SOME SUBCLASSES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SRIVASTAVA-ATTIYA OPERATOR

SHAHID KHAN, NAZAR KHAN, SAQIB HUSSAIN, QAZI ZAHOOR AHMAD, MUHAMMAD ASAD ZAIGHUM

Abstract

In this paper, we introduce certain new subclasses of bi-univalent functions in open unit disk associated with the Srivastava-Attiya operator. We obtain coefficient bounds $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions belonging to these new classes.

1. Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in E) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $E=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Further, by \mathcal{S}, we shall denote the class of all functions in \mathcal{A} which are univalent in E.

A function $f \in \mathcal{A}$ is in the class $\mathcal{S}^{*}(\beta)$ of starlike functions of order $\beta(0 \leqq \beta<1)$ if the following condition is satisfied:

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}-\beta\right)>0 \quad(z \in E)
$$

Moreover, a function $f \in \mathcal{A}$ is in the class $\mathcal{C}(\beta)$ of convex functions of order $\beta(0 \leqq \beta<1)$ if the following condition is satisfied:

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\beta\right)>0 \quad(z \in E)
$$

For two analytic functions f given by (1.1) and g given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in E)
$$

[^0]Their convolution (Hadamard product) is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

It is well known that every univalent function f has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in E)
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in E if both f and f^{-1} are univalent in E. The class of all such functions is denoted by Σ.

The work of Srivastava et al. [10] essentially revived the investigation of various subclasses of the bi-univalent function class Σ in recent years. In a considerably large number of sequels to the aforementioned work of Srivastava et al. [10], several different subclasses of the bi-univalent function class Σ were introduced and studied analogously by many authors (see, for example, [2], [5], [11, [12], [13], [15] and [16]), but only non-sharp estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the TaylorMaclaurin expansion 1.1) were obtained in these recent papers.

Furthermore, generalized Hurwitz-Lerch Zeta function $\phi(u, b, z)$ is defined by

$$
\begin{aligned}
\phi(\mu, b, z) & =\sum_{n=0}^{\infty} \frac{z^{n}}{(n+b)^{\mu}} \\
& =b^{-\mu}+\frac{z}{(1+b)^{\mu}}+\sum_{n=2}^{\infty} \frac{z^{n}}{(n+b)^{\mu}}
\end{aligned}
$$

where $b \in \mathbb{C}$ with $b \neq 0,-1,-2, \ldots \ldots, \mu \in \mathbb{C}, \Re(\mu)>1$ and $z \in E$.
Using Hurwitz-Lerch zeta functions with the convolution of an analytic functions, Srivastava and Attiya [14] introduced a family of linear operators $J_{\mu, b}: \mathcal{A} \longrightarrow \mathcal{A}$ as:

$$
\begin{equation*}
J_{\mu, b} f(z)=G_{\mu, b} * f(z)=z+\sum_{n=2}^{\infty}\left(\frac{1+b}{n+b}\right)^{\mu} a_{n} z^{n} \tag{1.3}
\end{equation*}
$$

where $b \in \mathbb{C}$ with $b \neq 0,-1,-2, \ldots \ldots, \mu \in \mathbb{C}, z \in E$ and $G_{\mu, b} \in \mathcal{A}$ given by

$$
\begin{align*}
G_{\mu, b} & =(1+b)^{\mu}\left[\phi(\mu, b, z)-b^{-\mu}\right] \\
& =z+\sum_{n=2}^{\infty}\left(\frac{1+b}{n+b}\right)^{\mu} z^{n} \tag{1.4}
\end{align*}
$$

The following recursive relation can easily be obtained by using 1.3 and 1.4

$$
z\left[J_{\mu, b} f(z)\right]^{\prime}=(1+b) J_{\mu-1, b} f(z)-b J_{\mu, b} f(z)
$$

Remark 1: $J_{0, b}$ and $J_{-\mu, b}$ give the identity and inverse operator of $J_{\mu, b}$ respectively.
Remark 2: Srivastava-Attiya operator defined in (1.3) generalizes many known operators for example:
(i) For $\mu=1$ and $b=0,1.3$ reduces to the well-known operator defined earlier by Alexander [1].
ii) For $\mu=1$ and $b=1,1.3$ reduces to the well-known operator defined by Libera [8].
(iii) For $\mu=1$ and $b=\gamma>-1, \gamma \in \mathbb{N}$, 1.3 reduces to the Bernardi integral operator defined by Bernardi [3].
(iv) For $\mu=\sigma>0$ and $b=1$, 1.3 reduces to Jung-Kim-Srivastava integral operator [6].
The object of the present work is to introduce two new subclasses of the function class Σ and find estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses of the function class Σ using the technique of Srivastava et al. [10] (see, also [7]).
Here we recall a lemma which we will use in our main results.
Lemma 1 [9]. If $h \in P$, then $\left|c_{n}\right| \leqq 2$ for each n, where P is the family of all functions h, analytic in E, for which

$$
\Re(h(z))>0, \quad z \in E,
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2} \ldots, \quad z \in E .
$$

2. Coefficient bounds for the function Class $M_{\Sigma}(\mu, b, \alpha, \lambda)$

Definition 1. A function f defined by 1.1) is said to be in the class $M_{\Sigma}(\mu, b, \alpha, \lambda)$ if the following condition are satisfied:

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[J_{\mu, b} f(z)\right]^{\prime}}{(1-\lambda) z+\lambda J_{\mu, b} f(z)}\right)\right|<\frac{\alpha \pi}{2}, 0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1 ; z \in E \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[J_{\mu, b} g(w)\right]^{\prime}}{(1-\lambda) w+\lambda J_{\mu, b} g(w)}\right)\right|<\frac{\alpha \pi}{2}, \quad 0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1 ; w \in E \tag{2.2}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{2.3}
\end{equation*}
$$

That is, the extension of f^{-1} to E.
Special Cases:
i) For $\mu=0, \lambda=0$ and $b=0$ in 2.1 and 2.2 we have the class $M_{\Sigma}(0,0, \alpha, 0)=$ $\mathcal{H}_{\Sigma}^{\alpha}$, defined by Srivastava et.al [10].
ii) For $\mu=0, \lambda=1$ and $b=0$ in (2.1) and 2.2 we have the class $M_{\Sigma}(0,0, \alpha, 1)=$ $\delta_{\Sigma}^{*}(\alpha)$ defined by Brannan and Taha 4].
Theorem 1. Let the function f defined by 1.1) be in the class $M_{\Sigma}(\mu, b, \alpha, \lambda)$ $(0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1)$. Then

$$
\begin{align*}
&\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{\left\{\left\{2 \alpha\left(\lambda^{2}-2 \lambda\right)-(\alpha-1)(2-\lambda)^{2}\right\}\left(\frac{1+b}{2+b}\right)^{2 \mu}+2 \alpha(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\}}} \\
&\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}+\frac{2 \alpha}{(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}} \tag{2.4}
\end{align*}
$$

Proof. From 2.1 and 2.2 we have

$$
\begin{align*}
& \frac{z\left[J_{\mu, b} f(z)\right]^{\prime}}{(1-\lambda) z+\lambda J_{\mu, b} f(z)}=[p(z)]^{\alpha} \tag{2.6}\\
& \frac{w\left[J_{\mu, b} f(w)\right]^{\prime}}{(1-\lambda) w+\lambda J_{\mu, b} f(w)}=[q(w)] \tag{2.7}
\end{align*}
$$

where $p(z)$ and $q(w)$ have the following forms:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2} \ldots \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2} \ldots \tag{2.9}
\end{equation*}
$$

Now, equating the coefficients in (2.6) and (2.7), we have

$$
\begin{align*}
& (2-\lambda)\left(\frac{1+b}{2+b}\right)^{\mu} a_{2}=\alpha p_{1} \tag{2.10}\\
& \left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{3}=\frac{1}{2}\left[\alpha(\alpha-1) p_{1}^{2}+2 \alpha p_{2}\right] \tag{2.11}\\
& -(2-\lambda)\left(\frac{1+b}{2+b}\right)^{\mu} a_{2}=\alpha q_{1} \tag{2.12}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\left(2 a_{2}^{2}-a_{3}\right)=\frac{1}{2}\left[\alpha(\alpha-1) q_{1}^{2}+2 \alpha q_{2}\right] \tag{2.13}
\end{equation*}
$$

From 2.10 and 2.12), we have

$$
\begin{equation*}
2(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.15}
\end{equation*}
$$

From 2.11, 2.13, 2.14 and 2.15, we have

$$
\begin{align*}
& \left\{\left\{2 \alpha\left(\lambda^{2}-2 \lambda\right)-(\alpha-1)(2-\lambda)^{2}\right\}\left(\frac{1+b}{2+b}\right)^{2 \mu}+2 \alpha(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\} a_{2}^{2} \\
= & \alpha^{2}\left(p_{2}+q_{2}\right) \tag{2.16}
\end{align*}
$$

Applying Lemma 1 on 2.16, we have

$$
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{\left\{\left\{2 \alpha\left(\lambda^{2}-2 \lambda\right)-(\alpha-1)(2-\lambda)^{2}\right\}\left(\frac{1+b}{2+b}\right)^{2 \mu}+2 \alpha(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\}}}
$$

This gives the bound on $\left|a_{2}\right|$ as given in 2.4.
Next, to find the bound on $\left|a_{3}\right|$, by subtracting 2.13 from 2.11, we have

$$
\begin{equation*}
2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{3}-2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{2}^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) \tag{2.17}
\end{equation*}
$$

From 2.14, 2.15 and 2.17, we have

$$
\begin{equation*}
a_{3}=\left[\frac{\alpha^{2} p_{1}^{2}}{(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}+\frac{\alpha\left(p_{2}-q_{2}\right)}{2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}}\right] \tag{2.18}
\end{equation*}
$$

Applying Lemma 1 once again on 2.18 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}+\frac{2 \alpha}{(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}}
$$

This completes the proof.
For $\lambda=0, \mu=0$ and $b=0$ in Theorem 1 we have the following corollary due to Srivastava et al. [10].
Corollary 1. Let f given by 1.1 be in the class $\mathcal{H}_{\Sigma}^{\alpha}$. Then

$$
\left|a_{2}\right| \leqq \alpha \sqrt{\frac{2}{\alpha+2}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{\alpha(3 \alpha+2)}{3}
$$

Corollary 2. Let the function f defined by 1.1 be in the class $M_{\Sigma}(1,0, \alpha, \lambda)$ for $0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{\left\{\lambda^{2}(\alpha+1)-4(\alpha+\lambda-1)\right\} \frac{1}{4}+\frac{2}{3} \alpha(3-\lambda)}},\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{\frac{1}{4}(2-\lambda)^{2}}+\frac{2 \alpha}{\frac{1}{3}(3-\lambda)}
$$

Corollary 3. Let the function f defined by 1.1 be in the class $M_{\Sigma}(1,1, \alpha, \lambda)$ for $0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1$. Then

$$
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{\left\{\lambda^{2}(\alpha+1)-4(\alpha+\lambda-1)\right\} \frac{4}{9}+\alpha(3-\lambda)}},\left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{\frac{4}{9}(2-\lambda)^{2}}+\frac{2 \alpha}{\frac{1}{2}(3-\lambda)}
$$

Corollary 4. Let the function f defined by (1.1) be in the class $M_{\Sigma}(1, \gamma, \alpha, \lambda)$ for $0<\alpha \leqq 1 ; 0 \leqq \lambda \leqq 1$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{\left\{\lambda^{2}(\alpha+1)-4(\alpha+\lambda-1)\right\}\left(\frac{1+\gamma}{2+\gamma}\right)^{2}+2 \alpha(3-\lambda)\left(\frac{1+\gamma}{3+\gamma}\right)}} \\
& \left|a_{3}\right| \leqq \frac{4 \alpha^{2}}{(2-\lambda)^{2}\left(\frac{1+\gamma}{2+\gamma}\right)^{2}}+\frac{2 \alpha}{(3-\lambda)\left(\frac{1+\gamma}{3+\gamma}\right)^{\mu}}
\end{aligned}
$$

3. Coefficient bounds for the function class $M_{\Sigma}(\mu, b, \beta, \lambda)$

Definition 2. A function f defined by 1.1 is said to be in the class $M_{\Sigma}(\mu, b, \beta, \lambda)$ if the following condition is satisfied:

$$
\begin{equation*}
\Re\left(\frac{z\left[J_{\mu, b} f(z)\right]^{\prime}}{(1-\lambda) z+\lambda J_{\mu, b} f(z)}\right)>\beta, \quad 0 \leqq \beta<1 ; 0 \leqq \lambda \leqq 1 ; z \in E \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[J_{\mu, b} g(w)\right]^{\prime}}{(1-\lambda) w+\lambda J_{\mu, b} g(w)}\right)>\beta, \quad 0 \leqq \beta<1 ; 0 \leqq \lambda \leqq 1 ; w \in E \tag{3.2}
\end{equation*}
$$

where the function g is given in 2.3 .
Special Cases:
i) For $\mu=b=\lambda=0$, 3.1) and (3.2 reduced to the class $\mathcal{H}_{\Sigma}(\beta)$ defined by Srivastava et.al [10.
ii) For $\mu=b=0$ and $\lambda=1$, (3.1) reduced to the well-known starlike function of order β, see [9.
Theorem 2. Let $f \in \mathcal{A}$ defined by (1.1) be in the class $M_{\Sigma}(\mu, b, \beta, \lambda)$ for $0 \leqq \beta<$ $1 ; 0 \leqq \lambda \leqq 1$. Then

$$
\begin{align*}
& \left|a_{2}\right| \leqq \frac{\sqrt{2(1-\beta)}}{\sqrt{\left\{\left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\}}} \tag{3.3}\\
& \left|a_{3}\right| \leqq(1-\beta)\left\{\frac{4(1-\beta)}{(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}+\frac{2}{(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}}\right\} \tag{3.4}
\end{align*}
$$

Proof. From (3.1) and (3.2), we have

$$
\begin{align*}
\frac{z\left[J_{\mu, b} f(z)\right]^{\prime}}{(1-\lambda) z+\lambda J_{\mu, b} f(z)} & =\beta+(1-\beta) p(z) \tag{3.5}\\
\frac{w\left[J_{\mu, b} f(w)\right]^{\prime}}{(1-\lambda) w+\lambda J_{\mu, b} f(w)} & =\beta+(1-\beta) q(w) \tag{3.6}
\end{align*}
$$

where $p(z)$ and $q(w)$ are given in 2.8 and 2.9 respectively. Equating the coefficients in (3.5) and (3.6), we obtain

$$
\begin{align*}
& (2-\lambda)\left(\frac{1+b}{2+b}\right)^{\mu} a_{2}=(1-\beta) p_{1} \tag{3.7}\\
& \left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{3}=(1-\beta) p_{2} \tag{3.8}\\
& -(2-\lambda)\left(\frac{1+b}{2+b}\right)^{\mu} a_{2}=(1-\beta) q_{1} \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) q_{2} \tag{3.10}
\end{equation*}
$$

From 3.7 and (3.9), we have

$$
\begin{equation*}
2(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu} a_{2}^{2}=(1-\beta)^{2}\left(p_{2}^{2}+q_{2}^{2}\right) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{1}=-q_{1} . \tag{3.12}
\end{equation*}
$$

Adding (3.8) and 3.10, we have

$$
\begin{equation*}
\left\{2\left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu}+2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \tag{3.13}
\end{equation*}
$$

Applying Lemma 1 on (3.13), we have

$$
\left|a_{2}\right| \leqq \frac{\sqrt{2(1-\beta)}}{\sqrt{\left\{\left(\lambda^{2}-2 \lambda\right)\left(\frac{1+b}{2+b}\right)^{2 \mu}+(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}\right\}}}
$$

This gives the bound on $\left|a_{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (3.10) from (3.8), we have

$$
\begin{equation*}
2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{3}-2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu} a_{2}^{2}=(1-\beta)\left(p_{2}-q_{2}\right) \tag{3.14}
\end{equation*}
$$

Substitution the value of a_{2}^{2} from 3.11 in 3.14 , we have

$$
\begin{equation*}
a_{3}=\left(\frac{(1-\beta)^{2}\left(p_{2}^{2}+q_{2}^{2}\right)}{2(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}\right)+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{2(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}} \tag{3.15}
\end{equation*}
$$

Applying Lemma 1 on 3.15 for the coefficient p_{2} and q_{2}, we have

$$
\left|a_{3}\right| \leqq(1-\beta)\left\{\frac{4(1-\beta)}{(2-\lambda)^{2}\left(\frac{1+b}{2+b}\right)^{2 \mu}}+\frac{2}{(3-\lambda)\left(\frac{1+b}{3+b}\right)^{\mu}}\right\}
$$

This completes the proof.
Corollary 5 [10]. Let $f(z)$ be given by 1.1) be in the function class $\mathcal{H}_{\Sigma}(\beta)$ $(0 \leqq \beta<1)$. Then

$$
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\beta)}{3}} \quad \text { and } \quad\left|a_{3}\right| \leqq \frac{(1-\beta)(5-3 \beta)}{3}
$$

Corollary 6. Let the function $f(z)$ defined by 1.1 be in the class $M_{\Sigma}(0,0, \beta, 1)$ $(0 \leqq \beta<1)$. Then

$$
\left|a_{2}\right| \leqq \sqrt{2(1-\beta)} \quad \text { and } \quad\left|a_{3}\right| \leqq(1-\beta)(5-4 \beta)
$$

Corollary 7. Let the function $f(z)$ defined by 1.1 be in the class $M_{\Sigma}(1,1, \beta, \lambda)$ $(0 \leqq \beta<1 ; 0 \leqq \lambda \leqq 1)$. Then

$$
\begin{aligned}
\left|a_{2}\right| & \leqq \frac{\sqrt{2(1-\beta)}}{\sqrt{\frac{4}{9}\left\{\left(\lambda^{2}-2 \lambda\right)+\frac{1}{2}(3-\lambda)\right\}}} \\
\left|a_{3}\right| & \leqq(1-\beta)\left\{\frac{4(1-\beta)}{\frac{4}{9}(2-\lambda)^{2}}+\frac{2}{\frac{1}{2}(3-\lambda)}\right\}
\end{aligned}
$$

Acknowledgments

The authors are thankful to referees for their valuable suggestions. This research is carried out under the HEC projects grant No. 21-1235/SRGP/R\&D/HEC/2016 and 21-1193/SRGP/R\&D/HEC/2016.

References

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics (Series 2), 17 (1915) 12-22.
[2] S. Altınkaya, S. Yalçın, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Acad. Sci. Paris, Ser.I, 353 (2015) 1075-1080.
[3] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Canad. J. Math. 22 (1970) 476-485.
[4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Math. Anal. and Appl., Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. see also Studia Univ. Babes-Bolyai Math. 31 (2) (1986) 70-77.
[5] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math. 43.2 (2013) 59-65.
[6] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl, 176 (1993) 138-147.
[7] X-F. Li, A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum. 7 (2012) 1495-1504.
[8] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc, 135 (1969) 429-449.
[9] Ch. Pommerenke, Univalent Functions, Vanderhoeck and Ruprecht, Gottengen.1975.
[10] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[11] H. M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015) 242-246.
[12] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013) 831-842.
[13] H. M. Srivastava, S. S umer Eker, R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015) 1839-1845.
[14] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch zeta function and differential subordination, Integral Transforms Spec. Funct. 18 (2007) 207-216.
[15] Q.-H. Xu, Y.-C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012) 990-994.
[16] Q.-H. Xu, H.-G. Xiao, H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012) 11461-11465.

Shahid Khan
Department of Mathematics Riphah International University Islamabad, Pakistan.
E-mail address: shahidmath761@gmail.com
Nazar Khan
Department of Mathematics Abbottabad University of Science and Technology, Abbottabad, Pakistan.

E-mail address: nazarmaths@gmail.com
Saqib Hussain
Department of Mathematics COMSATS Institute of Information Technology Abbottabad, Pakistan.

E-mail address: saqib_math@yahoo.com
Qazi Zahoor Ahmad
Department of Mathematics Abbottabad University of Science and Technology, Abbottabad, Pakistan.

E-mail address: zahoorqazi5@gmail.com
Muhammad Asad Zaighum
Department of Mathematics Riphah International University Islamabad, Pakistan.
E-mail address: asadzaighum@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 05A30, 30C45; Secondary 11B65, 47B38.
 Key words and phrases. bi-univalent function, hadamard product, coefficient bounds, multiplier fractional differential operator.
 © 2017 Universiteti i Prishtinës, Prishtinë, Kosovë.
 Submitted November 17, 2016. Published May 26, 2017.
 Communicated by H. M. Srivastava.

