Volume 9 Issue 1(2017), Pages 65-73.

MORE OPERATOR INEQUALITIES FOR POSITIVE LINEAR **MAPS**

HAMID REZA MORADI, MOHSEN ERFANIAN OMIDVAR, SILVESTRU SEVER DRAGOMIR AND MOHAMMAD KAZEM ANWARY

ABSTRACT. In this paper we present some new operator inequality for convex functions. We have obtained a number of Jensen's type inequalities for convex and operator convex functions of self-adjoint operators for positive linear maps. Some results are exemplified for power and logarithmic functions.

1. Introduction and Preliminaries

As is customary, we reserve M, m for scalars. Other capital letters are used to denote general elements of the C^* -algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators acting on a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. An operator $A \in \mathcal{B}(\mathcal{H})$ is called positive if $\langle Ax, x \rangle \geq 0$ for all $x \in \mathcal{H}$, and we then write $A \geq 0$. For self-adjoint operators $A, B \in \mathcal{B}(\mathcal{H})$ we say that $A \leq B$ if $B - A \geq 0$. The Gelfand map establishes an isometrically *-isomorphism Φ between the set $C\left(sp\left(A\right)\right)$ of all continuous functions on the spectrum of A, denoted sp(A), and the C^* -algebra generated by A and I (see for instance [13, p. 15]). For any $f, g \in C(sp(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have

- $\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g)$;
- $\Phi (af + \beta g)$ $\Phi (fg) = \Phi (f) \Phi (g);$ $\Phi (f) = \|f\| := \sup_{t \in sp(A)} |f(t)|;$
- $\Phi(f_0) = 1_H$ and $\Phi(f_1) = A$, where $f_0(t) = 1$ and $f_1(t) = t$, for $t \in sp(A)$.

With this notation we define $f(A) = \Phi(f)$ for all $f \in C(sp(A))$ and we call it the continuous functional calculus for a self-adjoint operator A. It is well known that, if A is a self-adjoint operator and $f \in C(sp(A))$, then $f(t) \geq 0$ for any $t \in sp(A)$ implies that $f(A) \geq 0$. It is extendible for two real valued functions on sp(A). A linear map ϕ is positive if $\phi(A) > 0$ whenever A > 0. It said to be normalized if $\phi(I) = I$. For more studies in this direction, we refer to [2, 6]. As is known to all, in [8, Theorem 1.2], the authors presented the operator version for the Jensen inequality. They proved the inequality

$$f(\langle Ax, x \rangle) \le \langle f(A)x, x \rangle,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 47A63, Secondary 46L05, 47A60.

Key words and phrases. Positive map; operator convex; operator inequality.

^{©2017} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted September 13, 2016. Published January 15, 2017.

Communicated by Takeaki Yamazzaki.

where A is a self-adjoint operator with $sp(A) \subseteq [m, M]$ and f(t) is a convex function on an interval [m, M]. Choi [3] and Davis [4] showed that if ϕ is a normalized positive linear map on $\mathcal{B}(\mathcal{H})$ and if f is an operator convex function on an interval [m, M], then the so-called Choi-Davis-Jensen inequality

$$f\left(\phi\left(A\right)\right) \le \phi\left(f\left(A\right)\right),\tag{1.1}$$

holds for every self adjoint operator A on \mathcal{H} whose spectrum is contained in [m, M]. As a special case of inequality (1.1), the authors in [8, Theorem 1.21] established the following generalization of Jensen's inequality under the additional condition p_i , $(i \in \{1, ..., n\})$ are positive real numbers such that $\sum_{i=1}^{n} p_i = 1$

$$f\left(\sum_{i=1}^{n} p_{i}\phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} p_{i}\phi_{i}\left(f\left(A_{i}\right)\right).$$

The following variant of Jensen's operator inequality for a convex function $f \in C([m, M])$, self-adjoint operators $A_i \in \mathcal{B}(\mathcal{H})$ with spectra in [m, M] and normalized positive linear maps ϕ_i on $\mathcal{B}(\mathcal{H})$ was proved in [11]

$$f\left((m+M) \, 1_{\mathscr{H}} - \sum_{i=1}^{n} \phi_i(A_i)\right) \le (f(m) + f(M)) \, 1_{\mathscr{H}} - \sum_{i=1}^{n} \phi_i(f(A_i)).$$

Moreover, in the same paper the following series of inequalities was proved

$$f(m+M) 1_{\mathscr{H}} - \sum_{i=1}^{n} \phi_{i}(A_{i})$$

$$\leq \frac{M1_{\mathscr{H}} - \sum_{i=1}^{n} \phi_{i}(A_{i})}{M-m} f(M) + \frac{\sum_{i=1}^{n} \phi_{i}(A_{i}) - m1_{\mathscr{H}}}{M-m} f(M)$$

$$\leq (f(m) + f(M)) 1_{\mathscr{H}} - \sum_{i=1}^{n} \phi_{i}(f(A_{i})).$$

There is considerable amount of literature devoting to the study of Jensen inequality, we refer to [9, 10, 12] for a recent survey and references therein.

A function $f: I \to (0, +\infty)$ is said to be log-convex if log(f) is convex, or, equivalently, if for all $x, y \in I$ and $t \in [0, 1]$ one has the inequality

$$f(tx + (1-t)y) \le [f(x)]^t [f(y)]^{1-t}.$$

The function $f(x) = \frac{1}{x}$, $x \in (0, +\infty)$ is log-convex on $(0, +\infty)$.

This paper include but are not restricted to the positive linear map version of the Dragomir-Ionescu inequality, Slater's type inequalities for operators and its inverses, Jensen's inequality for differentiable functions, Jensen's type inequalities for log-convex functions and for differentiable log-convex functions.

2. Inequalities for Differentiable and Convex Functions

The following result provides an operator version of the Dragomir-Ionescu inequality (see [7]):

Theorem 2.1. Let A be a self adjoint operator on the Hilbert space \mathscr{H} with $sp(A) \subseteq I$ and ϕ be a normalized positive linear map on $\mathcal{B}(\mathscr{H})$ and let $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous on I. Then

$$0 \le \langle \phi(f(A)) x, x \rangle - f(\langle \phi(A) x, x \rangle) \le \langle \phi(f'(A) A) x, x \rangle - \langle \phi(A) x, x \rangle \langle \phi(f'(A)) x, x \rangle$$
(2.1)

for each $x \in \mathcal{H}$ with ||x|| = 1.

Proof. First we remark that, the first inequality in (2.1) has been proven for convex functions with no differentiability assumption in [5]. As in [5] and for the sake of completeness, we give here a short proof of the second inequality from (2.1). Since f is convex and differentiable, by the gradient inequality we have that

$$f(t) - f(s) \le f'(t)(t - s),$$

for any $t, s \in [m, M]$. Since $sp(A) \subseteq [m, M]$ by substitute $s = \langle \phi(A) x, x \rangle \in [m, M]$, we have

$$f(t) - f(\langle \phi(A) x, x \rangle) \le f'(t) (t - \langle \phi(A) x, x \rangle).$$

Now, by the functional calculus for $t \in [m, M]$ we deduce

$$f(A) - f(\langle \phi(A) x, x \rangle) 1_{\mathscr{H}} \le f'(A) (A - \langle \phi(A) x, x \rangle 1_{\mathscr{H}})$$

and since ϕ is a normalized positive linear map we have

$$\langle \phi(f(A)) x, x \rangle - f(\langle \phi(A) x, x \rangle)$$

$$\leq \langle \phi(f'(A) A) x, x \rangle - \langle \phi(A) x, x \rangle \langle \phi(f'(A)) x, x \rangle$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Remark. There are several examples of normalized positive linear maps. But for our application we consider among them $\phi: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$, which $\phi(A) = (\frac{1}{n}tr(A)) 1_{\mathscr{H}}$ for all Hermitian matrices $A \in \mathcal{M}_n(\mathbb{C})$. From inequality (2.1), we have

$$0 \leq \frac{1}{n} tr\left(f\left(A\right)\right) - f\left(\frac{1}{n} tr\left(A\right)\right) \leq \frac{1}{n} tr\left(f'\left(A\right)A\right) - \frac{1}{n^2} tr\left(A\right) tr\left(f'\left(A\right)\right).$$

If we take $f(t) = t^2$, then

$$\frac{1}{n}tr^{2}\left(A\right) \le tr\left(A^{2}\right).$$

In the following we give more interesting situations.

Corollary 2.2. Let A_i be self-adjoint operators with $sp(A_i) \subseteq I$, $i \in \{1, ..., n\}$ and ϕ_i are normalized positive linear map on $\mathcal{B}(\mathcal{H})$ $(i \in \{1, ..., n\})$ and assume that f is as in the Theorem 2.1. Then

$$0 \leq \left\langle \sum_{i=1}^{n} \phi_{i} \left(f\left(A_{i} \right) \right) x, x \right\rangle - f \left\langle \sum_{i=1}^{n} \phi_{i} \left(A_{i} \right) x, x \right\rangle$$

$$\leq \left\langle \sum_{i=1}^{n} \phi_{i} \left(f'\left(A_{i} \right) A_{i} \right) x, x \right\rangle - \left\langle \sum_{i=1}^{n} \phi_{i} \left(A_{i} \right) x, x \right\rangle$$

$$\times \left\langle \sum_{i=1}^{n} \phi_{i} \left(f'\left(A_{i} \right) \right) x, x \right\rangle,$$

$$(2.2)$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Proof. If we put

$$\widetilde{A} := \begin{pmatrix} A_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & A_n \end{pmatrix},$$

then we have $sp\left(\widetilde{A}\right)\subseteq\left[m,M\right]\subseteq\stackrel{o}{I}$, moreover, define

$$\phi: \mathcal{B}(\mathcal{H}) \oplus \ldots \oplus \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$

as

$$\phi(A_1 \oplus \ldots \oplus A_n) = \sum_{i=1}^n \phi_i(A_i)$$

in this case, we have

$$\phi\left(f\left(\widetilde{A}\right)\right) = \sum_{i=1}^{n} \phi_i\left(f\left(A_i\right)\right), \ \phi\left(\widetilde{A}\right) = \sum_{i=1}^{n} \phi_i\left(A_i\right).$$

Applying Theorem 2.1 for \widetilde{A} we deduce the desired result (2.2).

Corollary 2.3. Notation as in above. If p_i are positive real numbers with $\sum_{i=1}^{n} p_i = 1$, then

$$0 \leq \left\langle \sum_{i=1}^{n} p_{i} f\left(\phi_{i}\left(A_{i}\right)\right) x, x \right\rangle - f\left(\left\langle \sum_{i=1}^{n} p_{i} \phi_{i}\left(A_{i}\right) x, x \right\rangle\right)$$

$$\leq \left\langle \sum_{i=1}^{n} p_{i} f'\left(\phi_{i}\left(A_{i}\right) A_{i}\right) x, x \right\rangle - \left\langle \sum_{i=1}^{n} p_{i}\left(\phi_{i}\left(A_{i}\right)\right) x, x \right\rangle$$

$$\times \left\langle \sum_{i=1}^{n} p_{i} f'\left(\phi_{i}\left(A_{i}\right)\right) x, x \right\rangle,$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Remark. The following particular cases are of interest (see also [5]):

(a) If $p \geq 1$ and A is a positive operator on \mathcal{H} , then we have the inequality

$$0 \leq \langle \phi(A^{p}) x, x \rangle - \langle \phi(A) x, x \rangle^{p}$$

$$\leq p \left[\langle \phi(A^{p}) x, x \rangle - \langle \phi(A) x, x \rangle \left\langle \phi(A^{p-1}) x, x \right\rangle \right]$$
(2.3)

for each $x \in \mathcal{H}$ with ||x|| = 1.

- (b) If A is a positive definite operator on \mathcal{H} , then the inequality (2.3) holds for p < 0.
- (c) If $0 and A is a positive definite operator on <math>\mathcal{H}$, then

$$\langle \phi(A^{p}) x, x \rangle - \langle \phi(A) x, x \rangle^{p}$$

$$\geq p \left[\langle \phi(A^{p}) x, x \rangle - \langle \phi(A) x, x \rangle \langle \phi(A^{p-1}) x, x \rangle \right] \geq 0$$

$$\geq p\left[\langle \phi(A')x, x \rangle - \langle \phi(A)x, x \rangle \langle \phi(A')x, x \rangle\right]$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Consider the convex function $f:(0,\infty)\to\mathbb{R},\ f(x)=-\ln x$. As a direct consequence of Theorem 2.1, we obtain the following corollary.

Corollary 2.4. Let A be a strictly positive operator on the Hilbert space \mathcal{H} . Then

$$0 \le \ln \langle \phi (A) x, x \rangle - \langle \phi (\ln A) x, x \rangle \le \langle \phi (A) x, x \rangle \langle \phi (A^{-1}) x, x \rangle - 1$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Now, from a different view point we may state:

Theorem 2.5. All assumptions as in Theorem 2.1. Then

$$\langle \phi (f(A) - f(B)) x, x \rangle$$

$$\leq \langle \phi (f'(A) A) x, x \rangle - \langle \phi (f'(A)) x, x \rangle \langle \phi (B) x, x \rangle.$$
(2.4)

for each $x \in \mathcal{H}$ with ||x|| = 1.

Proof. Since f is convex and differentiable we have

$$f(t) - f(s) \le f'(t)(t - s)$$

for any $t, s \in I$. Fix $s \in I$ and apply the functional calculus for the operator A, then

$$f(A) - f(s) 1_{\mathscr{H}} \le f'(A) (A - s)$$
.

Since ϕ is normalized positive linear map we get

$$\phi(f(A)) - f(s) 1_{\mathscr{H}} \le \phi(f'(A)A) - s\phi(f'(A)) \tag{2.5}$$

therefore

$$\langle \phi(f(A)) x, x \rangle - f(s) \langle \phi(f'(A) A) x, x \rangle - s \langle \phi(f'(A)) x, x \rangle$$

for each $x \in \mathcal{H}$ with ||x|| = 1. Apply again functional calculus for the operator B to obtain

$$\langle \phi(f(A)) x, x \rangle 1_{\mathscr{H}} - f(B)$$

$$\leq \langle \phi(f'(A) A) x, x \rangle 1_{\mathscr{H}} - \langle \phi(f'(A)) x, x \rangle B.$$
(2.6)

Since ϕ is normalized positive linear map we have

$$\langle \phi(f(A)) x, x \rangle 1_{\mathscr{H}} - \phi(f(B))$$

$$\leq \langle \phi(f'(A) A) x, x \rangle 1_{\mathscr{H}} - \langle \phi(f'(A)) x, x \rangle \phi(B)$$
(2.7)

therefore

$$\langle \phi(f(A)) x, x \rangle - \langle \phi(f(B)) y, y \rangle$$

$$\leq \langle \phi(f'(A) A) x, x \rangle - \langle \phi(f'(A)) x, x \rangle \langle \phi(B) y, y \rangle.$$
(2.8)

for each $x, y \in \mathcal{H}$ with ||x|| = ||y|| = 1. This is an inequality of interest in itself. Finally, on making y = x in (2.8) we deduce the desired result (2.4).

By setting $\phi(A) = (\frac{1}{n}tr(A)) 1_{\mathscr{H}}$ in (2.4), we find the following result.

Remark. Let $A, B \in \mathcal{M}_n(\mathbb{C})$ be two Hermitian matrices, then

$$\frac{1}{n}tr\left(f\left(A\right)-f\left(B\right)\right)\leq\frac{1}{n}tr\left(f'\left(A\right)A\right)-\frac{1}{n^{2}}tr\left(f'\left(A\right)\right)tr\left(B\right).$$

Remark. If we choose A = B in (2.4), we get

$$\langle \phi(f'(A)A)x, x \rangle \ge \langle \phi(f'(A))x, x \rangle \langle \phi(A)x, x \rangle \tag{2.9}$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

The following result is known in the literature as the Holder-McCarthy inequality.

Remark. If we take $f(t) = t^2$ in (2.9), we deduce

$$\langle \phi(A^2) x, x \rangle \ge \langle \phi(A) x, x \rangle^2$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

The case of norm operator may be of interest and is embodied in the following remark.

Remark. Let A be a positive operator on $\mathcal{B}(\mathcal{H})$ and $f' \in C(sp(A))$. By taking supremum over $x \in \mathcal{H}$ with ||x|| = 1, and $y \in \mathcal{H}$ with ||y|| = 1 in (2.8) respectively, we obtain

$$\|\phi(f'(A)A)\| \ge \|\phi(f'(A))\| \|\phi(A)\|.$$

The following result concerning Slater type inequality holds:

Theorem 2.6. Let A be a self-adjoint operator on the Hilbert space \mathscr{H} with $sp(A) \subseteq [m,M] \subseteq I$ and ϕ be a normalized positive linear map on $\mathcal{B}(\mathscr{H})$ and let $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous and strictly positive on I. Then

$$0 \leq f\left(\frac{\left\langle\phi\left(Af'\left(A\right)\right)x,x\right\rangle}{\left\langle\phi\left(f'\left(A\right)\right)x,x\right\rangle}\right) - \left\langle\phi\left(f\left(A\right)\right)x,x\right\rangle$$

$$\leq f'\left(\frac{\left\langle\phi\left(Af'\left(A\right)\right)x,x\right\rangle}{\left\langle\phi\left(f'\left(A\right)\right)x,x\right\rangle}\right) \left[\frac{\left\langle\phi\left(Af'\left(A\right)\right)x,x\right\rangle}{\left\langle\phi\left(f'\left(A\right)\right)x,x\right\rangle} - \left\langle\phi\left(A\right)x,x\right\rangle\right]$$

$$(2.10)$$

for each $x \in \mathcal{H}$ with ||x|| = 1.

Proof. Since f is convex and differentiable on I, then we have that

$$f'(s)(t-s) < f(t) - f(s) < f'(t)(t-s)$$

for any $t, s \in [m, M]$. If we fix $t \in [m, M]$ and apply the functional calculus for the operator A, then we obtain

$$f'(A)(t-A) \le f(t) 1_{\mathscr{H}} - f(A) \le f'(t)(t-A)$$
 (2.11)

for any $t \in [m, M]$. Since ϕ is normalized positive linear map we have

$$t\phi\left(f'\left(A\right)\right) - \phi\left(f'\left(A\right)A\right) \le f\left(t\right)1_{\mathscr{H}} - \phi\left(f\left(A\right)\right) \le f'\left(t\right)t1_{\mathscr{H}} - f'\left(t\right)\phi\left(A\right) \ \ (2.12)$$

for any $t \in [m, M]$. The inequality (2.12) is equivalent with

$$t \left\langle \phi\left(f'\left(A\right)\right)x, x\right\rangle - \left\langle \phi\left(f'\left(A\right)A\right)x, x\right\rangle \le f\left(t\right) - \left\langle \phi\left(f\left(A\right)\right)x, x\right\rangle \\ \le f'\left(t\right)t - f'\left(t\right)\left\langle \phi\left(A\right)x, x\right\rangle$$

$$(2.13)$$

for any $t \in [m, M]$. Now, since A is self-adjoint with $m1_{\mathscr{H}} \leq A \leq M1_{\mathscr{H}}$ and f'(A) is strictly positive, then $mf'(A) \leq Af'(A) \leq Mf'(A)$. Also, ϕ is a unital positive linear map, therefore $m\phi(f'(A)) \leq \phi(Af'(A)) \leq M\phi(f'(A))$, i.e.,

$$m \langle \phi(f'(A)) x, x \rangle \le \langle \phi(Af'(A)) x, x \rangle \le M \langle \phi(f'(A)) x, x \rangle,$$

hence $\langle \phi(Af'(A)) x, x \rangle \langle \phi(f'(A)) x, x \rangle^{-1} \in [m, M]$. If we put

$$t:=\frac{\left\langle \phi\left(Af'\left(A\right)\right)x,x\right\rangle }{\left\langle \phi\left(f'\left(A\right)\right)x,x\right\rangle }$$

in the equation (2.13), we get the desired result (2.10).

The following results follows from the inequality (2.10) for the convex function $f(t) = t^p, p \in (-\infty, 0) \cup [1, \infty)$ by performing the required calculation. The details are omitted.

Remark. Let ϕ be a positive linear map on $\mathcal{B}(\mathcal{H})$ and let A be a strictly positive operator on \mathcal{H} .

(a) If $p \geq 1$, we have that

$$0 \leq \left\langle \phi\left(A^{p}\right)x, x\right\rangle^{p-1} - \left\langle \phi\left(A^{p-1}\right)x, x\right\rangle^{p}$$

$$\leq p\left\langle \phi\left(A^{p}\right)x, x\right\rangle^{p-2} \left[\left\langle \phi\left(A^{p}\right)x, x\right\rangle - \left\langle \phi\left(A\right)x, x\right\rangle \left\langle \phi\left(A^{p-1}\right)x, x\right\rangle\right].$$

for any $x \in \mathcal{H}$ with ||x|| = 1.

(b) If p < 0, we have that

$$\begin{split} 0 & \leq \left\langle \phi\left(A^{p}\right)x,x\right\rangle^{p-1} - \left\langle \phi\left(A^{p-1}\right)x,x\right\rangle^{p} \\ & \leq \left(-p\right)\left\langle \phi\left(A^{p}\right)x,x\right\rangle^{p-2} \left[\left\langle \phi\left(A\right)x,x\right\rangle - \left\langle \phi\left(A^{p-1}\right)x,x\right\rangle \left\langle \phi\left(A^{p}\right)x,x\right\rangle \right]. \end{split}$$

for any $x \in \mathcal{H}$ with ||x|| = 1.

Remark. Notice that we can obtain other results by taking various functions. The details are omitted.

3. Some Inequalities Involving States

In this section, we apply the continuous functional calculus to convex and differentiable functions and present some reverses Jensen's inequalities involving states on C^* -algebras. Our main result of this section reads as follows.

Theorem 3.1. Let τ be a state on $\mathcal{B}(\mathcal{H})$ and $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous on I. Then

$$0 \le \tau \left(f\left(A\right) \right) - f\left(\tau \left(A\right) \right) \le \tau \left(f'\left(A\right) A \right) - \tau \left(A\right) \tau \left(f'\left(A\right) \right).$$

Proof. Since f is convex and differentiable, we have that

$$f(t) - f(s) \le f'(t)(t - s)$$

if we chose in this inequality $s = \tau(A)$ we obtain

$$f(t) - f(\tau(A)) \le f'(t)(t - \tau(A)).$$

Applying functional calculus for the operator A

$$f(A) - f(\tau(A)) \le f'(A)A - f'(A)\tau(A).$$

For the state τ we have

$$\tau\left(f\left(A\right)\right)-f\left(\tau\left(A\right)\right)\leq\tau\left(f'\left(A\right)A\right)-\tau\left(A\right)\tau\left(f'\left(A\right)\right).$$

Apply Theorem 3.1 to the state τ defined by $\tau(A) = \langle Ax, x \rangle$ for fixed unit vector $x \in \mathcal{H}$. We have the following result:

Corollary 3.2. Let A be a self adjoint operator on the Hilbert space \mathscr{H} with $sp(A) \subseteq I$ and let $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous on I. Then

$$0 < \langle f(A) x, x \rangle - f(\langle Ax, x \rangle) < \langle f'(A) Ax, x \rangle - \langle Ax, x \rangle \langle f'(A) x, x \rangle.$$

This inequality was obtained by Dragomir (see [1, Theorem 5]).

By Theorem 2.5 and making use of a similar argument to the one in the proof of Theorem 3.1 we can state the following result as well. However, the details are nor provided here.

Theorem 3.3. Let τ be a state on $\mathcal{B}(\mathcal{H})$ and $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous on I. Then

$$\tau\left(f\left(A\right)\right) - \tau\left(f\left(B\right)\right) \le \tau\left(f'\left(A\right)A\right) - \tau\left(f'\left(A\right)\right)\tau\left(B\right). \tag{3.1}$$

Remark. If we choose A = B in (3.1), we obtain

$$\tau \left(f'\left(A\right) \right) \tau \left(A\right) \leq \tau \left(f'\left(A\right) A\right) .$$

Remark. Let τ be a state on $\mathcal{B}(\mathcal{H})$ and $f(t) = t^2$ in (3.1), then

$$\tau(A)^2 \le \tau(A^2) \quad (A \ge 0)$$
.

In a similar fashion, for self-adjoint operators $A \in \mathcal{B}(\mathcal{H})$

$$\tau(e^{\alpha A})^2 \le \tau(e^{2\alpha A}) \quad (\alpha \ge 0).$$

By applying Theorem 2.6 and using the same strategy as in the proof of Theorem 3.1 we get the next result.

Theorem 3.4. Let τ be a state on $\mathcal{B}(\mathcal{H})$ and $f: I \to \mathbb{R}$ be a convex and differentiable function on interval I whose derivative f' is continuous and strictly positive on I. Then

$$0 \le f\left(\frac{\tau\left(Af'\left(A\right)\right)}{\tau\left(f'\left(A\right)\right)}\right) - \tau\left(f\left(A\right)\right)$$
$$\le f'\left(\frac{\tau\left(Af'\left(A\right)\right)}{\tau\left(f'\left(A\right)\right)}\right) \left[\frac{\tau\left(Af'\left(A\right)\right)}{\tau\left(f'\left(A\right)\right)} - \tau\left(A\right)\right].$$

Acknowledgments. The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- [1] R.P. Agarwal, and S.S. Dragomir. A survey of Jensen type inequalities for functions of self-adjoint operators in Hilbert spaces, Comput. Math. Appl. **59**(12) (2010) 3785-3812.
- [2] R. Bhatia, Positive Definite Matrices, Princeton University Press. (2007).
- [3] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974) 565-574.
- [4] C. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957) 42–44.
- [5] S.S. Dragomir, A weaken version of Davis-Choi-Jensen's inequality for normalized positive linear maps, Preprint RGMIA Res. Rep. Coll. 19 (2016) Art 61.
- [6] S.S. Dragomir, Inequalities for functions of self-adjoint operators on Hilbert spaces, arXiv preprint arXiv:1203.1667 (2012).
- [7] S. S. Dragomir and N.M. Ionescu, Some converse of Jensen's inequality and applications, Rev. Anal. Numér. Théor. Approx. 23(1) (1994) 71–78.
- [8] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [9] S. Ivelić, A. Matković, and J. Pečarić. On a Jensen-Mercer operator inequality, Banach J. Math. Anal. 5(1) (2011) 19–28.
- [10] M. Khosravi, J. S. Aujla, S. S. Dragomir, and M.S. Moslehian. Refinements of Choi-Davis-Jensen's inequality, Bull. Math. Anal. Appl. 3(2) (2011) 127–133.

- [11] A. Matković, J. Pečarić and I. Perić, A variant of Jensen's inequality of Mercer's type for operators with applications, Linear Algebra Appl. 418(2-3) (2006) 551–564.
- [12] H.R. Moradi, M.E. Omidvar and S.S. Dragomir, An operator extension of Čebyšev inequality, Preprint RGMIA Res. Rep. Coll. 19 (2016) Art. submitted.
- [13] G. J. Murphy. C*-Algebras and Operator Theory, Academic Press, San Diego, 1990.

DEPARTMENT OF MATHEMATICS

MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN

 $E ext{-}mail\ address: hrmoradi@mshdiau.ac.ir}$

DEPARTMENT OF MATHEMATICS

MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY, MASHHAD, IRAN

 $E ext{-}mail\ address: erfanian@mshdiau.ac.ir}$

Department of Mathematics

COLLEGE OF ENGINEERING AND SCIENCE, VICTORIA UNIVERSITY, P.O. BOX 14428, Melbourne

CITY, MC 8001, AUSTRALIA

 $E\text{-}mail\ address{:}\ \mathtt{sever.dragomir@vu.edu.au}$

Department of Pure Mathematics

CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN

E-mail address: abdh1248@gmail.com