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f-HARMONIC MAPS FROM FINSLER MANIFOLDS

SEYED MEHDI KAZEMI TORBAGHAN, MORTEZA MIRMOHAMMAD REZAII∗

Abstract. In this paper, the first and second variation formulas of the f -

energy functional for a smooth map from a Finsler manifold to a Riemannian

manifold are obtained. As an application, it is proved that there exists no
non-constant stable f -harmonic map from a Finsler manifold to the standard

unit sphere Sn(n > 2).

1. Introduction

f -harmonic maps as a generalization of harmonic maps, geodesics and minimal
surfaces were first studied by A. Lichnerowicz [9] in 1970. Recently, N. Course
[6] studied the f -harmonic flow on surfaces. Y. Ou [14] analysed the f -harmonic
morphisms as a subclass of harmonic maps which pull back harmonic functions to
f -harmonic functions. In [4], the researchers studied the stability of harmonic and
f -harmonic maps on spheres. Many scholars have studied and done researches on
the f -harmonic maps, see for instance, [3, 4, 5, 9, 10, 14, 15].

f -harmonic maps are applied in many branches of geometry and mathematical
physics. In view of Physics, f -harmonic maps could be considered as the stationary
solutions of inhomogeneous Heisenberg spin system, see for instance [5, 14]. Fur-
thermore, the intersection of f -harmonicity with curvature conditions justifies their
application for gleaning valuable information on weighted manifolds and gradient
Ricci solitons, see [10, 15].

Let φ : (M, g) −→ (N,h) be a smooth map between Riemannian manifolds and
f ∈ C∞(M) a positive smooth function on M . The map φ is called f -harmonic if
φ |Ω is a critical point of the f -energy functional

Ef (φ) :=
1

2

∫
Ω

f | dφ |2 dυg,
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for any compact sub-domain Ω ⊆ M . Here dυg is the volume element of M and
|dφ| denotes the Hilbert-Schmidt norm of the differential dφ ∈ Γ(T ∗M ⊗ φ−1TN).

Let φ : (M,F ) −→ (N,h) be a smooth map from a Finsler manifold (M,F ) to a
Riemannian manifold (N,h) and f : SM −→ (0,∞) be a smooth positive function
on the projective sphere bundle of M . In this paper, the f -energy functional of
φ is introduced and the corresponding variation formulas are obtained. It can be
seen that the first and second variation formulas of the f -energy functional is con-
sistent to that of Riemannian case if M is Riemannian and f is defined on M , see [4].

The concept of harmonic maps from a Finsler manifold to a Riemannian mani-
fold was first introduced by X. Mo, see [11]. On the workshop of Finsler Geometry
in 2000, Professor S. S. Chern conjectured that the fundamental existence theorem
of harmonic maps on Finsler spaces is true. In [13], the researchers have proved
this conjecture and shown that any smooth map from a compact Finsler manifold
to a compact Riemannian manifold of non-positive sectional curvature could be
deformed into a harmonic map which has minimum energy in its homotopy class.
Y. Shen and Y. Zhang [16] extended Mo’s work to Finsler target manifold and
obtained the first and second variation formulas.

As an application, Q. He and Y. Shen [7] proved that any harmonic map from
an Einstein Riemannian manifold to a Finsler manifold with certain conditions is
totally geodesic and there is no stable harmonic map from an Euclidean unit sphere
Sn to any Finsler manifolds. Harmonic maps between Finsler manifolds have been
studied extensively by various researchers, see for instance, [7, 8, 11, 12, 13, 16].

The current paper is organized as follows:
In the second section, a few concepts of Finsler geometry are reviewed. In section 3,
the f -energy functional of a smooth map from a Finsler manifold to a Riemannian
manifold is introduced and the corresponding Euler-Lagrange equation is obtained
via calculating the first variation formula of the f -energy functional. In section 4,
the second variation formula of the f -energy functional for an f -harmonic map is
derived. Finally, it is shown that there exists no non-constant stable f -harmonic
map from a Finsler manifold to the standard sphere Sn(n > 2).

2. Preliminaries and Notations

In this section, a few basic notions of Finsler geometry are provided which will
be used later. For more details see ([1, 11, 12, 16]). Throughout this paper, it is
assumed that M is an m-dimensional connected compact oriented manifold without
boundary and π : TM −→M be its tangent bundle. Let (xi) be a local coordinates
system with the domain U ⊆M and (xi, yi) the induced standard local coordinates
system on π−1(U). A Finsler manifold is a pair (M,F ) includes a smooth manifold
M and a Finsler metric F : TM −→ [0,∞) satisfies the following properties: i)
F is smooth on TM \0, ii) F (x, λy) = λF (x, y) for λ > 0, iii) The fundamental
quadratic form

g := gij(x, y) dxi ⊗ dxj , gij :=
1

2

∂2F 2

∂yi∂yj
, (2.1)
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is positive definite at every point (x, y) ∈ TM \ 0. The Riemannian manifolds and
locally Minkowski manifolds are important examples of Finsler manifolds. In the
sequel, the following convention of index ranges are used

1 6 i, j, k, ... 6 m, 1 6 a, b, c, ... 6 m− 1, 1 6 A,B,C, ... 6 2m− 1.

The Finsler structure F induces two more significant quantities as follows

A := Aijk dx
i ⊗ dxj ⊗ dxk, Aijk :=

F

4
[F 2]yiyjyk ,

η := ηidx
i, ηi := gjkAijk,

called Cartan tensor and Cartan form, respectively.

Let us denote the projective sphere bundle of M by SM , where SM := ∪xSxM .
Almost every geometric quantities constructed by Finsler structure are invariant
under rescaling y −→ ty for t > 0, thus make sense on SM . The canonical projec-
tion p : SM −→ M defined by (x, y) −→ x pulls back the tangent bundle TM to
the m-dimensional vector bundle p∗TM over (2m− 1)−dimensional manifold SM .
The bundle p∗TM and its dual p∗T ∗M are said to be the Finsler bundle and dual
Finsler bundle, respectively.

At each point (x, y) ∈ SM , the fibre of p∗TM has a local basis { ∂
∂xk
} and

a metric g defined by (2.1). Here ∂
∂xk

and its dual dxk stand for the sections

(x, y, ∂
∂xk

) ∈ Γ(p∗TM) and (x, y, dxk) ∈ Γ(p∗T ∗M), respectively. The bundle

p∗TM has a global section l(x, y) := yi

F
∂
∂xi which is called the distinguished sec-

tion. The dual of the former section ω = [F ]yidx
i is called Hilbert form. Further-

more, each fibre of the Riemannian vector bundle (p∗TM, g) has an adapted frame

{ei := uji
∂
∂xj }, i.e. g(ei, ej) = δij and em := l. Denote its dual by {ωi := vijdx

j},
ωi(ej) = δij . It is clear that ωm = ω. In the rest of this paper, these abbreviations

will be used. According to the notations above, it can be seen that ∂
∂xi = vki ek and

dxi = uikω
k, where (uij) and (vij) are related by uki v

j
k = δji . More relations among

(uij)’s, (vij)’s and the quadratic form of F can be found in [1].

Let N i
j := 1

2
∂Gi

∂yj be the coefficients of non-linear connection on TM , where Gi :=
1
4g
ih( ∂2F 2

∂yh∂xj
yj − ∂F 2

∂xh
). Consider the local orthogonal basis { δ

δxi ,
∂
∂yi } on TzTM ,

where δ
δxi := ∂

∂xi −N
j
i
∂
∂yj and dual basis as {dxi, δyi}, where δyi := dyi +N i

jdx
j .

It can be shown that {ωi := vijdx
j , ωm+a := vaj

δyj

F } is a local basis for the tangent

bundle T ∗SM. Consider ω2m = [F ]yi
δyi

F as dual to the vector yi ∂
∂yi . Therefore,

ω2m vanishes on SM . Based on the above notations, the Sasaki-type metric, the
volume element, the horizontal sub-bundle and the vertical sub-bundle of SM are
defined by

G : = δijω
i ⊗ ωj + δabω

m+a ⊗ ωm+b, dVSM := ω1 ∧ ω2 ∧ · · · ∧ ω2m−1,

HSM : = {v ∈ TSM, ωm+a(v) = 0}, V SM := ∪x∈MTSxM, (2.2)
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respectively, see [2]. Due to the fact that HSM is isomorph with p∗TM , HSM is
also called the Finsler bundle. In the sequel, for any X ∈ Γ(p∗TM) the correspond-
ing horizontal lift of X is denoted by XH .

As well-known, there exists a linear connection on p∗TM called the Chern con-
nection and denoted by c∇. Its connection forms are characterized by the following
equations

d(dxi)− dxk ∧ ωik = 0, (2.3)

and

dgij − gikωkj − gjkωki = 2Aijk
δyk

F
. (2.4)

By taking the exterior derivative of (2.3), the curvature 2 − forms of the Chern
connection, Ωij := dωij − ωkj ∧ ωik, have the following structure

Ωij =
1

2
R i
jkldx

k ∧ dxl + P i
jkldx

k ∧ δy
l

F
. (2.5)

By (2.5), the Landsberg curvature is defined as follows

L := Lijkdx
i ⊗ dxj ⊗ dxk, Lijk := gil

ym

F
P l
mjk.

It can be seen that Lijk = −Ȧijk, where dot denotes the covariant derivative along
the Hilbert form, (see [16], p. 41).
Let D denotes the Levi-Civita connection on (SM,G). The divergence of a form
ψ = ψiω

i ∈ Γ(p∗T ∗M) is
divGψ := TrGDψ.

Note that the bundle p∗T ∗M is isomorph with the horizontal sub-bundle of T ∗SM .
It can be shown that

divGψ =
∑
i

ψi|i +
∑
a,b

ψaLbba =
∑
i

(c∇eHi ψ)(ei) +
∑
a,b

ψaLbba, (2.6)

where ” | “ denotes the horizontal covariant differential with respect to the Chern
connection, {ei} be the adapted frame with respect to g and Labc = L(ea, eb, ec),
(see [8], Lemma 2.1).

3. The first variation formula

Let φ : (Mm, F ) −→ (Nn, h) be a smooth map from an m-dimensional Finsler
manifold (M,F ) to an n-dimensional Riemannian manifold (N,h). Henceforth, the
Chern connection on p∗TM, the Levi-Civita connection on (N,h) and the pull-back
connection on p∗(φ−1TN) are denoted by c∇,N ∇ and ∇, respectively.

Let f ∈ C∞(SM) be a smooth positive function on SM . The f -energy density
of φ is a function ef (φ) : SM −→ R defined by

ef (φ)(x, y) :=
1

2
f(x, y)Trgh(dφ, dφ), (3.1)

where Trg stands for taking the trace with respect to g (the fundamental quadratic
form of F ) at (x, y) ∈ SM. In the local coordinates (xi) on M and (x̃α) on N , the
f -energy density of φ can be written as follows

ef (φ)(x, y) =
1

2
f(x, y)δijh(dφ(ei), dφ(ej)) =

1

2
f(x, y)δijφαi φ

β
j hαβ(x̃), (3.2)
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where {ei = uki
∂
∂xk
} is the adapted frame with respect to g at (x, y) ∈ SM , x̃ = φ(x)

and dφ(ei) = φαi
∂
∂x̃α ◦ φ.

Definition 3.1. A map φ : (M,F ) −→ (N,h) is said to be f -harmonic, if it is a
critical point of the f -energy functional

Ef (φ) :=
1

cm−1

∫
SM

ef (φ)dVSM , (3.3)

where cm−1 denotes the volume of the standard (m − 1)−dimensional sphere and
dVSM is the canonical volume element of SM defined by (2.2).

Let φt : M −→ N (−ε < t < ε) be a smooth variation of φ such that φ0 = φ
and set

V =
∂φt
∂t

∣∣
t=0

:= V α
∂

∂x̃α
◦ φ.

By (3.2), the f -energy density of φt can be written as follows

ef (φt)(x, y) =
1

2
f(x, y)δijφαt|iφ

β
t|jhαβ(x̃), (3.4)

where x̃ = φt(x), dφt(ei) = uki
∂φαt
∂xk

∂
∂x̃α ◦φ := φαt|i

∂
∂x̃α ◦φ. Due to the fact that {V α}

is independent of y and using (3.4), it is obtained that

∂

∂t
ef (φt)

∣∣
t=0

=
1

2

∂

∂t
(δijfφαt|iφ

β
t|jhαβ)

∣∣
t=0

= δij{fuki
∂V α

∂xk
φβj hαβ +

1

2
fφαi φ

β
j

∂hαβ
∂x̃γ

V γ}

=
∑
i

{fuki
δV α

δxk
φβi hαβ + fφαi φ

β
i
NΓσβγhασV

γ}

=
∑
i

h(∇eHi V, fdφ(ei)), (3.5)

where {NΓαβγ} denotes the coefficients of the Levi-Civita connections on (N,h). Let

ψ := h(V, fdφ(ei))ω
i ∈ Γ(p∗T ∗M). Using the fact that Lbba = −Ȧbba and equation

(2.6), it follows that

divGψ =
∑
i

(c∇eHi ψ)(ei) +
∑
a,b

h(V, fdφ(ea))Lbba

=
∑
i

{h(∇eHi V, fdφ(ei)) + h(V, (∇eHi fdφ)(ei))} −
∑
a,b

h(V, fdφ(ea))Ȧbba

= h

(
V, fTrg∇dφ+ dφ ◦ p(gradHf)− fdφ ◦ p(KH)

)
+
∑
i

h(∇eHi V, fdφ(ei)). (3.6)

where Trg∇dφ = gij(∇ ∂

∂xi
dφ( ∂

∂xj )− dφ(c∇ ∂

∂xi

∂
∂xj )), Abba = A(eb, eb, ea) and K is

defined as follows

K :=
∑
a,b

Ȧbbaea ∈ Γ(p∗TM). (3.7)
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Combining (3.5) and (3.6) and considering the Green’s theorem, it can be concluded
that

d

dt
Ef (φt)

∣∣
t=0

= − 1

cm−1

∫
SM

h(τf (φ), V )dVSM ,

where

τf (φ) := fTrg∇dφ+ dφ ◦ p(gradHf)− fdφ ◦ p(KH) ∈ Γ((φ ◦ p)∗TN), (3.8)

here p : SM −→ M is the canonical projection on SM , gradHf denotes the
horizontal part of grad f ∈ Γ(TSM) and K is defined by (3.7). The field τf (φ) is
said to be the f-tension field of φ.

Theorem 3.2. Let φ : (M,F ) −→ (N,h) be a smooth map from a Finsler manifold
to a Riemannian manifold and f ∈ C∞(SM) a smooth positive function on SM.
Then, φ is f -harmonic if and only if τf (φ) ≡ 0

Due to the fact that the Landsberg curvature of locally Minkowski manifold
vanishes and considering Theorem 3.2 and equation (3.8), the following result is
obtained immediately

Corollary 3.3. Let φ : (M,F ) −→ (N,h) be an immersion harmonic map from
a locally Minkowski manifold (M,F ) to an arbitrary Riemannian manifold (N,h)
and f ∈ C∞(SM) a smooth positive function on SM. Then, φ is f -harmonic if and
only if f(x, y) = f(y) for any (x, y) ∈ SM.

Example 3.4. Assume that (R2, F ) be a locally Minkowski manifold and (R3, 〈, 〉)
be the three-dimensional Euclidean space. Let φ : (R2, F ) −→ (R3, 〈, 〉) is defined
by φ(x) := (x2, x1 + 2x2, 3x1 − x2), where x = (x1, x2) ∈ R2. Let f(x, y) :=

exp( y
1(y1−2y2)

(y1)2+(y2)2 ) be a positive smooth map on SR2. By (3.8), it can be seen that φ

is f -harmonic.

Remark 3.5. Let (M,F ) be a locally Minkowski manifold and (M,h) be a flat Rie-
mannian manifold. It is conspicuous that the identity map Id : (M,F ) −→ (M,h)
is harmonic, (see [12], Proposition 9.5.1). By Corollary 3.3, it can be concluded
that Id is f -harmonic if and only if f(x, y) = f(y) for all (x, y) ∈ SM.

Before proceeding, it is worth noting that f -harmonic maps shouldn’t be con-
fused with F-harmonic maps and p-harmonic maps from a Finsler manifolds to
a Riemannian manifolds. Let F : [0,∞) −→ [0,∞) be a C2 strictly increasing
function on (0,∞). The smooth map φ : (M,F ) −→ (N,h) from a Finsler mani-
fold (M,F ) to a Riemannian manifold (N,h) is called F-harmonic if it is a critical
points of the F-energy functional

EF (φ) :=

∫
SM

F(
|dφ|2

2
)dVSM . (3.9)

The notion of F−harmonic maps was first introduced by J. Li [8]. F-energy func-
tional can be categorized as energy , p-energy and exponential energy when F(t)

is equal to t, (2t)
p
2 \ p (p ≥ 4) and et, respectively. In terms of the Euler-Lagrange

equation, φ is F-harmonic if it satisfies the following equation

τF (φ) := Trg∇(F ′( | dφ |
2

2
)dφ)−F ′( | dφ |

2

2
)dφ(K) = 0. (3.10)
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For more details, see [8]. The field τF (φ) is called the F−tension field of φ. Let
φ : (M,F ) −→ (N,h) be a non-degenerate smooth map (i.e. dφx 6= 0 for all
x ∈ M) from a Finsler manifold to a Riemannian manifold. By (3.8) and (3.10),
the following proposition is obtained immediately.

Proposition 3.6. Let φ : (M,F ) −→ (N,h) be a non-degenerate F-harmonic map
from a Finsler manifold to a Riemannian manifold. Then, φ is an f -harmonic

map with f = F ′( |dφ|
2

2 ). Particularly, any non-degenerate p-harmonic map is an

f -harmonic map with f =| dφ |p−2 .

Remark 3.7. This result was obtained by Y. Chiang [5] in the Riemannian case.

4. The second variation formula

In this section, the second variation formula of the f -energy functional for an
f -harmonic map from a Finsler manifold to a Riemannian manifold is obtained.
As an application, it is shown that any stable f -harmonic map φ from a Finsler
manifold to the standard sphere Sn(n > 2) is constant.

Theorem 4.1. (The second variation formula). Let φ : (M,F ) −→ (N,h) be an
f -harmonic map from a Finsler manifold (M,F ) to a Riemannian manifold (N,h).
Let φt : M −→ N (−ε < t < ε) be a smooth variation such that φ0 = φ and set

V = ∂φt
∂t |t=0. Then

d2

dt2
Ef (φt)

∣∣
t=0

= − 1

cm−1

∫
SM

h
(
V, fTrg(∇2V ) + fTrgR

N (V, dφ)dφ

+∇gradHfV − f∇KHV
)
dVSM , (4.1)

where K is defined by (3.7), RN is the curvature tensor on (N,h) and Trg(∇2V ) =
gij(∇ ∂

∂xi
∇ ∂

∂xj
V −∇c∇ ∂

∂xi

∂

∂xj
V ).

Set

Qφf (V ) :=
d2

dt2
Ef (φt)

∣∣
t=0

.

An f -harmonic map φ is said to be stable f -harmonic if Qφf (V ) ≥ 0 for any vector
field V along φ.

Proof. Let M̃ denotes the product manifold (−ε, ε) ×M , Φ : M̃ −→ N is defined

by Φ(t, x) := φt(x) and p̃ : SM̃ −→ M̃ be the natural projection on the sphere

bundle SM̃ . Denote the same notations of c∇ and ∇ for the Chern connection on
p̃∗TM̃ and the pull-back connection on p̃∗(Φ−1TN), respectively. By (3.1), it can
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be shown

∂2

∂t2
ef (φt) =

∂

∂t
h(∇ ∂

∂t
dΦ(ei), fdΦ(ei))

=
∂

∂t
h(∇eHi dΦ(

∂

∂t
), fdΦ(ei))

= h(∇ ∂
∂t
∇eHi dΦ(

∂

∂t
), fdΦ(ei)) + fh(∇eHi dΦ(

∂

∂t
),∇eHi dΦ(

∂

∂t
))

= h(∇eHi ∇ ∂
∂t
dΦ(

∂

∂t
), fdΦ(ei)) + fh(∇eHi dΦ(

∂

∂t
),∇eHi dΦ(

∂

∂t
))

+ fh(RN (dΦ(
∂

∂t
), dΦ(ei))dΦ(

∂

∂t
), dΦ(ei)), (4.2)

where it is used

∇ ∂
∂t
dΦ(ei)−∇eHi dΦ(

∂

∂t
) = d(Φ ◦ p̃)[ ∂

∂t
, eHi ] = 0,

for the third and fourth equalities in (4.2). By (4.2), it can be seen that

∂2

∂t2
Ef (φt)

∣∣
t=0

=
1

cm−1

∑
i

{∫
SM

fh(∇eHi dΦ(
∂

∂t
),∇eHi dΦ(

∂

∂t
))
∣∣
t=0

dVSM

+

∫
SM

h(∇eHi ∇ ∂
∂t
dΦ(

∂

∂t
), fdΦ(ei))

∣∣
t=0

dVSM

+

∫
SM

fh(RN (dΦ(
∂

∂t
), dΦ(ei))dΦ(

∂

∂t
), dΦ(ei))

∣∣
t=0

dVSM

}
= I1 + I2 + I3 (4.3)

Now each term of the right hand side(RHS) of the above equation is calculated.
First, let
ψ := fh(∇eHi dΦ( ∂∂t ), dΦ( ∂∂t ))w

i ∈ Γ(p∗T ∗M). By (2.6), it follows that

divGψ =
∑
i

(c∇eHi ψ)(ei) +
∑
a,b

fh(∇eHa dΦ(
∂

∂t
), dΦ(

∂

∂t
))Lbba

=
∑
i

{
eHi (f)h(∇eHi dΦ(

∂

∂t
), dΦ(

∂

∂t
)) + fh(∇eHi ∇eHi dΦ(

∂

∂t
), dΦ(

∂

∂t
))

+ fh(∇eHi dΦ(
∂

∂t
),∇eHi dΦ(

∂

∂t
)) + fh(∇eHj dΦ(

∂

∂t
), dΦ(

∂

∂t
))(c∇eHi w

j)(ei)

}
−
∑
a,b

fh(∇eHa dΦ(
∂

∂t
), dΦ(

∂

∂t
))Ȧbba. (4.4)

By (4.4) and Green’s theorem, I1 can be obtained as follows

I1 = − 1

cm−1

∫
SM

h

(
fTrg(∇2V ) +∇gradHfV − f∇KHV, V

)
dVSM . (4.5)
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Similarly, let Ψ := h(∇ ∂
∂t
dφ( ∂∂t ), fdφ(ei))w

i ∈ Γ(p∗T ∗M). It can be seen that

divGΨ =
∑
i

{
h(∇eHi ∇ ∂

∂t
dΦ(

∂

∂t
), fdΦ(ei)) + h

(
∇ ∂

∂t
dΦ(

∂

∂t
), (∇eHi fdΦ)(ei))

}
− f

∑
a,b

h(∇ ∂
∂t
dΦ(

∂

∂t
), Ȧbbadφ(ea)). (4.6)

By (4.6) and considering the Green’s Theorem and the f -harmonicity condition of
φ, I2 is given by

I2 = − 1

cm−1

∫
SM

h
(
∇ ∂

∂t
dΦ(

∂

∂t
) |t=0, τf (φ))dVSM = 0. (4.7)

Substituting the formulas (4.5) and (4.7) into equation (4.3) yields the formula (4.1)
and hence completes the proof. �

5. Stability of f-harmonic maps to Sn

Consider the unit sphere Sn as a submanifold of the Euclidean space (Rn+1, 〈, 〉).
At each point x ∈ Sn any vector field V in Rn+1 can be decomposed as V =
V >+ V ⊥, where V > is the component of V tangent to Sn and V ⊥ = 〈V, x〉x is the
component of V normal to Sn. Let R∇ be the Levi-Civita connection on Rn+1, S∇
be the Levi-Civita connection on Sn and B be the second fundamental form of Sn
in Rn+1. We have the following relation

R∇XY = S∇XY +B(X,Y ), (5.1)

where X and Y are smooth vector fields on Sn. The shape operator with respect
to any normal vector field W on Sn is defined by

AW (X) := −(R∇XW )>, (5.2)

for any smooth vector field X on Sn. At any point of x ∈ Sn, the tensors A and B
are related by

〈AW (X), Y 〉 = 〈B(X,Y ),W 〉 = −〈X,Y 〉〈x,W 〉, (5.3)

where X and Y are vector fields on Sn and W is a normal vector field on Sn.

Theorem 5.1. Any stable f -harmonic map φ : (M,F ) −→ Sn from a Finsler
manifold (M,F ) to the standard sphere Sn(n > 2) is constant.

Proof. The above notations are used to prove this theorem. Choose an arbitrary
point z ∈ SM . Then, set φ̄ = φ◦p and x̄ = φ̄(z), where p is the canonical projection
on SM. Let RS denotes the curvature tensor of Sn and {Λ1, · · · ,Λn+1} a constant
orthonormal basis in Rn+1. By (4.1), it follows that

n+1∑
α=1

Qφf (Λ>α ) = − 1

cm−1

n+1∑
α=1

∫
SM

h

(
∇gradHfΛ>α − f∇KHΛ>α + fTrg(∇2Λ>α )

+ fTrgR
S(Λ>α , dφ)dφ,Λ>α

)
dVSM . (5.4)
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Since Λα is parallel in Rn+1 and considering (5.2), we obtain

∇gradHfΛ>α = S∇dφ̄(gradHf)Λ
>
α = (R∇dφ̄(gradHf)Λ

>
α )>

= (R∇dφ̄(gradHf)(Λα − Λ⊥α ))> = −(R∇dφ̄(gradHf)Λ
⊥
α )>

= AΛ⊥
α (dφ̄(gradHf)). (5.5)

Let λα : Sn −→ R defined by λα(x) := 〈Λα, x〉 for all x ∈ Sn. One can easily check
that

AΛ⊥
α (X) = −λαX, (5.6)

for every vector field X on Sn. By means of (5.3) and (5.5) at x̄, it follows that

−
∑
α

〈
∇gradHfΛ>α ,Λ

>
α

〉
=
∑
α

〈
−AΛ⊥

α (dφ̄(gradHf)),Λ>α
〉

=
∑
α

〈
dφ̄(gradHf),Λ>α

〉〈
x̄,Λ⊥α

〉
=
∑
α

〈
dφ̄(gradHf),Λ>α

〉〈
x̄,Λα

〉
=
∑
α

λα(x̄)
〈
dφ̄(gradHf),Λ>α

〉
. (5.7)

Thus, the first term of RHS of (5.4) is obtained as follows∑
α

〈
∇gradHfΛ>α ,Λ

>
α

〉
= −

∑
α

λα ◦ φ̄
〈
dφ̄(gradHf),Λ>α

〉
. (5.8)

Similarly, the second term of RHS of (5.4) is given by

−
∑
α

f
〈
∇KHΛ>α ,Λ

>
α

〉
=
∑
α

fλα ◦ φ̄
〈
dφ̄(KH),Λ>α

〉
. (5.9)

Due to the fact that ∇eHi Λ>α = AΛ⊥
α (dφ̄(eHi )) from (5.5) and considering (5.6), it

can be concluded that

∑
i

∇eHi ∇eHi Λ>α =
∑
i

∇eHi A
Λ⊥
α (dφ̄(eHi ))

= −
∑
i

∇eHi (λα ◦ φ̄ dφ̄(eHi ))

= −dφ̄ (grad λα ◦ φ̄)− λα ◦ φ̄
∑
i

∇eHi dφ(ei). (5.10)

Since grad λα = Λ>α and using definition of gradient operator, it can be seen that

dφ̄(grad λα ◦ φ̄) =
∑
i

〈
dφ̄(eHi ), (grad λα) ◦ φ̄

〉
dφ̄(eHi )

=
∑
i

〈
dφ̄(eHi ),Λ>α ◦ φ̄

〉
dφ̄(eHi ). (5.11)

By means of (5.10) and (5.11), the third term of RHS of (5.4) has the following
expression∑

α

f
〈
Trg(∇2Λ>α ),Λ>α

〉
= −

∑
α

λα ◦ φ̄ 〈fTrg∇dφ,Λ>α 〉 − f | dφ |2 . (5.12)
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Finally, since the sphere Sn has constant curvature, it can be shown that∑
α

f
〈
Trg R

S(Λ>α , dφ)dφ,Λ>α
〉

= (n− 1)f | dφ |2 . (5.13)

Replacing (5.8), (5.9), (5.12) and (5.13) in (5.4) and using the f -harmonicity con-
dition of φ, it follows∑

α

Qφf (Λ>α ) =
2− n
cm−1

∫
SM

f | dφ |2 dVSM

+
1

cm−1

∑
α

∫
SM

λα ◦ φ̄ 〈τf (φ),Λ>α 〉dVSM

=
2− n
cm−1

∫
SM

f | dφ |2 dVSM ≤ 0, (5.14)

by means of (5.14) and the stable f -harmonicity condition of φ, it can be concluded
that φ is constant. This completes the proof. �
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