin{aligned} A &:= A_{ijk} \, dx^i \otimes dx^j \otimes dx^k, \qquad A_{ijk} &:= \frac{F}{4} [F^2]_{y^i y^j y^k}, \\ \eta &:= \eta_i dx^i, \qquad \qquad \eta_i := g^{jk} A_{ijk}, \end{aligned}$$

called Cartan tensor and Cartan form, respectively.

Let us denote the projective sphere bundle of M by SM, where $SM := \bigcup_x S_x M$. Almost every geometric quantities constructed by Finsler structure are invariant under rescaling $y \longrightarrow ty$ for t > 0, thus make sense on SM. The canonical projection $p : SM \longrightarrow M$ defined by $(x, y) \longrightarrow x$ pulls back the tangent bundle TM to the m-dimensional vector bundle p^*TM over (2m-1)-dimensional manifold SM. The bundle p^*TM and its dual p^*T^*M are said to be the Finsler bundle and dual Finsler bundle, respectively.

At each point $(x, y) \in SM$, the fibre of p^*TM has a local basis $\{\frac{\partial}{\partial x^k}\}$ and a metric g defined by (2.1). Here $\frac{\partial}{\partial x^k}$ and its dual dx^k stand for the sections $(x, y, \frac{\partial}{\partial x^k}) \in \Gamma(p^*TM)$ and $(x, y, dx^k) \in \Gamma(p^*T^*M)$, respectively. The bundle p^*TM has a global section $l(x, y) := \frac{y^i}{F} \frac{\partial}{\partial x^i}$ which is called the *distinguished section*. The dual of the former section $\omega = [F]_{y^i} dx^i$ is called *Hilbert form*. Furthermore, each fibre of the Riemannian vector bundle (p^*TM, g) has an *adapted frame* $\{e_i := u_i^j \frac{\partial}{\partial x^j}\}$, i.e. $g(e_i, e_j) = \delta_{ij}$ and $e_m := l$. Denote its dual by $\{\omega^i := v_j^i dx^j\}$, $\omega^i(e_j) = \delta_j^i$. It is clear that $\omega^m = \omega$. In the rest of this paper, these abbreviations will be used. According to the notations above, it can be seen that $\frac{\partial}{\partial x^i} = v_i^k e_k$ and $dx^i = u_k^i \omega^k$, where (u_j^i) and (v_j^i) are related by $u_k^i v_k^j = \delta_j^i$. More relations among (u_i^i) 's, (v_i^i) 's and the quadratic form of F can be found in [1].

Let $N_j^i := \frac{1}{2} \frac{\partial G^i}{\partial y^j}$ be the coefficients of non-linear connection on TM, where $G^i := \frac{1}{4}g^{ih}(\frac{\partial^2 F^2}{\partial y^h \partial x^j}y^j - \frac{\partial F^2}{\partial x^h})$. Consider the local orthogonal basis $\{\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\}$ on T_zTM , where $\frac{\delta}{\delta x^i} := \frac{\partial}{\partial x^i} - N_i^j \frac{\partial}{\partial y^j}$ and dual basis as $\{dx^i, \delta y^i\}$, where $\delta y^i := dy^i + N_j^i dx^j$. It can be shown that $\{\omega^i := v_j^i dx^j, \ \omega^{m+a} := v_j^a \frac{\delta y^j}{F}\}$ is a local basis for the tangent bundle T^*SM . Consider $\omega^{2m} = [F]_{y^i} \frac{\delta y^i}{F}$ as dual to the vector $y^i \frac{\partial}{\partial y^i}$. Therefore, ω^{2m} vanishes on SM. Based on the above notations, the Sasaki-type metric, the volume element, the horizontal sub-bundle and the vertical sub-bundle of SM are defined by

$$G := \delta_{ij}\omega^i \otimes \omega^j + \delta_{ab}\omega^{m+a} \otimes \omega^{m+b}, \qquad dV_{SM} := \omega^1 \wedge \omega^2 \wedge \dots \wedge \omega^{2m-1},$$
$$HSM := \{v \in TSM, \quad \omega^{m+a}(v) = 0\}, \qquad VSM := \bigcup_{x \in M} TS_xM, \tag{2.2}$$

respectively, see [2]. Due to the fact that HSM is isomorph with p^*TM , HSM is also called the Finsler bundle. In the sequel, for any $X \in \Gamma(p^*TM)$ the corresponding horizontal lift of X is denoted by X^H .

As well-known, there exists a linear connection on p^*TM called the Chern connection and denoted by ${}^c\nabla$. Its connection forms are characterized by the following equations

$$d(dx^i) - dx^k \wedge \omega_k^i = 0, \qquad (2.3)$$

and

$$dg_{ij} - g_{ik}\omega_j^k - g_{jk}\omega_i^k = 2A_{ijk}\frac{\delta y^k}{F}.$$
(2.4)

By taking the exterior derivative of (2.3), the curvature 2 - forms of the Chern connection, $\Omega_i^i := d\omega_i^i - \omega_i^k \wedge \omega_k^i$, have the following structure

$$\Omega_j^i = \frac{1}{2} R_{jkl}^{\ i} dx^k \wedge dx^l + P_{jkl}^{\ i} dx^k \wedge \frac{\delta y^l}{F}.$$
(2.5)

By (2.5), the Landsberg curvature is defined as follows

$$L := L_{ijk} dx^i \otimes dx^j \otimes dx^k, \qquad \qquad L_{ijk} := g_{il} \frac{y^m}{F} P_{mjk}^{\ l}.$$

It can be seen that $L_{ijk} = -\dot{A}_{ijk}$, where dot denotes the covariant derivative along the Hilbert form, (see [16], p. 41).

Let D denotes the Levi-Civita connection on (SM, G). The divergence of a form $\psi = \psi_i \omega^i \in \Gamma(p^*T^*M)$ is

$$div_G\psi := Tr_G D\psi.$$

Note that the bundle p^*T^*M is isomorph with the horizontal sub-bundle of T^*SM . It can be shown that

$$div_G \psi = \sum_i \psi_{i|i} + \sum_{a,b} \psi_a L_{bba} = \sum_i ({}^c \nabla_{e_i^H} \psi)(e_i) + \sum_{a,b} \psi_a L_{bba}, \qquad (2.6)$$

where " | " denotes the horizontal covariant differential with respect to the Chern connection, $\{e_i\}$ be the adapted frame with respect to g and $L_{abc} = L(e_a, e_b, e_c)$, (see [8], Lemma 2.1).

3. The first variation formula

Let $\phi : (M^m, F) \longrightarrow (N^n, h)$ be a smooth map from an m-dimensional Finsler manifold (M, F) to an n-dimensional Riemannian manifold (N, h). Henceforth, the Chern connection on p^* TM, the Levi-Civita connection on (N, h) and the pull-back connection on $p^*(\phi^{-1}TN)$ are denoted by ${}^c\nabla, {}^N\nabla$ and ∇ , respectively.

Let $f \in C^{\infty}(SM)$ be a smooth positive function on SM. The *f*-energy density of ϕ is a function $e_f(\phi) : SM \longrightarrow \mathbb{R}$ defined by

$$e_f(\phi)(x,y) := \frac{1}{2}f(x,y)Tr_gh(d\phi,d\phi), \qquad (3.1)$$

where Tr_g stands for taking the trace with respect to g (the fundamental quadratic form of F) at $(x, y) \in SM$. In the local coordinates (x^i) on M and (\tilde{x}^{α}) on N, the f-energy density of ϕ can be written as follows

$$e_f(\phi)(x,y) = \frac{1}{2}f(x,y)\delta^{ij}h(d\phi(e_i), d\phi(e_j)) = \frac{1}{2}f(x,y)\delta^{ij}\phi_i^{\alpha}\phi_j^{\beta}h_{\alpha\beta}(\tilde{x}), \qquad (3.2)$$

where $\{e_i = u_i^k \frac{\partial}{\partial x^k}\}$ is the adapted frame with respect to g at $(x, y) \in SM$, $\tilde{x} = \phi(x)$ and $d\phi(e_i) = \phi_i^\alpha \frac{\partial}{\partial \tilde{x}^\alpha} \circ \phi$.

Definition 3.1. A map $\phi : (M, F) \longrightarrow (N, h)$ is said to be *f*-harmonic, if it is a critical point of the *f*-energy functional

$$E_f(\phi) := \frac{1}{c_{m-1}} \int_{SM} e_f(\phi) dV_{SM},$$
(3.3)

where c_{m-1} denotes the volume of the standard (m-1)-dimensional sphere and dV_{SM} is the canonical volume element of SM defined by (2.2).

Let $\phi_t : M \longrightarrow N \ (-\varepsilon < t < \varepsilon)$ be a smooth variation of ϕ such that $\phi_0 = \phi$ and set

$$V = \frac{\partial \phi_t}{\partial t} \Big|_{t=0} := V^{\alpha} \frac{\partial}{\partial \tilde{x}^{\alpha}} \circ \phi.$$

By (3.2), the *f*-energy density of ϕ_t can be written as follows

$$e_f(\phi_t)(x,y) = \frac{1}{2} f(x,y) \delta^{ij} \phi^{\alpha}_{t|i} \phi^{\beta}_{t|j} h_{\alpha\beta}(\tilde{x}), \qquad (3.4)$$

where $\tilde{x} = \phi_t(x)$, $d\phi_t(e_i) = u_i^k \frac{\partial \phi_t^{\alpha}}{\partial x^k} \frac{\partial}{\partial \tilde{x}^{\alpha}} \circ \phi := \phi_{t|i}^{\alpha} \frac{\partial}{\partial \tilde{x}^{\alpha}} \circ \phi$. Due to the fact that $\{V^{\alpha}\}$ is independent of y and using (3.4), it is obtained that

$$\frac{\partial}{\partial t} e_f(\phi_t) \Big|_{t=0} = \frac{1}{2} \frac{\partial}{\partial t} (\delta^{ij} f \phi^{\alpha}_{t|i} \phi^{\beta}_{t|j} h_{\alpha\beta}) \Big|_{t=0}
= \delta^{ij} \{ f u^k_i \frac{\partial V^{\alpha}}{\partial x^k} \phi^{\beta}_j h_{\alpha\beta} + \frac{1}{2} f \phi^{\alpha}_i \phi^{\beta}_j \frac{\partial h_{\alpha\beta}}{\partial \tilde{x}^{\gamma}} V^{\gamma} \}
= \sum_i \{ f u^k_i \frac{\delta V^{\alpha}}{\delta x^k} \phi^{\beta}_i h_{\alpha\beta} + f \phi^{\alpha}_i \phi^{\beta}_i {}^N \Gamma^{\sigma}_{\beta\gamma} h_{\alpha\sigma} V^{\gamma} \}
= \sum_i h(\nabla_{e^H_i} V, f d\phi(e_i)),$$
(3.5)

where ${}^{N}\Gamma^{\alpha}_{\beta\gamma}$ denotes the coefficients of the Levi-Civita connections on (N,h). Let $\psi := h(V, f d\phi(e_i)) \omega^i \in \Gamma(p^*T^*M)$. Using the fact that $L_{bba} = -\dot{A}_{bba}$ and equation (2.6), it follows that

$$div_{G}\psi = \sum_{i} (^{c}\nabla_{e_{i}^{H}}\psi)(e_{i}) + \sum_{a,b} h(V, fd\phi(e_{a}))L_{bba}$$

$$= \sum_{i} \{h(\nabla_{e_{i}^{H}}V, fd\phi(e_{i})) + h(V, (\nabla_{e_{i}^{H}}fd\phi)(e_{i}))\} - \sum_{a,b} h(V, fd\phi(e_{a}))\dot{A}_{bba}$$

$$= h\left(V, fTr_{g}\nabla d\phi + d\phi \circ p(grad^{H}f) - fd\phi \circ p(K^{H})\right)$$

$$+ \sum_{i} h(\nabla_{e_{i}^{H}}V, fd\phi(e_{i})).$$
(3.6)

where $Tr_g \nabla d\phi = g^{ij} (\nabla_{\frac{\partial}{\partial x^i}} d\phi(\frac{\partial}{\partial x^j}) - d\phi(^c \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j})), A_{bba} = A(e_b, e_b, e_a)$ and K is defined as follows

$$K := \sum_{a,b} \dot{A}_{bba} e_a \in \Gamma(p^*TM).$$
(3.7)

Combining (3.5) and (3.6) and considering the Green's theorem, it can be concluded that

$$\frac{d}{dt}E_f(\phi_t)\big|_{t=0} = -\frac{1}{c_{m-1}}\int_{SM}h(\tau_f(\phi), V)dV_{SM}$$

where

$$\tau_f(\phi) := fTr_g \nabla d\phi + d\phi \circ p(grad^H f) - fd\phi \circ p(K^H) \in \Gamma((\phi \circ p)^*TN), \quad (3.8)$$

here $p : SM \longrightarrow M$ is the canonical projection on SM, $grad^H f$ denotes the horizontal part of $grad f \in \Gamma(TSM)$ and K is defined by (3.7). The field $\tau_f(\phi)$ is said to be the *f*-tension field of ϕ .

Theorem 3.2. Let $\phi : (M, F) \longrightarrow (N, h)$ be a smooth map from a Finsler manifold to a Riemannian manifold and $f \in C^{\infty}(SM)$ a smooth positive function on SM. Then, ϕ is f-harmonic if and only if $\tau_f(\phi) \equiv 0$

Due to the fact that the Landsberg curvature of locally Minkowski manifold vanishes and considering Theorem 3.2 and equation (3.8), the following result is obtained immediately

Corollary 3.3. Let $\phi : (M, F) \longrightarrow (N, h)$ be an immersion harmonic map from a locally Minkowski manifold (M, F) to an arbitrary Riemannian manifold (N, h) and $f \in C^{\infty}(SM)$ a smooth positive function on SM. Then, ϕ is f-harmonic if and only if f(x, y) = f(y) for any $(x, y) \in SM$.

Example 3.4. Assume that (\mathbb{R}^2, F) be a locally Minkowski manifold and $(\mathbb{R}^3, \langle, \rangle)$ be the three-dimensional Euclidean space. Let $\phi : (\mathbb{R}^2, F) \longrightarrow (\mathbb{R}^3, \langle, \rangle)$ is defined by $\phi(x) := (x^2, x^1 + 2x^2, 3x^1 - x^2)$, where $x = (x^1, x^2) \in \mathbb{R}^2$. Let $f(x, y) := \exp(\frac{y^1(y^1-2y^2)}{(y^1)^2+(y^2)^2})$ be a positive smooth map on $S\mathbb{R}^2$. By (3.8), it can be seen that ϕ is f-harmonic.

Remark 3.5. Let (M, F) be a locally Minkowski manifold and (M, h) be a flat Riemannian manifold. It is conspicuous that the identity map $Id : (M, F) \longrightarrow (M, h)$ is harmonic, (see [12], Proposition 9.5.1). By Corollary 3.3, it can be concluded that Id is f-harmonic if and only if f(x, y) = f(y) for all $(x, y) \in SM$.

Before proceeding, it is worth noting that f-harmonic maps shouldn't be confused with \mathcal{F} -harmonic maps and p-harmonic maps from a Finsler manifolds to a Riemannian manifolds. Let $\mathcal{F} : [0, \infty) \longrightarrow [0, \infty)$ be a C^2 strictly increasing function on $(0, \infty)$. The smooth map $\phi : (M, F) \longrightarrow (N, h)$ from a Finsler manifold (M, F) to a Riemannian manifold (N, h) is called \mathcal{F} -harmonic if it is a critical points of the \mathcal{F} -energy functional

$$E_{\mathcal{F}}(\phi) := \int_{SM} \mathcal{F}(\frac{|d\phi|^2}{2}) dV_{SM}.$$
(3.9)

The notion of \mathcal{F} -harmonic maps was first introduced by J. Li [8]. \mathcal{F} -energy functional can be categorized as energy, p-energy and exponential energy when $\mathcal{F}(t)$ is equal to t, $(2t)^{\frac{p}{2}} \setminus p$ ($p \geq 4$) and e^t , respectively. In terms of the Euler-Lagrange equation, ϕ is \mathcal{F} -harmonic if it satisfies the following equation

$$\tau_{\mathcal{F}}(\phi) := Tr_g \nabla(\mathcal{F}'(\frac{|d\phi|^2}{2})d\phi) - \mathcal{F}'(\frac{|d\phi|^2}{2})d\phi(K) = 0.$$
(3.10)

For more details, see [8]. The field $\tau_{\mathcal{F}}(\phi)$ is called the \mathcal{F} -tension field of ϕ . Let $\phi : (M, F) \longrightarrow (N, h)$ be a non-degenerate smooth map (i.e. $d\phi_x \neq 0$ for all $x \in M$) from a Finsler manifold to a Riemannian manifold. By (3.8) and (3.10), the following proposition is obtained immediately.

Proposition 3.6. Let $\phi : (M, F) \longrightarrow (N, h)$ be a non-degenerate \mathcal{F} -harmonic map from a Finsler manifold to a Riemannian manifold. Then, ϕ is an f-harmonic map with $f = \mathcal{F}'(\frac{|d\phi|^2}{2})$. Particularly, any non-degenerate p-harmonic map is an f-harmonic map with $f = |d\phi|^{p-2}$.

Remark 3.7. This result was obtained by Y. Chiang [5] in the Riemannian case.

4. The second variation formula

In this section, the second variation formula of the *f*-energy functional for an *f*-harmonic map from a Finsler manifold to a Riemannian manifold is obtained. As an application, it is shown that any stable *f*-harmonic map ϕ from a Finsler manifold to the standard sphere $\mathbb{S}^n(n > 2)$ is constant.

Theorem 4.1. (The second variation formula). Let $\phi : (M, F) \longrightarrow (N, h)$ be an f-harmonic map from a Finsler manifold (M, F) to a Riemannian manifold (N, h). Let $\phi_t : M \longrightarrow N$ ($-\varepsilon < t < \varepsilon$) be a smooth variation such that $\phi_0 = \phi$ and set $V = \frac{\partial \phi_t}{\partial t}|_{t=0}$. Then

$$\frac{d^2}{dt^2} E_f(\phi_t) \big|_{t=0} = -\frac{1}{c_{m-1}} \int_{SM} h \big(V, fTr_g(\nabla^2 V) + fTr_g R^N(V, d\phi) d\phi + \nabla_{grad^H f} V - f\nabla_{K^H} V \big) dV_{SM},$$
(4.1)

where K is defined by (3.7), R^N is the curvature tensor on (N,h) and $Tr_g(\nabla^2 V) = g^{ij} (\nabla_{\frac{\partial}{\partial x^i}} \nabla_{\frac{\partial}{\partial x^j}} V - \nabla_c \nabla_{\frac{\partial}{\partial x^i}} \frac{\partial}{\partial x^j} V).$

Set

$$Q_f^{\phi}(V) := \frac{d^2}{dt^2} E_f(\phi_t) \big|_{t=0}.$$

An *f*-harmonic map ϕ is said to be *stable f*-harmonic if $Q_f^{\phi}(V) \ge 0$ for any vector field V along ϕ .

Proof. Let \tilde{M} denotes the product manifold $(-\varepsilon, \varepsilon) \times M$, $\Phi : \tilde{M} \longrightarrow N$ is defined by $\Phi(t, x) := \phi_t(x)$ and $\tilde{p} : S\tilde{M} \longrightarrow \tilde{M}$ be the natural projection on the sphere bundle $S\tilde{M}$. Denote the same notations of ${}^c\nabla$ and ∇ for the Chern connection on $\tilde{p}^*T\tilde{M}$ and the pull-back connection on $\tilde{p}^*(\Phi^{-1}TN)$, respectively. By (3.1), it can be shown

$$\begin{split} \frac{\partial^2}{\partial t^2} e_f(\phi_t) &= \frac{\partial}{\partial t} h(\nabla_{\frac{\partial}{\partial t}} d\Phi(e_i), f d\Phi(e_i)) \\ &= \frac{\partial}{\partial t} h(\nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), f d\Phi(e_i)) \\ &= h(\nabla_{\frac{\partial}{\partial t}} \nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), f d\Phi(e_i)) + f h(\nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), \nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t})) \\ &= h(\nabla_{e_i^H} \nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}), f d\Phi(e_i)) + f h(\nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), \nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t})) \\ &+ f h(R^N (d\Phi(\frac{\partial}{\partial t}), d\Phi(e_i)) d\Phi(\frac{\partial}{\partial t}), d\Phi(e_i)), \end{split}$$
(4.2)

where it is used

$$\nabla_{\frac{\partial}{\partial t}} d\Phi(e_i) - \nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}) = d(\Phi \circ \tilde{p}) [\frac{\partial}{\partial t}, e_i^H] = 0,$$

for the third and fourth equalities in (4.2). By (4.2), it can be seen that

$$\begin{split} \frac{\partial^2}{\partial t^2} E_f(\phi_t) \big|_{t=0} &= \frac{1}{c_{m-1}} \sum_i \left\{ \int_{SM} fh(\nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), \nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t})) \big|_{t=0} dV_{SM} \right. \\ &+ \int_{SM} h(\nabla_{e_i^H} \nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}), fd\Phi(e_i)) \big|_{t=0} dV_{SM} \\ &+ \int_{SM} fh(R^N (d\Phi(\frac{\partial}{\partial t}), d\Phi(e_i)) d\Phi(\frac{\partial}{\partial t}), d\Phi(e_i)) \big|_{t=0} dV_{SM} \right\} \\ &= I_1 + I_2 + I_3 \end{split}$$
(4.3)

Now each term of the right hand side(RHS) of the above equation is calculated. First, let $\psi := fh(\nabla_{e_i^H} d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t}))w^i \in \Gamma(p^*T^*M)$. By (2.6), it follows that

$$div_{G}\psi = \sum_{i} ({}^{c}\nabla_{e_{i}^{H}}\psi)(e_{i}) + \sum_{a,b} fh(\nabla_{e_{a}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t}))L_{bba}$$

$$= \sum_{i} \left\{ e_{i}^{H}(f)h(\nabla_{e_{i}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t})) + fh(\nabla_{e_{i}^{H}}\nabla_{e_{i}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t})) + fh(\nabla_{e_{i}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t})) + fh(\nabla_{e_{i}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t}))({}^{c}\nabla_{e_{i}^{H}}w^{j})(e_{i}) \right\}$$

$$- \sum_{a,b} fh(\nabla_{e_{a}^{H}}d\Phi(\frac{\partial}{\partial t}), d\Phi(\frac{\partial}{\partial t}))\dot{A}_{bba}.$$

$$(4.4)$$

By (4.4) and Green's theorem, I_1 can be obtained as follows

$$I_{1} = -\frac{1}{c_{m-1}} \int_{SM} h \bigg(f Tr_{g}(\nabla^{2}V) + \nabla_{grad^{H}f}V - f \nabla_{K^{H}}V, V \bigg) dV_{SM}.$$
(4.5)

26

Similarly, let $\Psi := h(\nabla_{\frac{\partial}{\partial t}} d\phi(\frac{\partial}{\partial t}), f d\phi(e_i)) w^i \in \Gamma(p^*T^*M)$. It can be seen that

$$div_{G}\Psi = \sum_{i} \left\{ h(\nabla_{e_{i}^{H}} \nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}), fd\Phi(e_{i})) + h\left(\nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}), (\nabla_{e_{i}^{H}} fd\Phi)(e_{i})\right) \right\} - f \sum_{a,b} h(\nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}), \dot{A}_{bba} d\phi(e_{a})).$$

$$(4.6)$$

By (4.6) and considering the Green's Theorem and the *f*-harmonicity condition of ϕ , I_2 is given by

$$I_2 = -\frac{1}{c_{m-1}} \int_{SM} h\left(\nabla_{\frac{\partial}{\partial t}} d\Phi(\frac{\partial}{\partial t}) \mid_{t=0}, \tau_f(\phi)\right) dV_{SM} = 0.$$
(4.7)

Substituting the formulas (4.5) and (4.7) into equation (4.3) yields the formula (4.1) and hence completes the proof. \Box

5. Stability of f-harmonic maps to \mathbb{S}^n

Consider the unit sphere \mathbb{S}^n as a submanifold of the Euclidean space $(\mathbb{R}^{n+1}, \langle, \rangle)$. At each point $x \in \mathbb{S}^n$ any vector field V in \mathbb{R}^{n+1} can be decomposed as $V = V^\top + V^\perp$, where V^\top is the component of V tangent to \mathbb{S}^n and $V^\perp = \langle V, x \rangle x$ is the component of V normal to \mathbb{S}^n . Let ${}^R\nabla$ be the Levi-Civita connection on \mathbb{R}^{n+1} , ${}^S\nabla$ be the Levi-Civita connection on \mathbb{S}^n and B be the second fundamental form of \mathbb{S}^n in \mathbb{R}^{n+1} . We have the following relation

$${}^{R}\nabla_{X}Y = {}^{S}\nabla_{X}Y + B(X,Y), \tag{5.1}$$

where X and Y are smooth vector fields on \mathbb{S}^n . The shape operator with respect to any normal vector field W on \mathbb{S}^n is defined by

$$A^W(X) := -({}^R \nabla_X W)^\top, \qquad (5.2)$$

for any smooth vector field X on \mathbb{S}^n . At any point of $x \in \mathbb{S}^n$, the tensors A and B are related by

$$\langle A^W(X), Y \rangle = \langle B(X, Y), W \rangle = -\langle X, Y \rangle \langle x, W \rangle, \tag{5.3}$$

where X and Y are vector fields on \mathbb{S}^n and W is a normal vector field on \mathbb{S}^n .

Theorem 5.1. Any stable f-harmonic map $\phi : (M, F) \longrightarrow \mathbb{S}^n$ from a Finsler manifold (M, F) to the standard sphere $\mathbb{S}^n (n > 2)$ is constant.

Proof. The above notations are used to prove this theorem. Choose an arbitrary point $z \in SM$. Then, set $\bar{\phi} = \phi \circ p$ and $\bar{x} = \bar{\phi}(z)$, where p is the canonical projection on SM. Let \mathbb{R}^S denotes the curvature tensor of \mathbb{S}^n and $\{\Lambda_1, \dots, \Lambda_{n+1}\}$ a constant orthonormal basis in \mathbb{R}^{n+1} . By (4.1), it follows that

$$\sum_{\alpha=1}^{n+1} Q_f^{\phi}(\Lambda_{\alpha}^{\top}) = -\frac{1}{c_{m-1}} \sum_{\alpha=1}^{n+1} \int_{SM} h \bigg(\nabla_{grad^H f} \Lambda_{\alpha}^{\top} - f \nabla_{K^H} \Lambda_{\alpha}^{\top} + f Tr_g(\nabla^2 \Lambda_{\alpha}^{\top}) + f Tr_g R^S(\Lambda_{\alpha}^{\top}, d\phi) d\phi, \Lambda_{\alpha}^{\top} \bigg) dV_{SM}.$$
(5.4)

Since Λ_{α} is parallel in \mathbb{R}^{n+1} and considering (5.2), we obtain

$$\nabla_{grad^{H}f}\Lambda_{\alpha}^{\top} = {}^{S}\nabla_{d\bar{\phi}(grad^{H}f)}\Lambda_{\alpha}^{\top} = ({}^{R}\nabla_{d\bar{\phi}(grad^{H}f)}\Lambda_{\alpha}^{\top})^{\top} = ({}^{R}\nabla_{d\bar{\phi}(grad^{H}f)}(\Lambda_{\alpha} - \Lambda_{\alpha}^{\perp}))^{\top} = -({}^{R}\nabla_{d\bar{\phi}(grad^{H}f)}\Lambda_{\alpha}^{\perp})^{\top} = A^{\Lambda_{\alpha}^{\perp}}(d\bar{\phi}(grad^{H}f)).$$
(5.5)

Let $\lambda_{\alpha} : \mathbb{S}^n \longrightarrow \mathbb{R}$ defined by $\lambda_{\alpha}(x) := \langle \Lambda_{\alpha}, x \rangle$ for all $x \in \mathbb{S}^n$. One can easily check that

$$A^{\Lambda^{\perp}_{\alpha}}(X) = -\lambda_{\alpha} X, \tag{5.6}$$

for every vector field X on \mathbb{S}^n . By means of (5.3) and (5.5) at \bar{x} , it follows that

$$-\sum_{\alpha} \left\langle \nabla_{grad^{H}f} \Lambda_{\alpha}^{\top}, \Lambda_{\alpha}^{\top} \right\rangle = \sum_{\alpha} \left\langle -A^{\Lambda_{\alpha}^{\perp}} (d\bar{\phi}(grad^{H}f)), \Lambda_{\alpha}^{\top} \right\rangle$$
$$= \sum_{\alpha} \left\langle d\bar{\phi}(grad^{H}f), \Lambda_{\alpha}^{\top} \right\rangle \langle \bar{x}, \Lambda_{\alpha}^{\perp} \rangle$$
$$= \sum_{\alpha} \left\langle d\bar{\phi}(grad^{H}f), \Lambda_{\alpha}^{\top} \right\rangle \langle \bar{x}, \Lambda_{\alpha} \rangle$$
$$= \sum_{\alpha} \lambda_{\alpha}(\bar{x}) \left\langle d\bar{\phi}(grad^{H}f), \Lambda_{\alpha}^{\top} \right\rangle. \tag{5.7}$$

Thus, the first term of RHS of (5.4) is obtained as follows

$$\sum_{\alpha} \left\langle \nabla_{grad^{H}f} \Lambda_{\alpha}^{\top}, \Lambda_{\alpha}^{\top} \right\rangle = -\sum_{\alpha} \lambda_{\alpha} \circ \bar{\phi} \left\langle d\bar{\phi}(grad^{H}f), \Lambda_{\alpha}^{\top} \right\rangle.$$
(5.8)

Similarly, the second term of RHS of (5.4) is given by

$$-\sum_{\alpha} f \left\langle \nabla_{K^H} \Lambda_{\alpha}^{\top}, \Lambda_{\alpha}^{\top} \right\rangle = \sum_{\alpha} f \lambda_{\alpha} \circ \bar{\phi} \left\langle d\bar{\phi}(K^H), \Lambda_{\alpha}^{\top} \right\rangle.$$
(5.9)

Due to the fact that $\nabla_{e_i^H} \Lambda_{\alpha}^{\top} = A^{\Lambda_{\alpha}^{\perp}} (d\bar{\phi}(e_i^H))$ from (5.5) and considering (5.6), it can be concluded that

$$\sum_{i} \nabla_{e_{i}^{H}} \nabla_{e_{i}^{H}} \Lambda_{\alpha}^{\top} = \sum_{i} \nabla_{e_{i}^{H}} A^{\Lambda_{\alpha}^{\perp}} (d\bar{\phi}(e_{i}^{H}))$$
$$= -\sum_{i} \nabla_{e_{i}^{H}} (\lambda_{\alpha} \circ \bar{\phi} \ d\bar{\phi}(e_{i}^{H}))$$
$$= -d\bar{\phi} (grad \ \lambda_{\alpha} \circ \bar{\phi}) - \lambda_{\alpha} \circ \bar{\phi} \quad \sum_{i} \nabla_{e_{i}^{H}} d\phi(e_{i}).$$
(5.10)

Since $\operatorname{grad} \lambda_{\alpha} = \Lambda_{\alpha}^{\top}$ and using definition of gradient operator, it can be seen that

$$d\bar{\phi}(\operatorname{grad}\lambda_{\alpha}\circ\bar{\phi}) = \sum_{i} \left\langle d\bar{\phi}(e_{i}^{H}), (\operatorname{grad}\lambda_{\alpha})\circ\bar{\phi} \right\rangle d\bar{\phi}(e_{i}^{H})$$
$$= \sum_{i} \left\langle d\bar{\phi}(e_{i}^{H}), \Lambda_{\alpha}^{\top}\circ\bar{\phi} \right\rangle d\bar{\phi}(e_{i}^{H}).$$
(5.11)

By means of (5.10) and (5.11), the third term of RHS of (5.4) has the following expression

$$\sum_{\alpha} f \left\langle Tr_g(\nabla^2 \Lambda_{\alpha}^{\top}), \Lambda_{\alpha}^{\top} \right\rangle = -\sum_{\alpha} \lambda_{\alpha} \circ \bar{\phi} \left\langle f Tr_g \nabla d\phi, \Lambda_{\alpha}^{\top} \right\rangle - f \mid d\phi \mid^2.$$
(5.12)

28

Finally, since the sphere \mathbb{S}^n has constant curvature, it can be shown that

$$\sum_{\alpha} f \left\langle Tr_g \ R^S(\Lambda_{\alpha}^{\top}, d\phi) d\phi, \Lambda_{\alpha}^{\top} \right\rangle = (n-1)f \mid d\phi \mid^2.$$
(5.13)

Replacing (5.8), (5.9), (5.12) and (5.13) in (5.4) and using the *f*-harmonicity condition of ϕ , it follows

$$\sum_{\alpha} Q_f^{\phi}(\Lambda_{\alpha}^{\top}) = \frac{2-n}{c_{m-1}} \int_{SM} f \mid d\phi \mid^2 dV_{SM} + \frac{1}{c_{m-1}} \sum_{\alpha} \int_{SM} \lambda_{\alpha} \circ \bar{\phi} \ \langle \tau_f(\phi), \Lambda_{\alpha}^{\top} \rangle dV_{SM} = \frac{2-n}{c_{m-1}} \int_{SM} f \mid d\phi \mid^2 dV_{SM} \le 0,$$
(5.14)

by means of (5.14) and the stable *f*-harmonicity condition of ϕ , it can be concluded that ϕ is constant. This completes the proof.

Acknowledgments. The authors would like to express their thanks to Professor Hans-Bert Rademacher who always helped us during the research and who was always helpful for his constructive comments.

References

- D. Bao, S. S. Chern, Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer, New york, 2000.
- [2] D. Bao, Z. Shen, On the Volume of Unit Tangent Spheres in a Finsler Manifold, Results in Mathematics, 26 (1994) 1–17.
- [3] A. Boulal, N. Djaa, M. Djaa, S. Ouakkas. Harmonic maps on generalized warped product manifolds, Bulletin of Mathematical Analysis and Applications, 4 1 (2012) 1256–1265.
- [4] A. M. Cherif, M. Djaa, K. Zegga, Stable f-harmonic maps on sphere, Commun. Korean Math Soc, 30 4 (2015) 471–479.
- [5] Y. J. Chiang, *f-biharmonic maps between Riemannian manifolds*, Journal of Geometry and Symmetry in Physics, 27 (2012) 45–58.
- [6] N. Course, f-harmonic maps, Ph.D thesis, University of Warwick, Coventry, England, 2004.
- [7] Q. He, Y. B. Shen, Some results on harmonic maps for Finsler manifolds, International Journal of Mathematics, 16 9 (2005) 1017-1031.
- [8] J. Li, Stable F-harmonic maps between Finsler manifolds, Acta Mathematica Sinica, 26 5 (2010) 885–900.
- [9] A. Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica III, Academic Press London, (1970) 341–402.
- [10] W. Lu, On f-bi-harmonic maps and bi-f-harmonic maps between Riemannian manifolds, Science China Mathematics, 58 7 (2015) 1483-1498.
- X. Mo, Harmonic maps from Finsler manifolds, Illinois Journal of Mathematics, 45 4 (2001) 1331–1345.
- [12] X. Mo, An Introduction to Finsler Geometry, World Scientific, Singapore, 2006.
- [13] X. Mo, Y. Yang, The existence of harmonic maps from Finsler manifolds to Riemannian manifolds, Science in China Ser. A Mathematics, 48 1 (2005) 115–130.
- [14] Y. Ou, f-Harmonic morphisms between Riemannian manifolds, Chinese Annals of Mathematics, 35B 2 (2014) 225–236.
- [15] M. Rimoldi, G. Veronelli, Topology of steady and expanding gradient Ricci solitons via fharmonic maps, Differential Geometry and its Applications, 31 5 (2013) 623-638.
- [16] Y. Shen, Y. Zhang, Second variation of harmonic maps between Finsler manifolds, Science in China Ser. A Mathematics, 47 1 (2004) 39–51.

30 SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA MIRMOHAMMAD REZAII

Seyed Mehdi Kazemi Torbaghan

FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, AMIRKABIR UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN.

 $E\text{-}mail\ address: \texttt{mehdikazemi@aut.ac.ir}$

Morteza Mirmohammad Rezaii

FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, AMIRKABIR UNIVERSITY OF TECHNOLOGY, TEHRAN, IRAN.

 $E\text{-}mail\ address: \texttt{mmreza@aut.ac.ir}$