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SOME SUBCLASSES OF BI-UNIVALENT FUNCTIONS

ASSOCIATED WITH SRIVASTAVA-ATTIYA OPERATOR

SHAHID KHAN, NAZAR KHAN, SAQIB HUSSAIN, QAZI ZAHOOR AHMAD,
MUHAMMAD ASAD ZAIGHUM

Abstract. In this paper, we introduce certain new subclasses of bi-univalent

functions in open unit disk associated with the Srivastava-Attiya operator. We
obtain coefficient bounds |a2| and |a3| for the functions belonging to these new

classes.

1. Introduction

Let A denote the class of functions of the form:

f(z) = z +

∞∑
n=2

anz
n (z ∈ E) (1.1)

which are analytic in the open unit disk E = {z : z ∈ C and |z| < 1}. Further, by
S, we shall denote the class of all functions in A which are univalent in E.

A function f ∈ A is in the class S∗(β) of starlike functions of order β (0 5 β < 1)
if the following condition is satisfied:

<
(
zf ′ (z)

f (z)
− β

)
> 0 (z ∈ E) .

Moreover, a function f ∈ A is in the class C(β) of convex functions of order
β (0 5 β < 1) if the following condition is satisfied:

<

(
1 +

zf
′′

(z)

f ′ (z)
− β

)
> 0 (z ∈ E) .

For two analytic functions f given by (1.1) and g given by

g(z) = z +

∞∑
n=2

bnz
n (z ∈ E) .
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Their convolution (Hadamard product) is defined by

( f ∗ g)(z) = z +

∞∑
n=2

anbnz
n. (1.2)

It is well known that every univalent function f has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ E)

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) =

1

4

)
where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ....

A function f ∈ A is said to be bi-univalent in E if both f and f−1 are univalent in
E. The class of all such functions is denoted by Σ.

The work of Srivastava et al. [10] essentially revived the investigation of various
subclasses of the bi-univalent function class Σ in recent years. In a considerably
large number of sequels to the aforementioned work of Srivastava et al. [10], several
different subclasses of the bi-univalent function class Σ were introduced and studied
analogously by many authors (see, for example, [2], [5], [11], [12], [13], [15] and [16]),
but only non-sharp estimates on the initial coefficients |a2| and |a3| in the Taylor-
Maclaurin expansion (1.1) were obtained in these recent papers.

Furthermore, generalized Hurwitz-Lerch Zeta function φ(u, b, z) is defined by

φ(µ, b, z) =

∞∑
n=0

zn

(n+ b)µ
,

= b−µ +
z

(1 + b)µ
+

∞∑
n=2

zn

(n+ b)µ
,

where b ∈ C with b 6= 0,−1,−2, . . . . . . , µ ∈ C, <(µ) > 1 and z ∈ E.
Using Hurwitz-Lerch zeta functions with the convolution of an analytic functions,
Srivastava and Attiya [14] introduced a family of linear operators Jµ,b : A −→ A
as:

Jµ,bf(z) = Gµ,b ∗ f(z) = z +

∞∑
n=2

(
1 + b

n+ b

)µ
anz

n, (1.3)

where b ∈ C with b 6= 0,−1,−2, . . . . . . , µ ∈ C, z ∈ E and Gµ,b ∈ A given by

Gµ,b = (1 + b)µ
[
φ(µ, b, z)− b−µ

]
,

= z +

∞∑
n=2

(
1 + b

n+ b

)µ
zn. (1.4)

The following recursive relation can easily be obtained by using (1.3) and (1.4)

z [Jµ,bf(z)]
′

= (1 + b)Jµ−1,bf(z)− bJµ,bf(z).

Remark 1: J0,b and J−µ,b give the identity and inverse operator of Jµ,b respec-
tively.
Remark 2: Srivastava-Attiya operator defined in (1.3) generalizes many known
operators for example:
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(i) For µ = 1 and b = 0, (1.3) reduces to the well-known operator defined earlier
by Alexander [1].

ii) For µ = 1 and b = 1, (1.3) reduces to the well-known operator defined by
Libera [8].

(iii) For µ = 1 and b = γ > −1, γ ∈ N, (1.3) reduces to the Bernardi integral
operator defined by Bernardi [3].

(iv) For µ = σ > 0 and b = 1, (1.3) reduces to Jung–Kim–Srivastava integral
operator [6].
The object of the present work is to introduce two new subclasses of the function
class Σ and find estimates on the coefficients |a2| and |a3| for functions in these
new subclasses of the function class Σ using the technique of Srivastava et al. [10]
(see, also[7]).
Here we recall a lemma which we will use in our main results.

Lemma 1 [9]. If h ∈ P , then |cn| 5 2 for each n, where P is the family of all
functions h, analytic in E, for which

< (h (z)) > 0, z ∈ E,
where

h(z) = 1 + c1z + c2z
2...., z ∈ E.

2. Coefficient bounds for the function class MΣ(µ, b, α, λ)

Definition 1. A function f defined by (1.1) is said to be in the classMΣ(µ, b, α, λ)
if the following condition are satisfied:∣∣∣∣arg

(
z [Jµ,bf(z)]

′

(1− λ)z + λJµ,bf(z)

)∣∣∣∣ < απ

2
, 0 < α 5 1; 0 5 λ 5 1; z ∈ E, (2.1)

and ∣∣∣∣arg

(
w [Jµ,bg(w)]

′

(1− λ)w + λJµ,bg(w)

)∣∣∣∣ < απ

2
, 0 < α 5 1; 0 5 λ 5 1;w ∈ E, (2.2)

where the function g is given by

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ... (2.3)

That is, the extension of f−1 to E.
Special Cases:
i) For µ = 0, λ = 0 and b = 0 in (2.1) and (2.2) we have the class MΣ(0, 0, α, 0) =
HαΣ, defined by Srivastava et.al [10].
ii) For µ = 0, λ = 1 and b = 0 in (2.1) and (2.2) we have the class MΣ(0, 0, α, 1) =
δ∗Σ(α) defined by Brannan and Taha [4].
Theorem 1. Let the function f defined by (1.1) be in the class MΣ(µ, b, α, λ)
(0 < α 5 1; 0 5 λ 5 1). Then

|a2| 5
2α√{

{2α(λ2 − 2λ)− (α− 1)(2− λ)2}
(

1+b
2+b

)2µ

+ 2α(3− λ)
(

1+b
3+b

)µ} ,
(2.4)

|a3| 5
4α2

(2− λ)2
(

1+b
2+b

)2µ +
2α

(3− λ)
(

1+b
3+b

)µ .
(2.5)
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Proof. From (2.1) and (2.2) we have

z [Jµ,bf(z)]
′

(1− λ)z + λJµ,bf(z)
= [p(z)]

α
, (2.6)

w [Jµ,bf(w)]
′

(1− λ)w + λJµ,bf(w)
= [q(w)] , (2.7)

where p(z) and q(w) have the following forms:

p(z) = 1 + p1z + p2z
2..., (2.8)

and

q(w) = 1 + q1w + q2w
2.... (2.9)

Now, equating the coefficients in (2.6) and (2.7), we have

(2− λ)

(
1 + b

2 + b

)µ
a2 = αp1,

(2.10)

(λ2 − 2λ)

(
1 + b

2 + b

)2µ

a2
2 + (3− λ)

(
1 + b

3 + b

)µ
a3 =

1

2

[
α(α− 1)p2

1 + 2αp2

]
, (2.11)

− (2− λ)

(
1 + b

2 + b

)µ
a2 = αq1,

(2.12)
and

(λ2 − 2λ)

(
1 + b

2 + b

)2µ

a2
2 + (3− λ)

(
1 + b

3 + b

)µ
(2a2

2 − a3) =
1

2

[
α(α− 1)q2

1 + 2αq2

]
.

(2.13)
From (2.10) and (2.12), we have

2(2− λ)2

(
1 + b

2 + b

)2µ

a2
2 = α2(p2

1 + q2
1), (2.14)

and

p1 = −q1. (2.15)

From (2.11), (2.13), (2.14) and (2.15), we have{{
2α(λ2 − 2λ)− (α− 1)(2− λ)2

}(1 + b

2 + b

)2µ

+ 2α(3− λ)

(
1 + b

3 + b

)µ}
a2

2

= α2(p2 + q2) (2.16)

Applying Lemma 1 on (2.16), we have

|a2| 5
2α√{

{2α(λ2 − 2λ)− (α− 1)(2− λ)2}
(

1+b
2+b

)2µ

+ 2α(3− λ)
(

1+b
3+b

)µ} .
This gives the bound on |a2| as given in (2.4).
Next, to find the bound on |a3|, by subtracting (2.13) from (2.11), we have

2(3−λ)

(
1 + b

3 + b

)µ
a3−2(3−λ)

(
1 + b

3 + b

)µ
a2

2 = α(p2−q2)+
α(α− 1)

2
(p2

1−q2
1) (2.17)
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From (2.14), (2.15) and (2.17), we have

a3 =

 α2p2
1

(2− λ)2
(

1+b
2+b

)2µ +
α(p2 − q2)

2(3− λ)
(

1+b
3+b

)µ
 (2.18)

Applying Lemma 1 once again on (2.18) for the coefficients p2 and q2, we have

|a3| 5
4α2

(2− λ)2
(

1+b
2+b

)2µ +
2α

(3− λ)
(

1+b
3+b

)µ .
This completes the proof.
For λ = 0, µ = 0 and b = 0 in Theorem 1 we have the following corollary due to
Srivastava et al. [10].
Corollary 1. Let f given by (1.1) be in the class HαΣ. Then

|a2| 5 α

√
2

α+ 2
and |a3| 5

α(3α+ 2)

3
.

Corollary 2. Let the function f defined by (1.1) be in the class MΣ(1, 0, α, λ) for
0 < α 5 1; 0 5 λ 5 1. Then

|a2| 5
2α√

{λ2(α+ 1)− 4(α+ λ− 1)} 1
4 + 2

3α(3− λ)
, |a3| 5

4α2

1
4 (2− λ)2

+
2α

1
3 (3− λ)

.

Corollary 3. Let the function f defined by (1.1) be in the class MΣ(1, 1, α, λ) for
0 < α 5 1; 0 5 λ 5 1. Then

|a2| 5
2α√

{λ2(α+ 1)− 4(α+ λ− 1)} 4
9 + α(3− λ)

, |a3| 5
4α2

4
9 (2− λ)2

+
2α

1
2 (3− λ)

Corollary 4. Let the function f defined by (1.1) be in the class MΣ(1, γ, α, λ) for
0 < α 5 1; 0 5 λ 5 1. Then

|a2| 5
2α√

{λ2(α+ 1)− 4(α+ λ− 1)}
(

1+γ
2+γ

)2

+ 2α(3− λ)
(

1+γ
3+γ

) ,
|a3| 5

4α2

(2− λ)2
(

1+γ
2+γ

)2 +
2α

(3− λ)
(

1+γ
3+γ

)µ .
3. Coefficient bounds for the function class MΣ(µ, b, β, λ)

Definition 2. A function f defined by (1.1) is said to be in the classMΣ(µ, b, β, λ)
if the following condition is satisfied:

<
(

z [Jµ,bf(z)]
′

(1− λ)z + λJµ,bf(z)

)
> β, 0 5 β < 1; 0 5 λ 5 1; z ∈ E, (3.1)

and

<
(

w [Jµ,bg(w)]
′

(1− λ)w + λJµ,bg(w)

)
> β, 0 5 β < 1; 0 5 λ 5 1;w ∈ E, (3.2)

where the function g is given in (2.3).
Special Cases:
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i) For µ = b = λ = 0, (3.1) and (3.2) reduced to the class HΣ(β) defined by
Srivastava et.al [10].
ii) For µ = b = 0 and λ = 1, (3.1) reduced to the well-known starlike function of
order β, see [9].
Theorem 2. Let f ∈ A defined by (1.1) be in the class MΣ(µ, b, β, λ) for 0 5 β <
1; 0 5 λ 5 1. Then

|a2| 5
√

2(1− β)√{
(λ2 − 2λ)

(
1+b
2+b

)2µ

+ (3− λ)
(

1+b
3+b

)µ} , (3.3)

|a3| 5 (1− β)

 4(1− β)

(2− λ)2
(

1+b
2+b

)2µ +
2

(3− λ)
(

1+b
3+b

)µ
 . (3.4)

Proof. From (3.1) and (3.2), we have

z [Jµ,bf(z)]
′

(1− λ)z + λJµ,bf(z)
= β + (1− β)p(z), (3.5)

w [Jµ,bf(w)]
′

(1− λ)w + λJµ,bf(w)
= β + (1− β)q(w), (3.6)

where p(z) and q(w) are given in (2.8) and (2.9) respectively. Equating the coeffi-
cients in (3.5) and (3.6), we obtain

(2− λ)

(
1 + b

2 + b

)µ
a2 = (1− β)p1, (3.7)

(λ2 − 2λ)

(
1 + b

2 + b

)2µ

a2
2 + (3− λ)

(
1 + b

3 + b

)µ
a3 = (1− β)p2, (3.8)

− (2− λ)

(
1 + b

2 + b

)µ
a2 = (1− β)q1, (3.9)

and

(λ2 − 2λ)

(
1 + b

2 + b

)2µ

a2
2 + (3− λ)

(
1 + b

3 + b

)µ
(2a2

2 − a3) = (1− β)q2. (3.10)

From (3.7) and (3.9), we have

2(2− λ)2

(
1 + b

2 + b

)2µ

a2
2 = (1− β)2

(
p2

2 + q2
2

)
, (3.11)

and

p1 = −q1. (3.12)

Adding (3.8) and (3.10), we have{
2(λ2 − 2λ)

(
1 + b

2 + b

)2µ

+ 2(3− λ)

(
1 + b

3 + b

)µ}
a2

2 = (1− β)(p2 + q2). (3.13)



SOME SUBCLASSES OF BI-UNIVALENT FUNCTIONS 43

Applying Lemma 1 on (3.13), we have

|a2| 5
√

2(1− β)√{
(λ2 − 2λ)

(
1+b
2+b

)2µ

+ (3− λ)
(

1+b
3+b

)µ} .
This gives the bound on |a2| as given in (3.3).
Next, in order to find the bound on |a3|, by subtracting (3.10) from (3.8), we have

2(3− λ)

(
1 + b

3 + b

)µ
a3 − 2(3− λ)

(
1 + b

3 + b

)µ
a2

2 = (1− β)(p2 − q2) (3.14)

Substitution the value of a2
2 from (3.11) in (3.14), we have

a3 =

 (1− β)2
(
p2

2 + q2
2

)
2(2− λ)2

(
1+b
2+b

)2µ

+
(1− β)(p2 − q2)

2(3− λ)
(

1+b
3+b

)µ (3.15)

Applying Lemma 1 on (3.15) for the coefficient p2 and q2, we have

|a3| 5 (1− β)

 4(1− β)

(2− λ)2
(

1+b
2+b

)2µ +
2

(3− λ)
(

1+b
3+b

)µ
 .

This completes the proof.
Corollary 5 [10]. Let f(z) be given by (1.1) be in the function class HΣ(β)
(0 5 β < 1). Then

|a2| 5
√

2(1− β)

3
and |a3| 5

(1− β)(5− 3β)

3
.

Corollary 6. Let the function f(z) defined by (1.1) be in the class MΣ(0, 0, β, 1)
(0 5 β < 1) . Then

|a2| 5
√

2(1− β) and |a3| 5 (1− β)(5− 4β).

Corollary 7. Let the function f(z) defined by (1.1) be in the class MΣ(1, 1, β, λ)
(0 5 β < 1; 0 5 λ 5 1) . Then

|a2| 5
√

2(1− β)√
4
9

{
(λ2 − 2λ) + 1

2 (3− λ)
} .

|a3| 5 (1− β)

{
4(1− β)
4
9 (2− λ)2

+
2

1
2 (3− λ)

}
.
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